/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Given a physical address and an optional syndrome, determine the
* name of the memory module that contains it.
*/
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/mc.h>
#include <mcamd_api.h>
#include <mcamd_err.h>
#define MC_SYSADDR_MSB 39
#define MC_SYSADDR_LSB 3
#define CSDIMM1 0x1
#define CSDIMM2 0x2
#define BITS(val, high, low) \
((val) & (((2ULL << (high)) - 1) & ~((1ULL << (low)) - 1)))
/*
* iaddr_gen generates a "normalized" DRAM controller input address
* from a system address (physical address) if it falls within the
* mapped range for this memory controller. Normalisation is
* performed by subtracting the node base address from the system address,
* allowing from hoisting, and excising any bits being used in node
* interleaving.
*/
static int
iaddr_gen(struct mcamd_hdl *hdl, mcamd_node_t *mc, uint64_t pa,
uint64_t *iaddrp)
{
uint64_t orig = pa;
uint64_t mcnum, base, lim, dramaddr, ilen, ilsel, top, holesz;
if (!mcamd_get_numprops(hdl,
mc, MCAMD_PROP_NUM, &mcnum,
mc, MCAMD_PROP_BASE_ADDR, &base,
mc, MCAMD_PROP_LIM_ADDR, &lim,
mc, MCAMD_PROP_ILEN, &ilen,
mc, MCAMD_PROP_ILSEL, &ilsel,
mc, MCAMD_PROP_DRAMHOLE_SIZE, &holesz,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "iaddr_gen: failed to "
"lookup required properties");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
/*
* A node with no mapped memory (no active chip-selects is usually
* mapped with base and lim both zero. We'll cover that case and
* any other where the range is 0.
*/
if (base == lim)
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
if (pa < base || pa > lim) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "iaddr_gen: PA 0x%llx not "
"in range [0x%llx, 0x%llx] of MC %d\n", pa, base, lim,
(int)mcnum);
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
}
/*
* Rev E and later added the DRAM Hole Address Register for
* memory hoisting. In earlier revisions memory hoisting is
* achieved by following some algorithm to modify the CS bases etc,
* and this pa to unum algorithm will simply see those modified
* values. But if the Hole Address Register is being used then
* we need to reduce any address at or above 4GB by the size of
* the hole.
*/
if (holesz != 0 && pa >= 0x100000000) {
pa -= holesz;
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "iaddr_gen: dram hole "
"valid; pa decremented from 0x%llx to 0x%llx for "
"a dramhole size of 0x%llx\n", orig, pa, holesz);
}
dramaddr = BITS(pa, 39, 0) - BITS(base, 39, 24);
if (ilen != 0) {
int pailsel;
if (ilen != 1 && ilen != 3 && ilen != 7) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "Invalid intlven "
"of %d for MC %d\n", (int)ilen, (int)mcnum);
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
if ((pailsel = BITS(pa, 14, 12) >> 12 & ilen) != ilsel) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "iaddr_gen: "
"PA 0x%llx in a %d-way node interleave indicates "
"selection %d, MC %d has ilsel of %d\n",
pa, (int)ilen + 1, pailsel, (int)mcnum, (int)ilsel);
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
}
if (ilen == 1)
top = BITS(dramaddr, 36, 13) >> 1;
else if (ilen == 3)
top = BITS(dramaddr, 37, 14) >> 2;
else if (ilen == 7)
top = BITS(dramaddr, 38, 15) >> 3;
} else {
top = BITS(dramaddr, 35, 12);
}
*iaddrp = top | BITS(dramaddr, 11, 0);
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "iaddr_gen: PA 0x%llx in range "
"[0x%llx, 0x%llx] of MC %d; normalized address for cs compare "
"is 0x%llx\n", pa, base, lim, (int)mcnum, *iaddrp);
return (0);
}
/*
* cs_match determines whether the given DRAM controller input address
* would be responded to by the given chip-select (which may or may not
* be interleaved with other chip-selects). Since we include nodes
* for spare chip-selects (if any) and those marked TestFail (if any)
* we must check chip-select-bank-enable.
*/
static int
cs_match(struct mcamd_hdl *hdl, uint64_t iaddr, mcamd_node_t *cs)
{
uint64_t csnum, csbase, csmask, csbe;
int match = 0;
if (!mcamd_get_numprops(hdl,
cs, MCAMD_PROP_NUM, &csnum,
cs, MCAMD_PROP_BASE_ADDR, &csbase,
cs, MCAMD_PROP_MASK, &csmask,
cs, MCAMD_PROP_CSBE, &csbe,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "cs_match: failed to lookup "
"required properties\n");
return (0);
}
if (csbe) {
match = ((iaddr & ~csmask) == (csbase & ~csmask));
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "cs_match: iaddr 0x%llx "
"does %smatch CS %d (base 0x%llx, mask 0x%llx)\n", iaddr,
match ? "" : "not ", (int)csnum, csbase, csmask);
} else {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "cs_match: iaddr 0x%llx "
"does not match disabled CS %d\n", iaddr, (int)csnum);
}
return (match);
}
/*
* Given a chip-select node determine whether it has been substituted
* by the online spare chip-select.
*/
static mcamd_node_t *
cs_sparedto(struct mcamd_hdl *hdl, mcamd_node_t *cs, mcamd_node_t *mc)
{
uint64_t csnum, badcsnum, sparecsnum, tmpcsnum;
if (!mcamd_get_numprops(hdl,
cs, MCAMD_PROP_NUM, &csnum,
mc, MCAMD_PROP_BADCS, &badcsnum,
mc, MCAMD_PROP_SPARECS, &sparecsnum,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "cs_sparedto: failed to "
"lookup required properties\n");
return (NULL);
}
if ((badcsnum == MC_INVALNUM && sparecsnum == MC_INVALNUM) ||
csnum != badcsnum)
return (NULL);
for (cs = mcamd_cs_next(hdl, mc, NULL); cs != NULL;
cs = mcamd_cs_next(hdl, mc, cs)) {
if (!mcamd_get_numprop(hdl, cs, MCAMD_PROP_NUM, &tmpcsnum)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "cs_sparedto: "
"fail to lookup csnum - cannot reroute to spare\n");
return (NULL);
}
if (tmpcsnum == sparecsnum)
break;
}
if (cs != NULL) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "cs_sparedto: cs#%d is "
"redirected to active online spare of cs#%d\n", csnum,
sparecsnum);
} else {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "cs_sparedto: cs#%d is "
"redirected but cannot find spare cs# - cannout reroute to "
"cs#%d\n", csnum, sparecsnum);
}
return (cs);
}
/*
* Having determined which node and chip-select an address maps to,
* as well as whether it is a dimm1, dimm2 or dimm1/dimm2 pair
* involved, fill the unum structure including an optional dimm offset
* member.
*/
static int
unum_fill(struct mcamd_hdl *hdl, mcamd_node_t *cs, int which,
uint64_t iaddr, mc_unum_t *unump, int incloff)
{
uint64_t chipnum, csnum, dimm1, dimm2, ranknum;
mcamd_node_t *mc, *dimm;
int offsetdimm;
int i;
if ((mc = mcamd_cs_mc(hdl, cs)) == NULL ||
!mcamd_get_numprops(hdl,
mc, MCAMD_PROP_NUM, &chipnum,
cs, MCAMD_PROP_NUM, &csnum,
cs, MCAMD_PROP_DIMMRANK, &ranknum,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "unum_fill: failed to "
"lookup required properties\n");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
if ((which & CSDIMM1) &&
!mcamd_get_numprop(hdl, cs, MCAMD_PROP_CSDIMM1, &dimm1) ||
(which & CSDIMM2) &&
!mcamd_get_numprop(hdl, cs, MCAMD_PROP_CSDIMM2, &dimm2)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "unum_fill: failed to "
"lookup dimm1/dimm2 properties\n");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
unump->unum_board = 0;
unump->unum_chip = (int)chipnum;
unump->unum_mc = 0;
unump->unum_chan = MC_INVALNUM;
unump->unum_cs = (int)csnum;
unump->unum_rank = (int)ranknum;
for (i = 0; i < MC_UNUM_NDIMM; i++) {
unump->unum_dimms[i] = MC_INVALNUM;
}
switch (which) {
case CSDIMM1:
unump->unum_dimms[0] = (int)dimm1;
offsetdimm = (int)dimm1;
break;
case CSDIMM2:
unump->unum_dimms[0] = (int)dimm2;
offsetdimm = (int)dimm2;
break;
case CSDIMM1 | CSDIMM2:
unump->unum_dimms[0] = (int)dimm1;
unump->unum_dimms[1] = (int)dimm2;
offsetdimm = (int)dimm1;
break;
}
if (!incloff) {
unump->unum_offset = MCAMD_RC_INVALID_OFFSET;
return (0);
}
/*
* We wish to calculate a dimm offset. In the paired case we will
* lookup dimm1 (see offsetdimm above).
*/
for (dimm = mcamd_dimm_next(hdl, mc, NULL); dimm != NULL;
dimm = mcamd_dimm_next(hdl, mc, dimm)) {
uint64_t dnum;
if (!mcamd_get_numprop(hdl, dimm, MCAMD_PROP_NUM, &dnum)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "unum_fill: failed "
"to lookup dimm number property\n");
continue;
}
if (dnum == offsetdimm)
break;
}
if (dimm == NULL) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "unum_fill: failed to "
"find dimm with number %d for offset calculation\n",
offsetdimm);
unump->unum_offset = MCAMD_RC_INVALID_OFFSET;
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
/*
* mc_pa_to_offset sets the offset to an invalid value if
* it hits an error.
*/
(void) mc_pa_to_offset(hdl, mc, cs, iaddr, &unump->unum_offset);
return (0);
}
/*
* We have translated a system address to a (node, chip-select), and wish
* to determine the associated dimm or dimms.
*
* A (node, chip-select) pair identifies one (in 64-bit MC mode) or two (in
* 128-bit MC mode) DIMMs. In the case of a single dimm it is usually in a
* lodimm (channel A) slot, but if mismatched dimm support is present it may
* be an updimm (channel B).
*
* Where just one dimm is associated with the chip-select we are done.
* Where there are two dimms associated with the chip-select we can
* use the ECC type and/or syndrome to determine which of the pair we
* resolve to, if the error is correctable. If the error is uncorrectable
* then in 64/8 ECC mode we can still resolve to a single dimm (since ECC
* is calculated and checked on each half of the data separately), but
* in ChipKill mode we cannot resolve down to a single dimm.
*/
static int
mc_whichdimm(struct mcamd_hdl *hdl, mcamd_node_t *cs, uint64_t pa,
uint8_t valid_lo, uint32_t synd, int syndtype)
{
int lobit, hibit, data, check;
uint64_t dimm1, dimm2;
uint_t sym, pat;
int ndimm;
/*
* Read the associated dimm instance numbers. The provider must
* assure that if there is just one dimm then it is in the first
* property, and if there are two then the first must be on
* channel A.
*/
if (!mcamd_get_numprops(hdl,
cs, MCAMD_PROP_CSDIMM1, &dimm1,
cs, MCAMD_PROP_CSDIMM2, &dimm2,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "mc_whichdimm: failed to "
"lookup required properties");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
ndimm = (dimm1 != MC_INVALNUM) + (dimm2 != MC_INVALNUM);
if (ndimm == 0) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "mc_whichdimm: found no "
"dimms associated with chip-select");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
if (ndimm == 1) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichdimm: just one "
"dimm associated with this chip-select");
return (CSDIMM1);
}
/*
* 64/8 ECC is checked separately for the upper and lower
* halves, so even an uncorrectable error is contained within
* one of the two halves. If we have sufficient address resolution
* then we can determine which DIMM.
*/
if (syndtype == AMD_SYNDTYPE_ECC) {
if (valid_lo <= MC_SYSADDR_LSB) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichdimm: 64/8 "
"ECC in 128-bit mode, PA 0x%llx is in %s half\n",
pa, pa & 0x8 ? "upper" : "lower");
return (pa & 0x8 ? CSDIMM2 : CSDIMM1);
} else {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichdimm: "
"64/8 ECC in 128-bit mode, PA 0x%llx with least "
"significant valid bit %d cannot be resolved to "
"a single DIMM\n", pa, valid_lo);
return (mcamd_set_errno(hdl, EMCAMD_INSUFF_RES));
}
}
/*
* ChipKill ECC
*/
if (mcamd_cksynd_decode(hdl, synd, &sym, &pat)) {
/*
* A correctable ChipKill syndrome and we can tell
* which half the error was in from the symbol number.
*/
if (mcamd_cksym_decode(hdl, sym, &lobit, &hibit, &data,
&check) == 0)
return (mcamd_set_errno(hdl, EMCAMD_SYNDINVALID));
if (data && hibit <= 63 || check && hibit <= 7) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichdimm: "
"ChipKill symbol %d (%s %d..%d), so LODIMM\n", sym,
data ? "data" : "check", lobit, hibit);
return (CSDIMM1);
} else {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichdimm: "
"ChipKill symbol %d (%s %d..%d), so UPDIMM\n", sym,
data ? "data" : "check", lobit, hibit);
return (CSDIMM2);
}
} else {
/*
* An uncorrectable error while in ChipKill ECC mode - can't
* tell which dimm or dimms the errors lie within.
*/
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_whichhdimm: "
"uncorrectable ChipKill, could be either LODIMM "
"or UPDIMM\n");
return (CSDIMM1 | CSDIMM2);
}
}
/*
* Brute-force BKDG pa to cs translation, coded to look as much like the
* BKDG code as possible.
*/
static int
mc_bkdg_patounum(struct mcamd_hdl *hdl, mcamd_node_t *mc, uint64_t pa,
uint8_t valid_lo, uint32_t synd, int syndtype,
mc_unum_t *unump)
{
int which;
uint64_t mcnum, rev;
mcamd_node_t *cs;
/*
* Raw registers as per BKDG
*/
uint32_t HoleEn;
uint32_t DramBase, DramLimit;
uint32_t CSBase, CSMask;
/*
* Variables as per BKDG
*/
int Ilog;
uint32_t SystemAddr = (uint32_t)(pa >> 8);
uint64_t IntlvEn, IntlvSel;
uint32_t HoleOffset;
uint32_t InputAddr, Temp;
if (!mcamd_get_numprops(hdl,
mc, MCAMD_PROP_NUM, &mcnum,
mc, MCAMD_PROP_REV, &rev, NULL) || !mcamd_get_cfgregs(hdl,
mc, MCAMD_REG_DRAMBASE, &DramBase,
mc, MCAMD_REG_DRAMLIMIT, &DramLimit,
mc, MCAMD_REG_DRAMHOLE, &HoleEn, NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "mc_bkdg_patounm: failed "
"to lookup required properties and registers\n");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
/*
* BKDG line to skip Why
*
* F1Offset = ... Register already read,
* DramBase = Get_PCI() and retrieved above.
* DramEn = ... Function only called for enabled nodes.
*/
IntlvEn = (DramBase & 0x00000700) >> 8;
DramBase &= 0xffff0000;
/* DramLimit = Get_PCI() Retrieved above */
IntlvSel = (DramLimit & 0x00000700) >> 8;
DramLimit |= 0x0000ffff;
/* HoleEn = ... Retrieved above */
HoleOffset = (HoleEn & 0x0000ff00) << 8;
HoleEn &= 0x00000001;
if (!(DramBase <= SystemAddr && SystemAddr <= DramLimit)) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_bkdg_patounum: "
"SystemAddr 0x%x derived from PA 0x%llx is not in the "
"address range [0x%x, 0x%x] of MC %d\n",
SystemAddr, pa, DramBase, DramLimit, (int)mcnum);
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
}
if (HoleEn && SystemAddr > 0x00ffffff)
InputAddr = SystemAddr - HoleOffset;
InputAddr = SystemAddr - DramBase;
if (IntlvEn) {
if (IntlvSel == ((SystemAddr >> 4) & IntlvEn)) {
switch (IntlvEn) {
case 1:
Ilog = 1;
break;
case 3:
Ilog = 2;
break;
case 7:
Ilog = 3;
break;
default:
return (mcamd_set_errno(hdl,
EMCAMD_TREEINVALID));
}
Temp = (InputAddr >> (4 + Ilog)) << 4;
InputAddr = (Temp | (SystemAddr & 0x0000000f));
} else {
/* not this node */
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_bkdg_patounum: "
"Node interleaving, MC node %d not selected\n",
(int)mcnum);
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
}
}
if (!MC_REV_MATCH(rev, MC_F_REVS_FG))
InputAddr <<= 4;
for (cs = mcamd_cs_next(hdl, mc, NULL); cs != NULL;
cs = mcamd_cs_next(hdl, mc, cs)) {
uint64_t csnum, CSEn;
if (!mcamd_get_cfgregs(hdl,
cs, MCAMD_REG_CSBASE, &CSBase,
cs, MCAMD_REG_CSMASK, &CSMask,
NULL) ||
!mcamd_get_numprops(hdl,
cs, MCAMD_PROP_NUM, &csnum,
cs, MCAMD_PROP_CSBE, &CSEn,
NULL)) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "mc_bkdg_patounm: "
"failed to read cs registers\n");
return (mcamd_set_errno(hdl, EMCAMD_TREEINVALID));
}
/*
* BKDG line to skip Why
*
* F2Offset = Register already read,
* F2MaskOffset (rev F) Register already read
* CSBase = Register already read
* CSEn = We only keep enabled cs.
*/
if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
CSBase &= 0x1ff83fe0;
/* CSMask = Get_PCI() Retrieved above */
CSMask = (CSMask | 0x0007c01f) & 0x1fffffff;
} else {
CSBase &= 0xffe0fe00;
/* CSMask = Get_PCI() Retrieved above */
CSMask = (CSMask | 0x001f01ff) & 0x3fffffff;
}
if (CSEn && (InputAddr & ~CSMask) == (CSBase & ~CSMask)) {
mcamd_node_t *sparecs;
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mc_bkdg_patounum: "
"match for chip select %d of MC %d\n", (int)csnum,
(int)mcnum);
if ((sparecs = cs_sparedto(hdl, cs, mc)) != NULL)
cs = sparecs;
if ((which = mc_whichdimm(hdl, cs, pa, valid_lo,
synd, syndtype)) < 0)
return (-1); /* errno is set for us */
/*
* The BKDG algorithm drops low-order bits that
* are unimportant in deriving chip-select but are
* included in row/col/bank mapping, so do not
* perform offset calculation in this case.
*/
if (unum_fill(hdl, cs, which, InputAddr, unump, 0) < 0)
return (-1); /* errno is set for us */
return (0);
}
}
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "mc_bkdg_patounum: in range "
"for MC %d but no cs responds\n", (int)mcnum);
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
}
/*
* Called for each memory controller to see if the given address is
* mapped to this node (as determined in iaddr_gen) and, if so, which
* chip-select on this node responds.
*/
/*ARGSUSED*/
static int
mc_patounum(struct mcamd_hdl *hdl, mcamd_node_t *mc, uint64_t pa,
uint8_t valid_lo, uint32_t synd, int syndtype, mc_unum_t *unump)
{
uint64_t iaddr;
mcamd_node_t *cs, *sparecs;
int which;
#ifdef DEBUG
mc_unum_t bkdg_unum;
int bkdgres;
/*
* We perform the translation twice, once using the brute-force
* approach of the BKDG and again using a more elegant but more
* difficult to review against the BKDG approach.
*/
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "BKDG brute-force method begins\n");
bkdgres = mc_bkdg_patounum(hdl, mc, pa, valid_lo, synd,
syndtype, &bkdg_unum);
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "BKDG brute-force method ends\n");
#endif
if (iaddr_gen(hdl, mc, pa, &iaddr) < 0)
return (-1); /* errno is set for us */
for (cs = mcamd_cs_next(hdl, mc, NULL); cs != NULL;
cs = mcamd_cs_next(hdl, mc, cs)) {
if (cs_match(hdl, iaddr, cs))
break;
}
if (cs == NULL)
return (mcamd_set_errno(hdl, EMCAMD_NOADDR));
/*
* If the spare chip-select has been swapped in for the one just
* matched then it is really the spare that we are after. Note that
* when the swap is done the csbase, csmask and CSBE of the spare
* rank do not change - accesses to the bad rank (as nominated in
* the Online Spare Control Register) are redirect to the spare.
*/
if ((sparecs = cs_sparedto(hdl, cs, mc)) != NULL) {
cs = sparecs;
}
if ((which = mc_whichdimm(hdl, cs, pa, valid_lo, synd,
syndtype)) < 0)
return (-1); /* errno is set for us */
if (unum_fill(hdl, cs, which, iaddr, unump, 1) < 0)
return (-1); /* errno is set for us */
#ifdef DEBUG
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "bkdgres=%d res=0\n", bkdgres);
/* offset is not checked - see note in BKDG algorithm */
if (bkdgres != 0) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR, "BKDG alg failed while "
"ours succeeded\n");
} else if (!(unump->unum_board == bkdg_unum.unum_board &&
unump->unum_chip == bkdg_unum.unum_chip &&
unump->unum_mc == bkdg_unum.unum_mc &&
unump->unum_chan == bkdg_unum.unum_chan &&
unump->unum_cs == bkdg_unum.unum_cs &&
unump->unum_dimms[0] == bkdg_unum.unum_dimms[0] &&
unump->unum_dimms[1] == bkdg_unum.unum_dimms[1])) {
mcamd_dprintf(hdl, MCAMD_DBG_ERR,
"BKDG: node %d mc %d cs %d dimm(s) %d/%d\n"
"Ours: node 5d mc %d cs %d dimm(s) %d/%d\n",
bkdg_unum.unum_chip, bkdg_unum.unum_mc, bkdg_unum.unum_cs,
bkdg_unum.unum_dimms[0], bkdg_unum.unum_dimms[1],
unump->unum_chip, unump->unum_mc, unump->unum_cs,
unump->unum_dimms[0], unump->unum_dimms[1]);
}
#endif /* DEBUG */
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "Result: chip %d mc %d cs %d "
"offset 0x%llx\n", unump->unum_chip, unump->unum_mc,
unump->unum_cs, unump->unum_offset);
return (0);
}
int
mcamd_patounum(struct mcamd_hdl *hdl, mcamd_node_t *root, uint64_t pa,
uint8_t valid_hi, uint8_t valid_lo, uint32_t synd, int syndtype,
mc_unum_t *unump)
{
mcamd_node_t *mc;
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mcamd_patounum: pa=0x%llx, "
"synd=0x%x, syndtype=%d\n", pa, synd, syndtype);
if (valid_hi < MC_SYSADDR_MSB) {
mcamd_dprintf(hdl, MCAMD_DBG_FLOW, "mcamd_patounum: require "
"pa<%d> to be valid\n", MC_SYSADDR_MSB);
return (mcamd_set_errno(hdl, EMCAMD_INSUFF_RES));
}
if (!mcamd_synd_validate(hdl, synd, syndtype))
return (mcamd_set_errno(hdl, EMCAMD_SYNDINVALID));
for (mc = mcamd_mc_next(hdl, root, NULL); mc != NULL;
mc = mcamd_mc_next(hdl, root, mc)) {
if (mc_patounum(hdl, mc, pa, valid_lo, synd,
syndtype, unump) == 0)
return (0);
if (mcamd_errno(hdl) != EMCAMD_NOADDR)
break;
}
return (-1); /* errno is set for us */
}