/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* prof_tree.c --- these routines maintain the parse tree of the
* config file.
*
* All of the details of how the tree is stored is abstracted away in
* this file; all of the other profile routines build, access, and
* modify the tree via the accessor functions found in this file.
*
* Each node may represent either a relation or a section header.
*
* A section header must have its value field set to 0, and may a one
* or more child nodes, pointed to by first_child.
*
* A relation has as its value a pointer to allocated memory
* containing a string. Its first_child pointer must be null.
*
*/
#include "prof_int.h"
#include <stdio.h>
#include <string.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <errno.h>
#include <ctype.h>
struct profile_node {
errcode_t magic;
char *name;
char *value;
int group_level;
int final:1; /* Indicate don't search next file */
int deleted:1;
struct profile_node *first_child;
struct profile_node *parent;
struct profile_node *next, *prev;
};
#define CHECK_MAGIC(node) \
if ((node)->magic != PROF_MAGIC_NODE) \
return PROF_MAGIC_NODE;
/*
* Free a node, and any children
*/
void profile_free_node(struct profile_node *node)
{
struct profile_node *child, *next;
if (node->magic != PROF_MAGIC_NODE)
return;
if (node->name)
free(node->name);
if (node->value)
free(node->value);
for (child=node->first_child; child; child = next) {
next = child->next;
profile_free_node(child);
}
node->magic = 0;
free(node);
}
#ifndef HAVE_STRDUP
#undef strdup
#define strdup MYstrdup
static char *MYstrdup (const char *s)
{
size_t sz = strlen(s) + 1;
char *p = malloc(sz);
if (p != 0)
memcpy(p, s, sz);
return p;
}
#endif
/*
* Create a node
*/
errcode_t profile_create_node(const char *name, const char *value,
struct profile_node **ret_node)
{
struct profile_node *new;
new = malloc(sizeof(struct profile_node));
if (!new)
return ENOMEM;
memset(new, 0, sizeof(struct profile_node));
new->name = strdup(name);
if (new->name == 0) {
profile_free_node(new);
return ENOMEM;
}
if (value) {
new->value = strdup(value);
if (new->value == 0) {
profile_free_node(new);
return ENOMEM;
}
}
new->magic = PROF_MAGIC_NODE;
*ret_node = new;
return 0;
}
/*
* This function verifies that all of the representation invarients of
* the profile are true. If not, we have a programming bug somewhere,
* probably in this file.
*/
errcode_t profile_verify_node(struct profile_node *node)
{
struct profile_node *p, *last;
errcode_t retval;
CHECK_MAGIC(node);
if (node->value && node->first_child)
return PROF_SECTION_WITH_VALUE;
last = 0;
for (p = node->first_child; p; last = p, p = p->next) {
if (p->prev != last)
return PROF_BAD_LINK_LIST;
if (last && (last->next != p))
return PROF_BAD_LINK_LIST;
if (node->group_level+1 != p->group_level)
return PROF_BAD_GROUP_LVL;
if (p->parent != node)
return PROF_BAD_PARENT_PTR;
retval = profile_verify_node(p);
if (retval)
return retval;
}
return 0;
}
/*
* Add a node to a particular section
*/
errcode_t profile_add_node(struct profile_node *section, const char *name,
const char *value, struct profile_node **ret_node)
{
errcode_t retval;
struct profile_node *p, *last, *new;
CHECK_MAGIC(section);
if (section->value)
return PROF_ADD_NOT_SECTION;
/*
* Find the place to insert the new node. We look for the
* place *after* the last match of the node name, since
* order matters.
*/
for (p=section->first_child, last = 0; p; last = p, p = p->next) {
int cmp;
cmp = strcmp(p->name, name);
if (cmp > 0)
break;
}
retval = profile_create_node(name, value, &new);
if (retval)
return retval;
new->group_level = section->group_level+1;
new->deleted = 0;
new->parent = section;
new->prev = last;
new->next = p;
if (p)
p->prev = new;
if (last)
last->next = new;
else
section->first_child = new;
if (ret_node)
*ret_node = new;
return 0;
}
/*
* Set the final flag on a particular node.
*/
errcode_t profile_make_node_final(struct profile_node *node)
{
CHECK_MAGIC(node);
node->final = 1;
return 0;
}
/*
* Check the final flag on a node
*/
int profile_is_node_final(struct profile_node *node)
{
return (node->final != 0);
}
/*
* Return the name of a node. (Note: this is for internal functions
* only; if the name needs to be returned from an exported function,
* strdup it first!)
*/
const char *profile_get_node_name(struct profile_node *node)
{
return node->name;
}
/*
* Return the value of a node. (Note: this is for internal functions
* only; if the name needs to be returned from an exported function,
* strdup it first!)
*/
const char *profile_get_node_value(struct profile_node *node)
{
return node->value;
}
/*
* Iterate through the section, returning the nodes which match
* the given name. If name is NULL, then interate through all the
* nodes in the section. If section_flag is non-zero, only return the
* section which matches the name; don't return relations. If value
* is non-NULL, then only return relations which match the requested
* value. (The value argument is ignored if section_flag is non-zero.)
*
* The first time this routine is called, the state pointer must be
* null. When this profile_find_node_relation() returns, if the state
* pointer is non-NULL, then this routine should be called again.
* (This won't happen if section_flag is non-zero, obviously.)
*
*/
errcode_t profile_find_node(struct profile_node *section, const char *name,
const char *value, int section_flag, void **state,
struct profile_node **node)
{
struct profile_node *p;
CHECK_MAGIC(section);
p = *state;
if (p) {
CHECK_MAGIC(p);
} else
p = section->first_child;
for (; p; p = p->next) {
if (name && (strcmp(p->name, name)))
continue;
if (section_flag) {
if (p->value)
continue;
} else {
if (!p->value)
continue;
if (value && (strcmp(p->value, value)))
continue;
}
if (p->deleted)
continue;
/* A match! */
if (node)
*node = p;
break;
}
if (p == 0) {
*state = 0;
return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION;
}
/*
* OK, we've found one match; now let's try to find another
* one. This way, if we return a non-zero state pointer,
* there's guaranteed to be another match that's returned.
*/
for (p = p->next; p; p = p->next) {
if (name && (strcmp(p->name, name)))
continue;
if (section_flag) {
if (p->value)
continue;
} else {
if (!p->value)
continue;
if (value && (strcmp(p->value, value)))
continue;
}
/* A match! */
break;
}
*state = p;
return 0;
}
/*
* Iterate through the section, returning the relations which match
* the given name. If name is NULL, then interate through all the
* relations in the section. The first time this routine is called,
* the state pointer must be null. When this profile_find_node_relation()
* returns, if the state pointer is non-NULL, then this routine should
* be called again.
*
* The returned character string in value points to the stored
* character string in the parse string. Before this string value is
* returned to a calling application (profile_find_node_relation is not an
* exported interface), it should be strdup()'ed.
*/
errcode_t profile_find_node_relation(struct profile_node *section,
const char *name, void **state,
char **ret_name, char **value)
{
struct profile_node *p;
errcode_t retval;
retval = profile_find_node(section, name, 0, 0, state, &p);
if (retval)
return retval;
if (p) {
if (value)
*value = p->value;
if (ret_name)
*ret_name = p->name;
}
return 0;
}
/*
* Iterate through the section, returning the subsections which match
* the given name. If name is NULL, then interate through all the
* subsections in the section. The first time this routine is called,
* the state pointer must be null. When this profile_find_node_subsection()
* returns, if the state pointer is non-NULL, then this routine should
* be called again.
*
* This is (plus accessor functions for the name and value given a
* profile node) makes this function mostly syntactic sugar for
* profile_find_node.
*/
errcode_t profile_find_node_subsection(struct profile_node *section,
const char *name, void **state,
char **ret_name,
struct profile_node **subsection)
{
struct profile_node *p;
errcode_t retval;
/* Solaris Kerberos */
if (section == (struct profile_node *)NULL)
return (PROF_NO_PROFILE);
retval = profile_find_node(section, name, 0, 1, state, &p);
if (retval)
return retval;
if (p) {
if (subsection)
*subsection = p;
if (ret_name)
*ret_name = p->name;
}
return 0;
}
/*
* This function returns the parent of a particular node.
*/
errcode_t profile_get_node_parent(struct profile_node *section,
struct profile_node **parent)
{
*parent = section->parent;
return 0;
}
/*
* This is a general-purpose iterator for returning all nodes that
* match the specified name array.
*/
struct profile_iterator {
prf_magic_t magic;
profile_t profile;
int flags;
const char *const *names;
const char *name;
prf_file_t file;
int file_serial;
int done_idx;
struct profile_node *node;
int num;
};
errcode_t profile_node_iterator_create(profile_t profile,
const char *const *names, int flags,
void **ret_iter)
{
struct profile_iterator *iter;
int done_idx = 0;
if (profile == 0)
return PROF_NO_PROFILE;
if (profile->magic != PROF_MAGIC_PROFILE)
return PROF_MAGIC_PROFILE;
if (!names)
return PROF_BAD_NAMESET;
if (!(flags & PROFILE_ITER_LIST_SECTION)) {
if (!names[0])
return PROF_BAD_NAMESET;
done_idx = 1;
}
if ((iter = malloc(sizeof(struct profile_iterator))) == NULL)
return ENOMEM;
iter->magic = PROF_MAGIC_ITERATOR;
iter->profile = profile;
iter->names = names;
iter->flags = flags;
iter->file = profile->first_file;
iter->done_idx = done_idx;
iter->node = 0;
iter->num = 0;
*ret_iter = iter;
return 0;
}
void profile_node_iterator_free(void **iter_p)
{
struct profile_iterator *iter;
if (!iter_p)
return;
iter = *iter_p;
if (!iter || iter->magic != PROF_MAGIC_ITERATOR)
return;
free(iter);
*iter_p = 0;
}
/*
* Note: the returned character strings in ret_name and ret_value
* points to the stored character string in the parse string. Before
* this string value is returned to a calling application
* (profile_node_iterator is not an exported interface), it should be
* strdup()'ed.
*/
errcode_t profile_node_iterator(void **iter_p, struct profile_node **ret_node,
char **ret_name, char **ret_value)
{
struct profile_iterator *iter = *iter_p;
struct profile_node *section, *p;
const char *const *cpp;
errcode_t retval;
int skip_num = 0;
if (!iter || iter->magic != PROF_MAGIC_ITERATOR)
return PROF_MAGIC_ITERATOR;
if (iter->file && iter->file->magic != PROF_MAGIC_FILE)
return PROF_MAGIC_FILE;
if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA)
return PROF_MAGIC_FILE_DATA;
/*
* If the file has changed, then the node pointer is invalid,
* so we'll have search the file again looking for it.
*/
if (iter->file) {
retval = k5_mutex_lock(&iter->file->data->lock);
if (retval)
return retval;
}
if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) {
iter->flags &= ~PROFILE_ITER_FINAL_SEEN;
skip_num = iter->num;
iter->node = 0;
}
if (iter->node && iter->node->magic != PROF_MAGIC_NODE) {
if (iter->file)
k5_mutex_unlock(&iter->file->data->lock);
return PROF_MAGIC_NODE;
}
get_new_file:
if (iter->node == 0) {
if (iter->file == 0 ||
(iter->flags & PROFILE_ITER_FINAL_SEEN)) {
if (iter->file)
k5_mutex_unlock(&iter->file->data->lock);
profile_node_iterator_free(iter_p);
if (ret_node)
*ret_node = 0;
if (ret_name)
*ret_name = 0;
if (ret_value)
*ret_value =0;
return 0;
}
k5_mutex_unlock(&iter->file->data->lock);
if ((retval = profile_update_file(iter->file))) {
if (retval == ENOENT || retval == EACCES) {
/* XXX memory leak? */
iter->file = iter->file->next;
if (iter->file) {
retval = k5_mutex_lock(&iter->file->data->lock);
if (retval) {
profile_node_iterator_free(iter_p);
return retval;
}
}
skip_num = 0;
retval = 0;
goto get_new_file;
} else {
profile_node_iterator_free(iter_p);
return retval;
}
}
retval = k5_mutex_lock(&iter->file->data->lock);
if (retval) {
profile_node_iterator_free(iter_p);
return retval;
}
iter->file_serial = iter->file->data->upd_serial;
/*
* Find the section to list if we are a LIST_SECTION,
* or find the containing section if not.
*/
section = iter->file->data->root;
assert(section != NULL);
for (cpp = iter->names; cpp[iter->done_idx]; cpp++) {
for (p=section->first_child; p; p = p->next) {
if (!strcmp(p->name, *cpp) && !p->value)
break;
}
if (!p) {
section = 0;
break;
}
section = p;
if (p->final)
iter->flags |= PROFILE_ITER_FINAL_SEEN;
}
if (!section) {
k5_mutex_unlock(&iter->file->data->lock);
iter->file = iter->file->next;
if (iter->file) {
retval = k5_mutex_lock(&iter->file->data->lock);
if (retval) {
profile_node_iterator_free(iter_p);
return retval;
}
}
skip_num = 0;
goto get_new_file;
}
iter->name = *cpp;
iter->node = section->first_child;
}
/*
* OK, now we know iter->node is set up correctly. Let's do
* the search.
*/
for (p = iter->node; p; p = p->next) {
if (iter->name && strcmp(p->name, iter->name))
continue;
if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) &&
p->value)
continue;
if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) &&
!p->value)
continue;
if (skip_num > 0) {
skip_num--;
continue;
}
if (p->deleted)
continue;
break;
}
iter->num++;
if (!p) {
k5_mutex_unlock(&iter->file->data->lock);
iter->file = iter->file->next;
if (iter->file) {
retval = k5_mutex_lock(&iter->file->data->lock);
if (retval) {
profile_node_iterator_free(iter_p);
return retval;
}
}
iter->node = 0;
skip_num = 0;
goto get_new_file;
}
k5_mutex_unlock(&iter->file->data->lock);
if ((iter->node = p->next) == NULL)
iter->file = iter->file->next;
if (ret_node)
*ret_node = p;
if (ret_name)
*ret_name = p->name;
if (ret_value)
*ret_value = p->value;
return 0;
}
/*
* Remove a particular node.
*
* TYT, 2/25/99
*/
errcode_t profile_remove_node(struct profile_node *node)
{
CHECK_MAGIC(node);
if (node->parent == 0)
return PROF_EINVAL; /* Can't remove the root! */
node->deleted = 1;
return 0;
}
/*
* Set the value of a specific node containing a relation.
*
* TYT, 2/25/99
*/
errcode_t profile_set_relation_value(struct profile_node *node,
const char *new_value)
{
char *cp;
CHECK_MAGIC(node);
if (!node->value)
return PROF_SET_SECTION_VALUE;
cp = malloc(strlen(new_value)+1);
if (!cp)
return ENOMEM;
strcpy(cp, new_value);
free(node->value);
node->value = cp;
return 0;
}
/*
* Rename a specific node
*
* TYT 2/25/99
*/
errcode_t profile_rename_node(struct profile_node *node, const char *new_name)
{
char *new_string;
struct profile_node *p, *last;
CHECK_MAGIC(node);
if (strcmp(new_name, node->name) == 0)
return 0; /* It's the same name, return */
/*
* Make sure we can allocate memory for the new name, first!
*/
new_string = malloc(strlen(new_name)+1);
if (!new_string)
return ENOMEM;
strcpy(new_string, new_name);
/*
* Find the place to where the new node should go. We look
* for the place *after* the last match of the node name,
* since order matters.
*/
for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) {
if (strcmp(p->name, new_name) > 0)
break;
}
/*
* If we need to move the node, do it now.
*/
if ((p != node) && (last != node)) {
/*
* OK, let's detach the node
*/
if (node->prev)
node->prev->next = node->next;
else
node->parent->first_child = node->next;
if (node->next)
node->next->prev = node->prev;
/*
* Now let's reattach it in the right place.
*/
if (p)
p->prev = node;
if (last)
last->next = node;
else
node->parent->first_child = node;
node->next = p;
node->prev = last;
}
free(node->name);
node->name = new_string;
return 0;
}