/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <ctf_impl.h>
#include <sys/mman.h>
#include <sys/zmod.h>
static const ctf_dmodel_t _libctf_models[] = {
{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
{ NULL, 0, 0, 0, 0, 0, 0 }
};
const char _CTF_SECTION[] = ".SUNW_ctf";
const char _CTF_NULLSTR[] = "";
int _libctf_version = CTF_VERSION; /* library client version */
int _libctf_debug = 0; /* debugging messages enabled */
static ushort_t
get_kind_v1(ushort_t info)
{
return (CTF_INFO_KIND_V1(info));
}
static ushort_t
get_kind_v2(ushort_t info)
{
return (CTF_INFO_KIND(info));
}
static ushort_t
get_root_v1(ushort_t info)
{
return (CTF_INFO_ISROOT_V1(info));
}
static ushort_t
get_root_v2(ushort_t info)
{
return (CTF_INFO_ISROOT(info));
}
static ushort_t
get_vlen_v1(ushort_t info)
{
return (CTF_INFO_VLEN_V1(info));
}
static ushort_t
get_vlen_v2(ushort_t info)
{
return (CTF_INFO_VLEN(info));
}
static const ctf_fileops_t ctf_fileops[] = {
{ NULL, NULL },
{ get_kind_v1, get_root_v1, get_vlen_v1 },
{ get_kind_v2, get_root_v2, get_vlen_v2 },
};
/*
* Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
*/
static Elf64_Sym *
sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
{
dst->st_name = src->st_name;
dst->st_value = src->st_value;
dst->st_size = src->st_size;
dst->st_info = src->st_info;
dst->st_other = src->st_other;
dst->st_shndx = src->st_shndx;
return (dst);
}
/*
* Initialize the symtab translation table by filling each entry with the
* offset of the CTF type or function data corresponding to each STT_FUNC or
* STT_OBJECT entry in the symbol table.
*/
static int
init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
const ctf_sect_t *sp, const ctf_sect_t *strp)
{
const uchar_t *symp = sp->cts_data;
uint_t *xp = fp->ctf_sxlate;
uint_t *xend = xp + fp->ctf_nsyms;
uint_t objtoff = hp->cth_objtoff;
uint_t funcoff = hp->cth_funcoff;
ushort_t info, vlen;
Elf64_Sym sym, *gsp;
const char *name;
/*
* The CTF data object and function type sections are ordered to match
* the relative order of the respective symbol types in the symtab.
* If no type information is available for a symbol table entry, a
* pad is inserted in the CTF section. As a further optimization,
* anonymous or undefined symbols are omitted from the CTF data.
*/
for (; xp < xend; xp++, symp += sp->cts_entsize) {
if (sp->cts_entsize == sizeof (Elf32_Sym))
gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
else
gsp = (Elf64_Sym *)(uintptr_t)symp;
if (gsp->st_name < strp->cts_size)
name = (const char *)strp->cts_data + gsp->st_name;
else
name = _CTF_NULLSTR;
if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
strcmp(name, "_START_") == 0 ||
strcmp(name, "_END_") == 0) {
*xp = -1u;
continue;
}
switch (ELF64_ST_TYPE(gsp->st_info)) {
case STT_OBJECT:
if (objtoff >= hp->cth_funcoff ||
(gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
*xp = -1u;
break;
}
*xp = objtoff;
objtoff += sizeof (ushort_t);
break;
case STT_FUNC:
if (funcoff >= hp->cth_typeoff) {
*xp = -1u;
break;
}
*xp = funcoff;
info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
vlen = LCTF_INFO_VLEN(fp, info);
/*
* If we encounter a zero pad at the end, just skip it.
* Otherwise skip over the function and its return type
* (+2) and the argument list (vlen).
*/
if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
vlen == 0)
funcoff += sizeof (ushort_t); /* skip pad */
else
funcoff += sizeof (ushort_t) * (vlen + 2);
break;
default:
*xp = -1u;
break;
}
}
ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
return (0);
}
/*
* Initialize the type ID translation table with the byte offset of each type,
* and initialize the hash tables of each named type.
*/
static int
init_types(ctf_file_t *fp, const ctf_header_t *cth)
{
/* LINTED - pointer alignment */
const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
/* LINTED - pointer alignment */
const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
ulong_t pop[CTF_K_MAX + 1] = { 0 };
const ctf_type_t *tp;
ctf_hash_t *hp;
ushort_t id, dst;
uint_t *xp;
/*
* We initially determine whether the container is a child or a parent
* based on the value of cth_parname. To support containers that pre-
* date cth_parname, we also scan the types themselves for references
* to values in the range reserved for child types in our first pass.
*/
int child = cth->cth_parname != 0;
int nlstructs = 0, nlunions = 0;
int err;
/*
* We make two passes through the entire type section. In this first
* pass, we count the number of each type and the total number of types.
*/
for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
ssize_t size, increment;
size_t vbytes;
uint_t n;
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
vbytes = sizeof (uint_t);
break;
case CTF_K_ARRAY:
vbytes = sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH) {
ctf_member_t *mp = (ctf_member_t *)
((uintptr_t)tp + increment);
vbytes = sizeof (ctf_member_t) * vlen;
for (n = vlen; n != 0; n--, mp++)
child |= CTF_TYPE_ISCHILD(mp->ctm_type);
} else {
ctf_lmember_t *lmp = (ctf_lmember_t *)
((uintptr_t)tp + increment);
vbytes = sizeof (ctf_lmember_t) * vlen;
for (n = vlen; n != 0; n--, lmp++)
child |=
CTF_TYPE_ISCHILD(lmp->ctlm_type);
}
break;
case CTF_K_ENUM:
vbytes = sizeof (ctf_enum_t) * vlen;
break;
case CTF_K_FORWARD:
/*
* For forward declarations, ctt_type is the CTF_K_*
* kind for the tag, so bump that population count too.
* If ctt_type is unknown, treat the tag as a struct.
*/
if (tp->ctt_type == CTF_K_UNKNOWN ||
tp->ctt_type >= CTF_K_MAX)
pop[CTF_K_STRUCT]++;
else
pop[tp->ctt_type]++;
/*FALLTHRU*/
case CTF_K_UNKNOWN:
vbytes = 0;
break;
case CTF_K_POINTER:
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
child |= CTF_TYPE_ISCHILD(tp->ctt_type);
vbytes = 0;
break;
default:
ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
return (ECTF_CORRUPT);
}
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
pop[kind]++;
}
/*
* If we detected a reference to a child type ID, then we know this
* container is a child and may have a parent's types imported later.
*/
if (child) {
ctf_dprintf("CTF container %p is a child\n", (void *)fp);
fp->ctf_flags |= LCTF_CHILD;
} else
ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
/*
* Now that we've counted up the number of each type, we can allocate
* the hash tables, type translation table, and pointer table.
*/
if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_names,
pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
return (err);
fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
return (EAGAIN); /* memory allocation failed */
xp = fp->ctf_txlate;
*xp++ = 0; /* type id 0 is used as a sentinel value */
bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
/*
* In the second pass through the types, we fill in each entry of the
* type and pointer tables and add names to the appropriate hashes.
*/
for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
ssize_t size, increment;
const char *name;
size_t vbytes;
ctf_helem_t *hep;
ctf_encoding_t cte;
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
name = ctf_strptr(fp, tp->ctt_name);
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
/*
* Only insert a new integer base type definition if
* this type name has not been defined yet. We re-use
* the names with different encodings for bit-fields.
*/
if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
name, strlen(name))) == NULL) {
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
} else if (ctf_type_encoding(fp, hep->h_type,
&cte) == 0 && cte.cte_bits == 0) {
/*
* Work-around SOS8 stabs bug: replace existing
* intrinsic w/ same name if it was zero bits.
*/
hep->h_type = CTF_INDEX_TO_TYPE(id, child);
}
vbytes = sizeof (uint_t);
break;
case CTF_K_ARRAY:
vbytes = sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
err = ctf_hash_define(&fp->ctf_structs, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH)
vbytes = sizeof (ctf_member_t) * vlen;
else {
vbytes = sizeof (ctf_lmember_t) * vlen;
nlstructs++;
}
break;
case CTF_K_UNION:
err = ctf_hash_define(&fp->ctf_unions, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH)
vbytes = sizeof (ctf_member_t) * vlen;
else {
vbytes = sizeof (ctf_lmember_t) * vlen;
nlunions++;
}
break;
case CTF_K_ENUM:
err = ctf_hash_define(&fp->ctf_enums, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = sizeof (ctf_enum_t) * vlen;
break;
case CTF_K_TYPEDEF:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = 0;
break;
case CTF_K_FORWARD:
/*
* Only insert forward tags into the given hash if the
* type or tag name is not already present.
*/
switch (tp->ctt_type) {
case CTF_K_STRUCT:
hp = &fp->ctf_structs;
break;
case CTF_K_UNION:
hp = &fp->ctf_unions;
break;
case CTF_K_ENUM:
hp = &fp->ctf_enums;
break;
default:
hp = &fp->ctf_structs;
}
if (ctf_hash_lookup(hp, fp,
name, strlen(name)) == NULL) {
err = ctf_hash_insert(hp, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
}
vbytes = 0;
break;
case CTF_K_POINTER:
/*
* If the type referenced by the pointer is in this CTF
* container, then store the index of the pointer type
* in fp->ctf_ptrtab[ index of referenced type ].
*/
if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
fp->ctf_ptrtab[
CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
/*FALLTHRU*/
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
/*FALLTHRU*/
default:
vbytes = 0;
break;
}
*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
}
ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
ctf_dprintf("%u struct names hashed (%d long)\n",
ctf_hash_size(&fp->ctf_structs), nlstructs);
ctf_dprintf("%u union names hashed (%d long)\n",
ctf_hash_size(&fp->ctf_unions), nlunions);
ctf_dprintf("%u base type names hashed\n",
ctf_hash_size(&fp->ctf_names));
/*
* Make an additional pass through the pointer table to find pointers
* that point to anonymous typedef nodes. If we find one, modify the
* pointer table so that the pointer is also known to point to the
* node that is referenced by the anonymous typedef node.
*/
for (id = 1; id <= fp->ctf_typemax; id++) {
if ((dst = fp->ctf_ptrtab[id]) != 0) {
tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
fp->ctf_ptrtab[
CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
}
}
return (0);
}
/*
* Decode the specified CTF buffer and optional symbol table and create a new
* CTF container representing the symbolic debugging information. This code
* can be used directly by the debugger, or it can be used as the engine for
* ctf_fdopen() or ctf_open(), below.
*/
ctf_file_t *
ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
const ctf_sect_t *strsect, int *errp)
{
const ctf_preamble_t *pp;
ctf_header_t hp;
ctf_file_t *fp;
void *buf, *base;
size_t size, hdrsz;
int err;
if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
return (ctf_set_open_errno(errp, EINVAL));
if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
symsect->cts_entsize != sizeof (Elf64_Sym))
return (ctf_set_open_errno(errp, ECTF_SYMTAB));
if (symsect != NULL && symsect->cts_data == NULL)
return (ctf_set_open_errno(errp, ECTF_SYMBAD));
if (strsect != NULL && strsect->cts_data == NULL)
return (ctf_set_open_errno(errp, ECTF_STRBAD));
if (ctfsect->cts_size < sizeof (ctf_preamble_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
pp = (const ctf_preamble_t *)ctfsect->cts_data;
ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
pp->ctp_magic, pp->ctp_version);
/*
* Validate each part of the CTF header (either V1 or V2).
* First, we validate the preamble (common to all versions). At that
* point, we know specific header version, and can validate the
* version-specific parts including section offsets and alignments.
*/
if (pp->ctp_magic != CTF_MAGIC)
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
if (pp->ctp_version == CTF_VERSION_2) {
if (ctfsect->cts_size < sizeof (ctf_header_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
bcopy(ctfsect->cts_data, &hp, sizeof (hp));
hdrsz = sizeof (ctf_header_t);
} else if (pp->ctp_version == CTF_VERSION_1) {
const ctf_header_v1_t *h1p =
(const ctf_header_v1_t *)ctfsect->cts_data;
if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
bzero(&hp, sizeof (hp));
hp.cth_preamble = h1p->cth_preamble;
hp.cth_objtoff = h1p->cth_objtoff;
hp.cth_funcoff = h1p->cth_funcoff;
hp.cth_typeoff = h1p->cth_typeoff;
hp.cth_stroff = h1p->cth_stroff;
hp.cth_strlen = h1p->cth_strlen;
hdrsz = sizeof (ctf_header_v1_t);
} else
return (ctf_set_open_errno(errp, ECTF_CTFVERS));
size = hp.cth_stroff + hp.cth_strlen;
ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
hp.cth_funcoff > size || hp.cth_typeoff > size ||
hp.cth_stroff > size)
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
if (hp.cth_lbloff > hp.cth_objtoff ||
hp.cth_objtoff > hp.cth_funcoff ||
hp.cth_funcoff > hp.cth_typeoff ||
hp.cth_typeoff > hp.cth_stroff)
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
(hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
/*
* Once everything is determined to be valid, attempt to decompress
* the CTF data buffer if it is compressed. Otherwise we just put
* the data section's buffer pointer into ctf_buf, below.
*/
if (hp.cth_flags & CTF_F_COMPRESS) {
size_t srclen, dstlen;
const void *src;
int rc = Z_OK;
if (ctf_zopen(errp) == NULL)
return (NULL); /* errp is set for us */
if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
return (ctf_set_open_errno(errp, ECTF_ZALLOC));
bcopy(ctfsect->cts_data, base, hdrsz);
((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
buf = (uchar_t *)base + hdrsz;
src = (uchar_t *)ctfsect->cts_data + hdrsz;
srclen = ctfsect->cts_size - hdrsz;
dstlen = size;
if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
ctf_data_free(base, size + hdrsz);
return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
}
if (dstlen != size) {
ctf_dprintf("zlib inflate short -- got %lu of %lu "
"bytes\n", (ulong_t)dstlen, (ulong_t)size);
ctf_data_free(base, size + hdrsz);
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
}
ctf_data_protect(base, size + hdrsz);
} else {
base = (void *)ctfsect->cts_data;
buf = (uchar_t *)base + hdrsz;
}
/*
* Once we have uncompressed and validated the CTF data buffer, we can
* proceed with allocating a ctf_file_t and initializing it.
*/
if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
return (ctf_set_open_errno(errp, EAGAIN));
bzero(fp, sizeof (ctf_file_t));
fp->ctf_version = hp.cth_version;
fp->ctf_fileops = &ctf_fileops[hp.cth_version];
bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
if (symsect != NULL) {
bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
}
if (fp->ctf_data.cts_name != NULL)
fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
if (fp->ctf_symtab.cts_name != NULL)
fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
if (fp->ctf_strtab.cts_name != NULL)
fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
if (fp->ctf_data.cts_name == NULL)
fp->ctf_data.cts_name = _CTF_NULLSTR;
if (fp->ctf_symtab.cts_name == NULL)
fp->ctf_symtab.cts_name = _CTF_NULLSTR;
if (fp->ctf_strtab.cts_name == NULL)
fp->ctf_strtab.cts_name = _CTF_NULLSTR;
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
if (strsect != NULL) {
fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
}
fp->ctf_base = base;
fp->ctf_buf = buf;
fp->ctf_size = size + hdrsz;
/*
* If we have a parent container name and label, store the relocated
* string pointers in the CTF container for easy access later.
*/
if (hp.cth_parlabel != 0)
fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
if (hp.cth_parname != 0)
fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
fp->ctf_parname ? fp->ctf_parname : "<NULL>",
fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
/*
* If we have a symbol table section, allocate and initialize
* the symtab translation table, pointed to by ctf_sxlate.
*/
if (symsect != NULL) {
fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
if (fp->ctf_sxlate == NULL) {
(void) ctf_set_open_errno(errp, EAGAIN);
goto bad;
}
if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
(void) ctf_set_open_errno(errp, err);
goto bad;
}
}
if ((err = init_types(fp, &hp)) != 0) {
(void) ctf_set_open_errno(errp, err);
goto bad;
}
/*
* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
* array of type name prefixes and the corresponding ctf_hash to use.
* NOTE: This code must be kept in sync with the code in ctf_update().
*/
fp->ctf_lookups[0].ctl_prefix = "struct";
fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
fp->ctf_lookups[1].ctl_prefix = "union";
fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
fp->ctf_lookups[2].ctl_prefix = "enum";
fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
fp->ctf_lookups[4].ctl_prefix = NULL;
fp->ctf_lookups[4].ctl_len = 0;
fp->ctf_lookups[4].ctl_hash = NULL;
if (symsect != NULL) {
if (symsect->cts_entsize == sizeof (Elf64_Sym))
(void) ctf_setmodel(fp, CTF_MODEL_LP64);
else
(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
} else
(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
fp->ctf_refcnt = 1;
return (fp);
bad:
ctf_close(fp);
return (NULL);
}
/*
* Dupliate a ctf_file_t and its underlying section information into a new
* container. This works by copying the three ctf_sect_t's of the original
* container if they exist and passing those into ctf_bufopen. To copy those, we
* mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
* the cheapest thing, but it's what we've got.
*/
ctf_file_t *
ctf_dup(ctf_file_t *ofp)
{
ctf_file_t *fp;
ctf_sect_t ctfsect, symsect, strsect;
ctf_sect_t *ctp, *symp, *strp;
void *cbuf, *symbuf, *strbuf;
int err;
cbuf = symbuf = strbuf = NULL;
/*
* The ctfsect isn't allowed to not exist, but the symbol and string
* section might not. We only need to copy the data of the section, not
* the name, as ctf_bufopen will take care of that.
*/
bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
cbuf = ctf_data_alloc(ctfsect.cts_size);
if (cbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
return (NULL);
}
bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
ctf_data_protect(cbuf, ctfsect.cts_size);
ctfsect.cts_data = cbuf;
ctfsect.cts_offset = 0;
ctp = &ctfsect;
if (ofp->ctf_symtab.cts_data != NULL) {
bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
symbuf = ctf_data_alloc(symsect.cts_size);
if (symbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
goto err;
}
bcopy(symsect.cts_data, symbuf, symsect.cts_size);
ctf_data_protect(symbuf, symsect.cts_size);
symsect.cts_data = symbuf;
symsect.cts_offset = 0;
symp = &symsect;
} else {
symp = NULL;
}
if (ofp->ctf_strtab.cts_data != NULL) {
bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
strbuf = ctf_data_alloc(strsect.cts_size);
if (strbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
goto err;
}
bcopy(strsect.cts_data, strbuf, strsect.cts_size);
ctf_data_protect(strbuf, strsect.cts_size);
strsect.cts_data = strbuf;
strsect.cts_offset = 0;
strp = &strsect;
} else {
strp = NULL;
}
fp = ctf_bufopen(ctp, symp, strp, &err);
if (fp == NULL) {
(void) ctf_set_errno(ofp, err);
goto err;
}
fp->ctf_flags |= LCTF_MMAP;
return (fp);
err:
ctf_data_free(cbuf, ctfsect.cts_size);
if (symbuf != NULL)
ctf_data_free(symbuf, symsect.cts_size);
if (strbuf != NULL)
ctf_data_free(strbuf, strsect.cts_size);
return (NULL);
}
/*
* Close the specified CTF container and free associated data structures. Note
* that ctf_close() is a reference counted operation: if the specified file is
* the parent of other active containers, its reference count will be greater
* than one and it will be freed later when no active children exist.
*/
void
ctf_close(ctf_file_t *fp)
{
ctf_dtdef_t *dtd, *ntd;
if (fp == NULL)
return; /* allow ctf_close(NULL) to simplify caller code */
ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
if (fp->ctf_refcnt > 1) {
fp->ctf_refcnt--;
return;
}
if (fp->ctf_parent != NULL)
ctf_close(fp->ctf_parent);
/*
* Note, to work properly with reference counting on the dynamic
* section, we must delete the list in reverse.
*/
for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
ntd = ctf_list_prev(dtd);
ctf_dtd_delete(fp, dtd);
}
ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
if (fp->ctf_flags & LCTF_MMAP) {
if (fp->ctf_data.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_data);
if (fp->ctf_symtab.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_symtab);
if (fp->ctf_strtab.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_strtab);
}
if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
fp->ctf_data.cts_name != NULL) {
ctf_free((char *)fp->ctf_data.cts_name,
strlen(fp->ctf_data.cts_name) + 1);
}
if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
fp->ctf_symtab.cts_name != NULL) {
ctf_free((char *)fp->ctf_symtab.cts_name,
strlen(fp->ctf_symtab.cts_name) + 1);
}
if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
fp->ctf_strtab.cts_name != NULL) {
ctf_free((char *)fp->ctf_strtab.cts_name,
strlen(fp->ctf_strtab.cts_name) + 1);
}
if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
if (fp->ctf_sxlate != NULL)
ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
if (fp->ctf_txlate != NULL) {
ctf_free(fp->ctf_txlate,
sizeof (uint_t) * (fp->ctf_typemax + 1));
}
if (fp->ctf_ptrtab != NULL) {
ctf_free(fp->ctf_ptrtab,
sizeof (ushort_t) * (fp->ctf_typemax + 1));
}
ctf_hash_destroy(&fp->ctf_structs);
ctf_hash_destroy(&fp->ctf_unions);
ctf_hash_destroy(&fp->ctf_enums);
ctf_hash_destroy(&fp->ctf_names);
ctf_free(fp, sizeof (ctf_file_t));
}
/*
* Return the CTF handle for the parent CTF container, if one exists.
* Otherwise return NULL to indicate this container has no imported parent.
*/
ctf_file_t *
ctf_parent_file(ctf_file_t *fp)
{
return (fp->ctf_parent);
}
/*
* Return the name of the parent CTF container, if one exists. Otherwise
* return NULL to indicate this container is a root container.
*/
const char *
ctf_parent_name(ctf_file_t *fp)
{
return (fp->ctf_parname);
}
/*
* Import the types from the specified parent container by storing a pointer
* to it in ctf_parent and incrementing its reference count. Only one parent
* is allowed: if a parent already exists, it is replaced by the new parent.
*/
int
ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
{
if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
return (ctf_set_errno(fp, EINVAL));
if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
return (ctf_set_errno(fp, ECTF_DMODEL));
if (fp->ctf_parent != NULL)
ctf_close(fp->ctf_parent);
if (pfp != NULL) {
fp->ctf_flags |= LCTF_CHILD;
pfp->ctf_refcnt++;
}
fp->ctf_parent = pfp;
return (0);
}
/*
* Set the data model constant for the CTF container.
*/
int
ctf_setmodel(ctf_file_t *fp, int model)
{
const ctf_dmodel_t *dp;
for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
if (dp->ctd_code == model) {
fp->ctf_dmodel = dp;
return (0);
}
}
return (ctf_set_errno(fp, EINVAL));
}
/*
* Return the data model constant for the CTF container.
*/
int
ctf_getmodel(ctf_file_t *fp)
{
return (fp->ctf_dmodel->ctd_code);
}
void
ctf_setspecific(ctf_file_t *fp, void *data)
{
fp->ctf_specific = data;
}
void *
ctf_getspecific(ctf_file_t *fp)
{
return (fp->ctf_specific);
}