/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, Joyent Inc. All rights reserved.
* Copyright (c) 2015 by Delphix. All rights reserved.
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* This module contains functions used to bring up and tear down the
* Virtual Platform: [un]mounting file-systems, [un]plumbing network
* interfaces, [un]configuring devices, establishing resource controls,
* and creating/destroying the zone in the kernel. These actions, on
* the way up, ready the zone; on the way down, they halt the zone.
* See the much longer block comment at the beginning of zoneadmd.c
* for a bigger picture of how the whole program functions.
*
* This module also has primary responsibility for the layout of "scratch
* zones." These are mounted, but inactive, zones that are used during
* operating system upgrade and potentially other administrative action. The
* scratch zone environment is similar to the miniroot environment. The zone's
* actual root is mounted read-write on /a, and the standard paths (/usr,
* /sbin, /lib) all lead to read-only copies of the running system's binaries.
* This allows the administrative tools to manipulate the zone using "-R /a"
* without relying on any binaries in the zone itself.
*
* If the scratch zone is on an alternate root (Live Upgrade [LU] boot
* environment), then we must resolve the lofs mounts used there to uncover
* writable (unshared) resources. Shared resources, though, are always
* read-only. In addition, if the "same" zone with a different root path is
* currently running, then "/b" inside the zone points to the running zone's
* root. This allows LU to synchronize configuration files during the upgrade
* process.
*
* To construct this environment, this module creates a tmpfs mount on
* $ZONEPATH/lu. Inside this scratch area, the miniroot-like environment as
* described above is constructed on the fly. The zone is then created using
* $ZONEPATH/lu as the root.
*
* Note that scratch zones are inactive. The zone's bits are not running and
* likely cannot be run correctly until upgrade is done. Init is not running
* there, nor is SMF. Because of this, the "mounted" state of a scratch zone
* is not a part of the usual halt/ready/boot state machine.
*/
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/mntent.h>
#include <sys/socket.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sockio.h>
#include <sys/stropts.h>
#include <sys/conf.h>
#include <sys/systeminfo.h>
#include <sys/secflags.h>
#include <libdlpi.h>
#include <libdllink.h>
#include <libdlvlan.h>
#include <inet/tcp.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <net/route.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <rctl.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <wait.h>
#include <limits.h>
#include <libgen.h>
#include <libzfs.h>
#include <libdevinfo.h>
#include <zone.h>
#include <assert.h>
#include <libcontract.h>
#include <libcontract_priv.h>
#include <uuid/uuid.h>
#include <sys/mntio.h>
#include <sys/mnttab.h>
#include <sys/fs/autofs.h> /* for _autofssys() */
#include <sys/fs/lofs_info.h>
#include <sys/fs/zfs.h>
#include <pool.h>
#include <sys/pool.h>
#include <sys/priocntl.h>
#include <libbrand.h>
#include <sys/brand.h>
#include <libzonecfg.h>
#include <synch.h>
#include "zoneadmd.h"
#include <tsol/label.h>
#include <libtsnet.h>
#include <sys/priv.h>
#include <libinetutil.h>
#define V4_ADDR_LEN 32
#define V6_ADDR_LEN 128
#define RESOURCE_DEFAULT_OPTS \
MNTOPT_RO "," MNTOPT_LOFS_NOSUB "," MNTOPT_NODEVICES
#define DFSTYPES "/etc/dfs/fstypes"
#define MAXTNZLEN 2048
#define ALT_MOUNT(mount_cmd) ((mount_cmd) != Z_MNT_BOOT)
/* a reasonable estimate for the number of lwps per process */
#define LWPS_PER_PROCESS 10
/* for routing socket */
static int rts_seqno = 0;
/* mangled zone name when mounting in an alternate root environment */
static char kernzone[ZONENAME_MAX];
/* array of cached mount entries for resolve_lofs */
static struct mnttab *resolve_lofs_mnts, *resolve_lofs_mnt_max;
/* for Trusted Extensions */
static tsol_zcent_t *get_zone_label(zlog_t *, priv_set_t *);
static int tsol_mounts(zlog_t *, char *, char *);
static void tsol_unmounts(zlog_t *, char *);
static m_label_t *zlabel = NULL;
static m_label_t *zid_label = NULL;
static priv_set_t *zprivs = NULL;
static const char *DFLT_FS_ALLOWED = "hsfs,smbfs,nfs,nfs3,nfs4,nfsdyn";
/* from libsocket, not in any header file */
extern int getnetmaskbyaddr(struct in_addr, struct in_addr *);
/* from zoneadmd */
extern char query_hook[];
/*
* For each "net" resource configured in zonecfg, we track a zone_addr_list_t
* node in a linked list that is sorted by linkid. The list is constructed as
* the xml configuration file is parsed, and the information
* contained in each node is added to the kernel before the zone is
* booted, to be retrieved and applied from within the exclusive-IP NGZ
* on boot.
*/
typedef struct zone_addr_list {
struct zone_addr_list *za_next;
datalink_id_t za_linkid; /* datalink_id_t of interface */
struct zone_nwiftab za_nwiftab; /* address, defrouter properties */
} zone_addr_list_t;
/*
* An optimization for build_mnttable: reallocate (and potentially copy the
* data) only once every N times through the loop.
*/
#define MNTTAB_HUNK 32
/* some handy macros */
#define SIN(s) ((struct sockaddr_in *)s)
#define SIN6(s) ((struct sockaddr_in6 *)s)
/*
* Private autofs system call
*/
extern int _autofssys(int, void *);
static int
autofs_cleanup(zoneid_t zoneid)
{
/*
* Ask autofs to unmount all trigger nodes in the given zone.
*/
return (_autofssys(AUTOFS_UNMOUNTALL, (void *)zoneid));
}
static void
free_mnttable(struct mnttab *mnt_array, uint_t nelem)
{
uint_t i;
if (mnt_array == NULL)
return;
for (i = 0; i < nelem; i++) {
free(mnt_array[i].mnt_mountp);
free(mnt_array[i].mnt_fstype);
free(mnt_array[i].mnt_special);
free(mnt_array[i].mnt_mntopts);
assert(mnt_array[i].mnt_time == NULL);
}
free(mnt_array);
}
/*
* Build the mount table for the zone rooted at "zroot", storing the resulting
* array of struct mnttabs in "mnt_arrayp" and the number of elements in the
* array in "nelemp".
*/
static int
build_mnttable(zlog_t *zlogp, const char *zroot, size_t zrootlen, FILE *mnttab,
struct mnttab **mnt_arrayp, uint_t *nelemp)
{
struct mnttab mnt;
struct mnttab *mnts;
struct mnttab *mnp;
uint_t nmnt;
rewind(mnttab);
resetmnttab(mnttab);
nmnt = 0;
mnts = NULL;
while (getmntent(mnttab, &mnt) == 0) {
struct mnttab *tmp_array;
if (strncmp(mnt.mnt_mountp, zroot, zrootlen) != 0)
continue;
if (nmnt % MNTTAB_HUNK == 0) {
tmp_array = realloc(mnts,
(nmnt + MNTTAB_HUNK) * sizeof (*mnts));
if (tmp_array == NULL) {
free_mnttable(mnts, nmnt);
return (-1);
}
mnts = tmp_array;
}
mnp = &mnts[nmnt++];
/*
* Zero out any fields we're not using.
*/
(void) memset(mnp, 0, sizeof (*mnp));
if (mnt.mnt_special != NULL)
mnp->mnt_special = strdup(mnt.mnt_special);
if (mnt.mnt_mntopts != NULL)
mnp->mnt_mntopts = strdup(mnt.mnt_mntopts);
mnp->mnt_mountp = strdup(mnt.mnt_mountp);
mnp->mnt_fstype = strdup(mnt.mnt_fstype);
if ((mnt.mnt_special != NULL && mnp->mnt_special == NULL) ||
(mnt.mnt_mntopts != NULL && mnp->mnt_mntopts == NULL) ||
mnp->mnt_mountp == NULL || mnp->mnt_fstype == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
free_mnttable(mnts, nmnt);
return (-1);
}
}
*mnt_arrayp = mnts;
*nelemp = nmnt;
return (0);
}
/*
* This is an optimization. The resolve_lofs function is used quite frequently
* to manipulate file paths, and on a machine with a large number of zones,
* there will be a huge number of mounted file systems. Thus, we trigger a
* reread of the list of mount points
*/
static void
lofs_discard_mnttab(void)
{
free_mnttable(resolve_lofs_mnts,
resolve_lofs_mnt_max - resolve_lofs_mnts);
resolve_lofs_mnts = resolve_lofs_mnt_max = NULL;
}
static int
lofs_read_mnttab(zlog_t *zlogp)
{
FILE *mnttab;
uint_t nmnts;
if ((mnttab = fopen(MNTTAB, "r")) == NULL)
return (-1);
if (build_mnttable(zlogp, "", 0, mnttab, &resolve_lofs_mnts,
&nmnts) == -1) {
(void) fclose(mnttab);
return (-1);
}
(void) fclose(mnttab);
resolve_lofs_mnt_max = resolve_lofs_mnts + nmnts;
return (0);
}
/*
* This function loops over potential loopback mounts and symlinks in a given
* path and resolves them all down to an absolute path.
*/
void
resolve_lofs(zlog_t *zlogp, char *path, size_t pathlen)
{
int len, arlen;
const char *altroot;
char tmppath[MAXPATHLEN];
boolean_t outside_altroot;
if ((len = resolvepath(path, tmppath, sizeof (tmppath))) == -1)
return;
tmppath[len] = '\0';
(void) strlcpy(path, tmppath, sizeof (tmppath));
/* This happens once per zoneadmd operation. */
if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1)
return;
altroot = zonecfg_get_root();
arlen = strlen(altroot);
outside_altroot = B_FALSE;
for (;;) {
struct mnttab *mnp;
/* Search in reverse order to find longest match */
for (mnp = resolve_lofs_mnt_max - 1; mnp >= resolve_lofs_mnts;
mnp--) {
if (mnp->mnt_fstype == NULL ||
mnp->mnt_mountp == NULL ||
mnp->mnt_special == NULL)
continue;
len = strlen(mnp->mnt_mountp);
if (strncmp(mnp->mnt_mountp, path, len) == 0 &&
(path[len] == '/' || path[len] == '\0'))
break;
}
if (mnp < resolve_lofs_mnts)
break;
/* If it's not a lofs then we're done */
if (strcmp(mnp->mnt_fstype, MNTTYPE_LOFS) != 0)
break;
if (outside_altroot) {
char *cp;
int olen = sizeof (MNTOPT_RO) - 1;
/*
* If we run into a read-only mount outside of the
* alternate root environment, then the user doesn't
* want this path to be made read-write.
*/
if (mnp->mnt_mntopts != NULL &&
(cp = strstr(mnp->mnt_mntopts, MNTOPT_RO)) !=
NULL &&
(cp == mnp->mnt_mntopts || cp[-1] == ',') &&
(cp[olen] == '\0' || cp[olen] == ',')) {
break;
}
} else if (arlen > 0 &&
(strncmp(mnp->mnt_special, altroot, arlen) != 0 ||
(mnp->mnt_special[arlen] != '\0' &&
mnp->mnt_special[arlen] != '/'))) {
outside_altroot = B_TRUE;
}
/* use temporary buffer because new path might be longer */
(void) snprintf(tmppath, sizeof (tmppath), "%s%s",
mnp->mnt_special, path + len);
if ((len = resolvepath(tmppath, path, pathlen)) == -1)
break;
path[len] = '\0';
}
}
/*
* For a regular mount, check if a replacement lofs mount is needed because the
* referenced device is already mounted somewhere.
*/
static int
check_lofs_needed(zlog_t *zlogp, struct zone_fstab *fsptr)
{
struct mnttab *mnp;
zone_fsopt_t *optptr, *onext;
/* This happens once per zoneadmd operation. */
if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1)
return (-1);
/*
* If this special node isn't already in use, then it's ours alone;
* no need to worry about conflicting mounts.
*/
for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max;
mnp++) {
if (strcmp(mnp->mnt_special, fsptr->zone_fs_special) == 0)
break;
}
if (mnp >= resolve_lofs_mnt_max)
return (0);
/*
* Convert this duplicate mount into a lofs mount.
*/
(void) strlcpy(fsptr->zone_fs_special, mnp->mnt_mountp,
sizeof (fsptr->zone_fs_special));
(void) strlcpy(fsptr->zone_fs_type, MNTTYPE_LOFS,
sizeof (fsptr->zone_fs_type));
fsptr->zone_fs_raw[0] = '\0';
/*
* Discard all but one of the original options and set that to our
* default set of options used for resources.
*/
optptr = fsptr->zone_fs_options;
if (optptr == NULL) {
optptr = malloc(sizeof (*optptr));
if (optptr == NULL) {
zerror(zlogp, B_TRUE, "cannot mount %s",
fsptr->zone_fs_dir);
return (-1);
}
} else {
while ((onext = optptr->zone_fsopt_next) != NULL) {
optptr->zone_fsopt_next = onext->zone_fsopt_next;
free(onext);
}
}
(void) strcpy(optptr->zone_fsopt_opt, RESOURCE_DEFAULT_OPTS);
optptr->zone_fsopt_next = NULL;
fsptr->zone_fs_options = optptr;
return (0);
}
int
make_one_dir(zlog_t *zlogp, const char *prefix, const char *subdir, mode_t mode,
uid_t userid, gid_t groupid)
{
char path[MAXPATHLEN];
struct stat st;
if (snprintf(path, sizeof (path), "%s%s", prefix, subdir) >
sizeof (path)) {
zerror(zlogp, B_FALSE, "pathname %s%s is too long", prefix,
subdir);
return (-1);
}
if (lstat(path, &st) == 0) {
/*
* We don't check the file mode since presumably the zone
* administrator may have had good reason to change the mode,
* and we don't need to second guess him.
*/
if (!S_ISDIR(st.st_mode)) {
if (S_ISREG(st.st_mode)) {
/*
* Allow readonly mounts of /etc/ files; this
* is needed most by Trusted Extensions.
*/
if (strncmp(subdir, "/etc/",
strlen("/etc/")) != 0) {
zerror(zlogp, B_FALSE,
"%s is not in /etc", path);
return (-1);
}
} else {
zerror(zlogp, B_FALSE,
"%s is not a directory", path);
return (-1);
}
}
return (0);
}
if (mkdirp(path, mode) != 0) {
if (errno == EROFS)
zerror(zlogp, B_FALSE, "Could not mkdir %s.\nIt is on "
"a read-only file system in this local zone.\nMake "
"sure %s exists in the global zone.", path, subdir);
else
zerror(zlogp, B_TRUE, "mkdirp of %s failed", path);
return (-1);
}
(void) chown(path, userid, groupid);
return (0);
}
static void
free_remote_fstypes(char **types)
{
uint_t i;
if (types == NULL)
return;
for (i = 0; types[i] != NULL; i++)
free(types[i]);
free(types);
}
static char **
get_remote_fstypes(zlog_t *zlogp)
{
char **types = NULL;
FILE *fp;
char buf[MAXPATHLEN];
char fstype[MAXPATHLEN];
uint_t lines = 0;
uint_t i;
if ((fp = fopen(DFSTYPES, "r")) == NULL) {
zerror(zlogp, B_TRUE, "failed to open %s", DFSTYPES);
return (NULL);
}
/*
* Count the number of lines
*/
while (fgets(buf, sizeof (buf), fp) != NULL)
lines++;
if (lines == 0) /* didn't read anything; empty file */
goto out;
rewind(fp);
/*
* Allocate enough space for a NULL-terminated array.
*/
types = calloc(lines + 1, sizeof (char *));
if (types == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
goto out;
}
i = 0;
while (fgets(buf, sizeof (buf), fp) != NULL) {
/* LINTED - fstype is big enough to hold buf */
if (sscanf(buf, "%s", fstype) == 0) {
zerror(zlogp, B_FALSE, "unable to parse %s", DFSTYPES);
free_remote_fstypes(types);
types = NULL;
goto out;
}
types[i] = strdup(fstype);
if (types[i] == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
free_remote_fstypes(types);
types = NULL;
goto out;
}
i++;
}
out:
(void) fclose(fp);
return (types);
}
static boolean_t
is_remote_fstype(const char *fstype, char *const *remote_fstypes)
{
uint_t i;
if (remote_fstypes == NULL)
return (B_FALSE);
for (i = 0; remote_fstypes[i] != NULL; i++) {
if (strcmp(remote_fstypes[i], fstype) == 0)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* This converts a zone root path (normally of the form .../root) to a Live
* Upgrade scratch zone root (of the form .../lu).
*/
static void
root_to_lu(zlog_t *zlogp, char *zroot, size_t zrootlen, boolean_t isresolved)
{
if (!isresolved && zonecfg_in_alt_root())
resolve_lofs(zlogp, zroot, zrootlen);
(void) strcpy(strrchr(zroot, '/') + 1, "lu");
}
/*
* The general strategy for unmounting filesystems is as follows:
*
* - Remote filesystems may be dead, and attempting to contact them as
* part of a regular unmount may hang forever; we want to always try to
* forcibly unmount such filesystems and only fall back to regular
* unmounts if the filesystem doesn't support forced unmounts.
*
* - We don't want to unnecessarily corrupt metadata on local
* filesystems (ie UFS), so we want to start off with graceful unmounts,
* and only escalate to doing forced unmounts if we get stuck.
*
* We start off walking backwards through the mount table. This doesn't
* give us strict ordering but ensures that we try to unmount submounts
* first. We thus limit the number of failed umount2(2) calls.
*
* The mechanism for determining if we're stuck is to count the number
* of failed unmounts each iteration through the mount table. This
* gives us an upper bound on the number of filesystems which remain
* mounted (autofs trigger nodes are dealt with separately). If at the
* end of one unmount+autofs_cleanup cycle we still have the same number
* of mounts that we started out with, we're stuck and try a forced
* unmount. If that fails (filesystem doesn't support forced unmounts)
* then we bail and are unable to teardown the zone. If it succeeds,
* we're no longer stuck so we continue with our policy of trying
* graceful mounts first.
*
* Zone must be down (ie, no processes or threads active).
*/
static int
unmount_filesystems(zlog_t *zlogp, zoneid_t zoneid, boolean_t unmount_cmd)
{
int error = 0;
FILE *mnttab;
struct mnttab *mnts;
uint_t nmnt;
char zroot[MAXPATHLEN + 1];
size_t zrootlen;
uint_t oldcount = UINT_MAX;
boolean_t stuck = B_FALSE;
char **remote_fstypes = NULL;
if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) {
zerror(zlogp, B_FALSE, "unable to determine zone root");
return (-1);
}
if (unmount_cmd)
root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE);
(void) strcat(zroot, "/");
zrootlen = strlen(zroot);
/*
* For Trusted Extensions unmount each higher level zone's mount
* of our zone's /export/home
*/
if (!unmount_cmd)
tsol_unmounts(zlogp, zone_name);
if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
zerror(zlogp, B_TRUE, "failed to open %s", MNTTAB);
return (-1);
}
/*
* Use our hacky mntfs ioctl so we see everything, even mounts with
* MS_NOMNTTAB.
*/
if (ioctl(fileno(mnttab), MNTIOC_SHOWHIDDEN, NULL) < 0) {
zerror(zlogp, B_TRUE, "unable to configure %s", MNTTAB);
error++;
goto out;
}
/*
* Build the list of remote fstypes so we know which ones we
* should forcibly unmount.
*/
remote_fstypes = get_remote_fstypes(zlogp);
for (; /* ever */; ) {
uint_t newcount = 0;
boolean_t unmounted;
struct mnttab *mnp;
char *path;
uint_t i;
mnts = NULL;
nmnt = 0;
/*
* MNTTAB gives us a way to walk through mounted
* filesystems; we need to be able to walk them in
* reverse order, so we build a list of all mounted
* filesystems.
*/
if (build_mnttable(zlogp, zroot, zrootlen, mnttab, &mnts,
&nmnt) != 0) {
error++;
goto out;
}
for (i = 0; i < nmnt; i++) {
mnp = &mnts[nmnt - i - 1]; /* access in reverse order */
path = mnp->mnt_mountp;
unmounted = B_FALSE;
/*
* Try forced unmount first for remote filesystems.
*
* Not all remote filesystems support forced unmounts,
* so if this fails (ENOTSUP) we'll continue on
* and try a regular unmount.
*/
if (is_remote_fstype(mnp->mnt_fstype, remote_fstypes)) {
if (umount2(path, MS_FORCE) == 0)
unmounted = B_TRUE;
}
/*
* Try forced unmount if we're stuck.
*/
if (stuck) {
if (umount2(path, MS_FORCE) == 0) {
unmounted = B_TRUE;
stuck = B_FALSE;
} else {
/*
* The first failure indicates a
* mount we won't be able to get
* rid of automatically, so we
* bail.
*/
error++;
zerror(zlogp, B_FALSE,
"unable to unmount '%s'", path);
free_mnttable(mnts, nmnt);
goto out;
}
}
/*
* Try regular unmounts for everything else.
*/
if (!unmounted && umount2(path, 0) != 0)
newcount++;
}
free_mnttable(mnts, nmnt);
if (newcount == 0)
break;
if (newcount >= oldcount) {
/*
* Last round didn't unmount anything; we're stuck and
* should start trying forced unmounts.
*/
stuck = B_TRUE;
}
oldcount = newcount;
/*
* Autofs doesn't let you unmount its trigger nodes from
* userland so we have to tell the kernel to cleanup for us.
*/
if (autofs_cleanup(zoneid) != 0) {
zerror(zlogp, B_TRUE, "unable to remove autofs nodes");
error++;
goto out;
}
}
out:
free_remote_fstypes(remote_fstypes);
(void) fclose(mnttab);
return (error ? -1 : 0);
}
static int
fs_compare(const void *m1, const void *m2)
{
struct zone_fstab *i = (struct zone_fstab *)m1;
struct zone_fstab *j = (struct zone_fstab *)m2;
return (strcmp(i->zone_fs_dir, j->zone_fs_dir));
}
/*
* Fork and exec (and wait for) the mentioned binary with the provided
* arguments. Returns (-1) if something went wrong with fork(2) or exec(2),
* returns the exit status otherwise.
*
* If we were unable to exec the provided pathname (for whatever
* reason), we return the special token ZEXIT_EXEC. The current value
* of ZEXIT_EXEC doesn't conflict with legitimate exit codes of the
* consumers of this function; any future consumers must make sure this
* remains the case.
*/
static int
forkexec(zlog_t *zlogp, const char *path, char *const argv[])
{
pid_t child_pid;
int child_status = 0;
/*
* Do not let another thread localize a message while we are forking.
*/
(void) mutex_lock(&msglock);
child_pid = fork();
(void) mutex_unlock(&msglock);
if (child_pid == -1) {
zerror(zlogp, B_TRUE, "could not fork for %s", argv[0]);
return (-1);
} else if (child_pid == 0) {
closefrom(0);
/* redirect stdin, stdout & stderr to /dev/null */
(void) open("/dev/null", O_RDONLY); /* stdin */
(void) open("/dev/null", O_WRONLY); /* stdout */
(void) open("/dev/null", O_WRONLY); /* stderr */
(void) execv(path, argv);
/*
* Since we are in the child, there is no point calling zerror()
* since there is nobody waiting to consume it. So exit with a
* special code that the parent will recognize and call zerror()
* accordingly.
*/
_exit(ZEXIT_EXEC);
} else {
(void) waitpid(child_pid, &child_status, 0);
}
if (WIFSIGNALED(child_status)) {
zerror(zlogp, B_FALSE, "%s unexpectedly terminated due to "
"signal %d", path, WTERMSIG(child_status));
return (-1);
}
assert(WIFEXITED(child_status));
if (WEXITSTATUS(child_status) == ZEXIT_EXEC) {
zerror(zlogp, B_FALSE, "failed to exec %s", path);
return (-1);
}
return (WEXITSTATUS(child_status));
}
static int
isregfile(const char *path)
{
struct stat64 st;
if (stat64(path, &st) == -1)
return (-1);
return (S_ISREG(st.st_mode));
}
static int
dofsck(zlog_t *zlogp, const char *fstype, const char *rawdev)
{
char cmdbuf[MAXPATHLEN];
char *argv[5];
int status;
/*
* We could alternatively have called /usr/sbin/fsck -F <fstype>, but
* that would cost us an extra fork/exec without buying us anything.
*/
if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/fsck", fstype)
>= sizeof (cmdbuf)) {
zerror(zlogp, B_FALSE, "file-system type %s too long", fstype);
return (-1);
}
/*
* If it doesn't exist, that's OK: we verified this previously
* in zoneadm.
*/
if (isregfile(cmdbuf) == -1)
return (0);
argv[0] = "fsck";
argv[1] = "-o";
argv[2] = "p";
argv[3] = (char *)rawdev;
argv[4] = NULL;
status = forkexec(zlogp, cmdbuf, argv);
if (status == 0 || status == -1)
return (status);
zerror(zlogp, B_FALSE, "fsck of '%s' failed with exit status %d; "
"run fsck manually", rawdev, status);
return (-1);
}
static int
domount(zlog_t *zlogp, const char *fstype, const char *opts,
const char *special, const char *directory)
{
char cmdbuf[MAXPATHLEN];
char *argv[6];
int status;
/*
* We could alternatively have called /usr/sbin/mount -F <fstype>, but
* that would cost us an extra fork/exec without buying us anything.
*/
if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/mount", fstype)
>= sizeof (cmdbuf)) {
zerror(zlogp, B_FALSE, "file-system type %s too long", fstype);
return (-1);
}
argv[0] = "mount";
if (opts[0] == '\0') {
argv[1] = (char *)special;
argv[2] = (char *)directory;
argv[3] = NULL;
} else {
argv[1] = "-o";
argv[2] = (char *)opts;
argv[3] = (char *)special;
argv[4] = (char *)directory;
argv[5] = NULL;
}
status = forkexec(zlogp, cmdbuf, argv);
if (status == 0 || status == -1)
return (status);
if (opts[0] == '\0')
zerror(zlogp, B_FALSE, "\"%s %s %s\" "
"failed with exit code %d",
cmdbuf, special, directory, status);
else
zerror(zlogp, B_FALSE, "\"%s -o %s %s %s\" "
"failed with exit code %d",
cmdbuf, opts, special, directory, status);
return (-1);
}
/*
* Check if a given mount point path exists.
* If it does, make sure it doesn't contain any symlinks.
* Note that if "leaf" is false we're checking an intermediate
* component of the mount point path, so it must be a directory.
* If "leaf" is true, then we're checking the entire mount point
* path, so the mount point itself can be anything aside from a
* symbolic link.
*
* If the path is invalid then a negative value is returned. If the
* path exists and is a valid mount point path then 0 is returned.
* If the path doesn't exist return a positive value.
*/
static int
valid_mount_point(zlog_t *zlogp, const char *path, const boolean_t leaf)
{
struct stat statbuf;
char respath[MAXPATHLEN];
int res;
if (lstat(path, &statbuf) != 0) {
if (errno == ENOENT)
return (1);
zerror(zlogp, B_TRUE, "can't stat %s", path);
return (-1);
}
if (S_ISLNK(statbuf.st_mode)) {
zerror(zlogp, B_FALSE, "%s is a symlink", path);
return (-1);
}
if (!leaf && !S_ISDIR(statbuf.st_mode)) {
zerror(zlogp, B_FALSE, "%s is not a directory", path);
return (-1);
}
if ((res = resolvepath(path, respath, sizeof (respath))) == -1) {
zerror(zlogp, B_TRUE, "unable to resolve path %s", path);
return (-1);
}
respath[res] = '\0';
if (strcmp(path, respath) != 0) {
/*
* We don't like ".."s, "."s, or "//"s throwing us off
*/
zerror(zlogp, B_FALSE, "%s is not a canonical path", path);
return (-1);
}
return (0);
}
/*
* Validate a mount point path. A valid mount point path is an
* absolute path that either doesn't exist, or, if it does exists it
* must be an absolute canonical path that doesn't have any symbolic
* links in it. The target of a mount point path can be any filesystem
* object. (Different filesystems can support different mount points,
* for example "lofs" and "mntfs" both support files and directories
* while "ufs" just supports directories.)
*
* If the path is invalid then a negative value is returned. If the
* path exists and is a valid mount point path then 0 is returned.
* If the path doesn't exist return a positive value.
*/
int
valid_mount_path(zlog_t *zlogp, const char *rootpath, const char *spec,
const char *dir, const char *fstype)
{
char abspath[MAXPATHLEN], *slashp, *slashp_next;
int rv;
/*
* Sanity check the target mount point path.
* It must be a non-null string that starts with a '/'.
*/
if (dir[0] != '/') {
/* Something went wrong. */
zerror(zlogp, B_FALSE, "invalid mount directory, "
"type: \"%s\", special: \"%s\", dir: \"%s\"",
fstype, spec, dir);
return (-1);
}
/*
* Join rootpath and dir. Make sure abspath ends with '/', this
* is added to all paths (even non-directory paths) to allow us
* to detect the end of paths below. If the path already ends
* in a '/', then that's ok too (although we'll fail the
* cannonical path check in valid_mount_point()).
*/
if (snprintf(abspath, sizeof (abspath),
"%s%s/", rootpath, dir) >= sizeof (abspath)) {
zerror(zlogp, B_FALSE, "pathname %s%s is too long",
rootpath, dir);
return (-1);
}
/*
* Starting with rootpath, verify the mount path one component
* at a time. Continue until we've evaluated all of abspath.
*/
slashp = &abspath[strlen(rootpath)];
assert(*slashp == '/');
do {
slashp_next = strchr(slashp + 1, '/');
*slashp = '\0';
if (slashp_next != NULL) {
/* This is an intermediary mount path component. */
rv = valid_mount_point(zlogp, abspath, B_FALSE);
} else {
/* This is the last component of the mount path. */
rv = valid_mount_point(zlogp, abspath, B_TRUE);
}
if (rv < 0)
return (rv);
*slashp = '/';
} while ((slashp = slashp_next) != NULL);
return (rv);
}
static int
mount_one_dev_device_cb(void *arg, const char *match, const char *name)
{
di_prof_t prof = arg;
if (name == NULL)
return (di_prof_add_dev(prof, match));
return (di_prof_add_map(prof, match, name));
}
static int
mount_one_dev_symlink_cb(void *arg, const char *source, const char *target)
{
di_prof_t prof = arg;
return (di_prof_add_symlink(prof, source, target));
}
int
vplat_get_iptype(zlog_t *zlogp, zone_iptype_t *iptypep)
{
zone_dochandle_t handle;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (zonecfg_get_iptype(handle, iptypep) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid ip-type configuration");
zonecfg_fini_handle(handle);
return (-1);
}
zonecfg_fini_handle(handle);
return (0);
}
/*
* Apply the standard lists of devices/symlinks/mappings and the user-specified
* list of devices (via zonecfg) to the /dev filesystem. The filesystem will
* use these as a profile/filter to determine what exists in /dev.
*/
static int
mount_one_dev(zlog_t *zlogp, char *devpath, zone_mnt_t mount_cmd)
{
char brand[MAXNAMELEN];
zone_dochandle_t handle = NULL;
brand_handle_t bh = NULL;
struct zone_devtab ztab;
di_prof_t prof = NULL;
int err;
int retval = -1;
zone_iptype_t iptype;
const char *curr_iptype;
if (di_prof_init(devpath, &prof)) {
zerror(zlogp, B_TRUE, "failed to initialize profile");
goto cleanup;
}
/*
* Get a handle to the brand info for this zone.
* If we are mounting the zone, then we must always use the default
* brand device mounts.
*/
if (ALT_MOUNT(mount_cmd)) {
(void) strlcpy(brand, default_brand, sizeof (brand));
} else {
(void) strlcpy(brand, brand_name, sizeof (brand));
}
if ((bh = brand_open(brand)) == NULL) {
zerror(zlogp, B_FALSE, "unable to determine zone brand");
goto cleanup;
}
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_TRUE, "unable to determine ip-type");
goto cleanup;
}
switch (iptype) {
case ZS_SHARED:
curr_iptype = "shared";
break;
case ZS_EXCLUSIVE:
curr_iptype = "exclusive";
break;
}
if (brand_platform_iter_devices(bh, zone_name,
mount_one_dev_device_cb, prof, curr_iptype) != 0) {
zerror(zlogp, B_TRUE, "failed to add standard device");
goto cleanup;
}
if (brand_platform_iter_link(bh,
mount_one_dev_symlink_cb, prof) != 0) {
zerror(zlogp, B_TRUE, "failed to add standard symlink");
goto cleanup;
}
/* Add user-specified devices and directories */
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_FALSE, "can't initialize zone handle");
goto cleanup;
}
if (err = zonecfg_get_handle(zone_name, handle)) {
zerror(zlogp, B_FALSE, "can't get handle for zone "
"%s: %s", zone_name, zonecfg_strerror(err));
goto cleanup;
}
if (err = zonecfg_setdevent(handle)) {
zerror(zlogp, B_FALSE, "%s: %s", zone_name,
zonecfg_strerror(err));
goto cleanup;
}
while (zonecfg_getdevent(handle, &ztab) == Z_OK) {
if (di_prof_add_dev(prof, ztab.zone_dev_match)) {
zerror(zlogp, B_TRUE, "failed to add "
"user-specified device");
goto cleanup;
}
}
(void) zonecfg_enddevent(handle);
/* Send profile to kernel */
if (di_prof_commit(prof)) {
zerror(zlogp, B_TRUE, "failed to commit profile");
goto cleanup;
}
retval = 0;
cleanup:
if (bh != NULL)
brand_close(bh);
if (handle != NULL)
zonecfg_fini_handle(handle);
if (prof)
di_prof_fini(prof);
return (retval);
}
static int
mount_one(zlog_t *zlogp, struct zone_fstab *fsptr, const char *rootpath,
zone_mnt_t mount_cmd)
{
char path[MAXPATHLEN];
char optstr[MAX_MNTOPT_STR];
zone_fsopt_t *optptr;
int rv;
if ((rv = valid_mount_path(zlogp, rootpath, fsptr->zone_fs_special,
fsptr->zone_fs_dir, fsptr->zone_fs_type)) < 0) {
zerror(zlogp, B_FALSE, "%s%s is not a valid mount point",
rootpath, fsptr->zone_fs_dir);
return (-1);
} else if (rv > 0) {
/* The mount point path doesn't exist, create it now. */
if (make_one_dir(zlogp, rootpath, fsptr->zone_fs_dir,
DEFAULT_DIR_MODE, DEFAULT_DIR_USER,
DEFAULT_DIR_GROUP) != 0) {
zerror(zlogp, B_FALSE, "failed to create mount point");
return (-1);
}
/*
* Now this might seem weird, but we need to invoke
* valid_mount_path() again. Why? Because it checks
* to make sure that the mount point path is canonical,
* which it can only do if the path exists, so now that
* we've created the path we have to verify it again.
*/
if ((rv = valid_mount_path(zlogp, rootpath,
fsptr->zone_fs_special, fsptr->zone_fs_dir,
fsptr->zone_fs_type)) < 0) {
zerror(zlogp, B_FALSE,
"%s%s is not a valid mount point",
rootpath, fsptr->zone_fs_dir);
return (-1);
}
}
(void) snprintf(path, sizeof (path), "%s%s", rootpath,
fsptr->zone_fs_dir);
/*
* In general the strategy here is to do just as much verification as
* necessary to avoid crashing or otherwise doing something bad; if the
* administrator initiated the operation via zoneadm(1m), he'll get
* auto-verification which will let him know what's wrong. If he
* modifies the zone configuration of a running zone and doesn't attempt
* to verify that it's OK we won't crash but won't bother trying to be
* too helpful either. zoneadm verify is only a couple keystrokes away.
*/
if (!zonecfg_valid_fs_type(fsptr->zone_fs_type)) {
zerror(zlogp, B_FALSE, "cannot mount %s on %s: "
"invalid file-system type %s", fsptr->zone_fs_special,
fsptr->zone_fs_dir, fsptr->zone_fs_type);
return (-1);
}
/*
* If we're looking at an alternate root environment, then construct
* read-only loopback mounts as necessary. Note that any special
* paths for lofs zone mounts in an alternate root must have
* already been pre-pended with any alternate root path by the
* time we get here.
*/
if (zonecfg_in_alt_root()) {
struct stat64 st;
if (stat64(fsptr->zone_fs_special, &st) != -1 &&
S_ISBLK(st.st_mode)) {
/*
* If we're going to mount a block device we need
* to check if that device is already mounted
* somewhere else, and if so, do a lofs mount
* of the device instead of a direct mount
*/
if (check_lofs_needed(zlogp, fsptr) == -1)
return (-1);
} else if (strcmp(fsptr->zone_fs_type, MNTTYPE_LOFS) == 0) {
/*
* For lofs mounts, the special node is inside the
* alternate root. We need lofs resolution for
* this case in order to get at the underlying
* read-write path.
*/
resolve_lofs(zlogp, fsptr->zone_fs_special,
sizeof (fsptr->zone_fs_special));
}
}
/*
* Run 'fsck -m' if there's a device to fsck.
*/
if (fsptr->zone_fs_raw[0] != '\0' &&
dofsck(zlogp, fsptr->zone_fs_type, fsptr->zone_fs_raw) != 0) {
return (-1);
} else if (isregfile(fsptr->zone_fs_special) == 1 &&
dofsck(zlogp, fsptr->zone_fs_type, fsptr->zone_fs_special) != 0) {
return (-1);
}
/*
* Build up mount option string.
*/
optstr[0] = '\0';
if (fsptr->zone_fs_options != NULL) {
(void) strlcpy(optstr, fsptr->zone_fs_options->zone_fsopt_opt,
sizeof (optstr));
for (optptr = fsptr->zone_fs_options->zone_fsopt_next;
optptr != NULL; optptr = optptr->zone_fsopt_next) {
(void) strlcat(optstr, ",", sizeof (optstr));
(void) strlcat(optstr, optptr->zone_fsopt_opt,
sizeof (optstr));
}
}
if ((rv = domount(zlogp, fsptr->zone_fs_type, optstr,
fsptr->zone_fs_special, path)) != 0)
return (rv);
/*
* The mount succeeded. If this was not a mount of /dev then
* we're done.
*/
if (strcmp(fsptr->zone_fs_type, MNTTYPE_DEV) != 0)
return (0);
/*
* We just mounted an instance of a /dev filesystem, so now we
* need to configure it.
*/
return (mount_one_dev(zlogp, path, mount_cmd));
}
static void
free_fs_data(struct zone_fstab *fsarray, uint_t nelem)
{
uint_t i;
if (fsarray == NULL)
return;
for (i = 0; i < nelem; i++)
zonecfg_free_fs_option_list(fsarray[i].zone_fs_options);
free(fsarray);
}
/*
* This function initiates the creation of a small Solaris Environment for
* scratch zone. The Environment creation process is split up into two
* functions(build_mounted_pre_var() and build_mounted_post_var()). It
* is done this way because:
* We need to have both /etc and /var in the root of the scratchzone.
* We loopback mount zone's own /etc and /var into the root of the
* scratch zone. Unlike /etc, /var can be a seperate filesystem. So we
* need to delay the mount of /var till the zone's root gets populated.
* So mounting of localdirs[](/etc and /var) have been moved to the
* build_mounted_post_var() which gets called only after the zone
* specific filesystems are mounted.
*
* Note that the scratch zone we set up for updating the zone (Z_MNT_UPDATE)
* does not loopback mount the zone's own /etc and /var into the root of the
* scratch zone.
*/
static boolean_t
build_mounted_pre_var(zlog_t *zlogp, char *rootpath,
size_t rootlen, const char *zonepath, char *luroot, size_t lurootlen)
{
char tmp[MAXPATHLEN], fromdir[MAXPATHLEN];
const char **cpp;
static const char *mkdirs[] = {
"/system", "/system/contract", "/system/object", "/proc",
"/dev", "/tmp", "/a", NULL
};
char *altstr;
FILE *fp;
uuid_t uuid;
resolve_lofs(zlogp, rootpath, rootlen);
(void) snprintf(luroot, lurootlen, "%s/lu", zonepath);
resolve_lofs(zlogp, luroot, lurootlen);
(void) snprintf(tmp, sizeof (tmp), "%s/bin", luroot);
(void) symlink("./usr/bin", tmp);
/*
* These are mostly special mount points; not handled here. (See
* zone_mount_early.)
*/
for (cpp = mkdirs; *cpp != NULL; cpp++) {
(void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp);
if (mkdir(tmp, 0755) != 0) {
zerror(zlogp, B_TRUE, "cannot create %s", tmp);
return (B_FALSE);
}
}
/*
* This is here to support lucopy. If there's an instance of this same
* zone on the current running system, then we mount its root up as
* read-only inside the scratch zone.
*/
(void) zonecfg_get_uuid(zone_name, uuid);
altstr = strdup(zonecfg_get_root());
if (altstr == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (B_FALSE);
}
zonecfg_set_root("");
(void) strlcpy(tmp, zone_name, sizeof (tmp));
(void) zonecfg_get_name_by_uuid(uuid, tmp, sizeof (tmp));
if (zone_get_rootpath(tmp, fromdir, sizeof (fromdir)) == Z_OK &&
strcmp(fromdir, rootpath) != 0) {
(void) snprintf(tmp, sizeof (tmp), "%s/b", luroot);
if (mkdir(tmp, 0755) != 0) {
zerror(zlogp, B_TRUE, "cannot create %s", tmp);
return (B_FALSE);
}
if (domount(zlogp, MNTTYPE_LOFS, RESOURCE_DEFAULT_OPTS, fromdir,
tmp) != 0) {
zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp,
fromdir);
return (B_FALSE);
}
}
zonecfg_set_root(altstr);
free(altstr);
if ((fp = zonecfg_open_scratch(luroot, B_TRUE)) == NULL) {
zerror(zlogp, B_TRUE, "cannot open zone mapfile");
return (B_FALSE);
}
(void) ftruncate(fileno(fp), 0);
if (zonecfg_add_scratch(fp, zone_name, kernzone, "/") == -1) {
zerror(zlogp, B_TRUE, "cannot add zone mapfile entry");
}
zonecfg_close_scratch(fp);
(void) snprintf(tmp, sizeof (tmp), "%s/a", luroot);
if (domount(zlogp, MNTTYPE_LOFS, "", rootpath, tmp) != 0)
return (B_FALSE);
(void) strlcpy(rootpath, tmp, rootlen);
return (B_TRUE);
}
static boolean_t
build_mounted_post_var(zlog_t *zlogp, zone_mnt_t mount_cmd, char *rootpath,
const char *luroot)
{
char tmp[MAXPATHLEN], fromdir[MAXPATHLEN];
const char **cpp;
const char **loopdirs;
const char **tmpdirs;
static const char *localdirs[] = {
"/etc", "/var", NULL
};
static const char *scr_loopdirs[] = {
"/etc/lib", "/etc/fs", "/lib", "/sbin", "/platform",
"/usr", NULL
};
static const char *upd_loopdirs[] = {
"/etc", "/kernel", "/lib", "/opt", "/platform", "/sbin",
"/usr", "/var", NULL
};
static const char *scr_tmpdirs[] = {
"/tmp", "/var/run", NULL
};
static const char *upd_tmpdirs[] = {
"/tmp", "/var/run", "/var/tmp", NULL
};
struct stat st;
if (mount_cmd == Z_MNT_SCRATCH) {
/*
* These are mounted read-write from the zone undergoing
* upgrade. We must be careful not to 'leak' things from the
* main system into the zone, and this accomplishes that goal.
*/
for (cpp = localdirs; *cpp != NULL; cpp++) {
(void) snprintf(tmp, sizeof (tmp), "%s%s", luroot,
*cpp);
(void) snprintf(fromdir, sizeof (fromdir), "%s%s",
rootpath, *cpp);
if (mkdir(tmp, 0755) != 0) {
zerror(zlogp, B_TRUE, "cannot create %s", tmp);
return (B_FALSE);
}
if (domount(zlogp, MNTTYPE_LOFS, "", fromdir, tmp)
!= 0) {
zerror(zlogp, B_TRUE, "cannot mount %s on %s",
tmp, *cpp);
return (B_FALSE);
}
}
}
if (mount_cmd == Z_MNT_UPDATE)
loopdirs = upd_loopdirs;
else
loopdirs = scr_loopdirs;
/*
* These are things mounted read-only from the running system because
* they contain binaries that must match system.
*/
for (cpp = loopdirs; *cpp != NULL; cpp++) {
(void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp);
if (mkdir(tmp, 0755) != 0) {
if (errno != EEXIST) {
zerror(zlogp, B_TRUE, "cannot create %s", tmp);
return (B_FALSE);
}
if (lstat(tmp, &st) != 0) {
zerror(zlogp, B_TRUE, "cannot stat %s", tmp);
return (B_FALSE);
}
/*
* Ignore any non-directories encountered. These are
* things that have been converted into symlinks
* (/etc/fs and /etc/lib) and no longer need a lofs
* fixup.
*/
if (!S_ISDIR(st.st_mode))
continue;
}
if (domount(zlogp, MNTTYPE_LOFS, RESOURCE_DEFAULT_OPTS, *cpp,
tmp) != 0) {
zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp,
*cpp);
return (B_FALSE);
}
}
if (mount_cmd == Z_MNT_UPDATE)
tmpdirs = upd_tmpdirs;
else
tmpdirs = scr_tmpdirs;
/*
* These are things with tmpfs mounted inside.
*/
for (cpp = tmpdirs; *cpp != NULL; cpp++) {
(void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp);
if (mount_cmd == Z_MNT_SCRATCH && mkdir(tmp, 0755) != 0 &&
errno != EEXIST) {
zerror(zlogp, B_TRUE, "cannot create %s", tmp);
return (B_FALSE);
}
/*
* We could set the mode for /tmp when we do the mkdir but
* since that can be modified by the umask we will just set
* the correct mode for /tmp now.
*/
if (strcmp(*cpp, "/tmp") == 0 && chmod(tmp, 01777) != 0) {
zerror(zlogp, B_TRUE, "cannot chmod %s", tmp);
return (B_FALSE);
}
if (domount(zlogp, MNTTYPE_TMPFS, "", "swap", tmp) != 0) {
zerror(zlogp, B_TRUE, "cannot mount swap on %s", *cpp);
return (B_FALSE);
}
}
return (B_TRUE);
}
typedef struct plat_gmount_cb_data {
zlog_t *pgcd_zlogp;
struct zone_fstab **pgcd_fs_tab;
int *pgcd_num_fs;
} plat_gmount_cb_data_t;
/*
* plat_gmount_cb() is a callback function invoked by libbrand to iterate
* through all global brand platform mounts.
*/
int
plat_gmount_cb(void *data, const char *spec, const char *dir,
const char *fstype, const char *opt)
{
plat_gmount_cb_data_t *cp = data;
zlog_t *zlogp = cp->pgcd_zlogp;
struct zone_fstab *fs_ptr = *cp->pgcd_fs_tab;
int num_fs = *cp->pgcd_num_fs;
struct zone_fstab *fsp, *tmp_ptr;
num_fs++;
if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (-1);
}
fs_ptr = tmp_ptr;
fsp = &fs_ptr[num_fs - 1];
/* update the callback struct passed in */
*cp->pgcd_fs_tab = fs_ptr;
*cp->pgcd_num_fs = num_fs;
fsp->zone_fs_raw[0] = '\0';
(void) strlcpy(fsp->zone_fs_special, spec,
sizeof (fsp->zone_fs_special));
(void) strlcpy(fsp->zone_fs_dir, dir, sizeof (fsp->zone_fs_dir));
(void) strlcpy(fsp->zone_fs_type, fstype, sizeof (fsp->zone_fs_type));
fsp->zone_fs_options = NULL;
if ((opt != NULL) &&
(zonecfg_add_fs_option(fsp, (char *)opt) != Z_OK)) {
zerror(zlogp, B_FALSE, "error adding property");
return (-1);
}
return (0);
}
static int
mount_filesystems_fsent(zone_dochandle_t handle, zlog_t *zlogp,
struct zone_fstab **fs_tabp, int *num_fsp, zone_mnt_t mount_cmd)
{
struct zone_fstab *tmp_ptr, *fs_ptr, *fsp, fstab;
int num_fs;
num_fs = *num_fsp;
fs_ptr = *fs_tabp;
if (zonecfg_setfsent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
return (-1);
}
while (zonecfg_getfsent(handle, &fstab) == Z_OK) {
/*
* ZFS filesystems will not be accessible under an alternate
* root, since the pool will not be known. Ignore them in this
* case.
*/
if (ALT_MOUNT(mount_cmd) &&
strcmp(fstab.zone_fs_type, MNTTYPE_ZFS) == 0)
continue;
num_fs++;
if ((tmp_ptr = realloc(fs_ptr,
num_fs * sizeof (*tmp_ptr))) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
(void) zonecfg_endfsent(handle);
return (-1);
}
/* update the pointers passed in */
*fs_tabp = tmp_ptr;
*num_fsp = num_fs;
fs_ptr = tmp_ptr;
fsp = &fs_ptr[num_fs - 1];
(void) strlcpy(fsp->zone_fs_dir,
fstab.zone_fs_dir, sizeof (fsp->zone_fs_dir));
(void) strlcpy(fsp->zone_fs_raw, fstab.zone_fs_raw,
sizeof (fsp->zone_fs_raw));
(void) strlcpy(fsp->zone_fs_type, fstab.zone_fs_type,
sizeof (fsp->zone_fs_type));
fsp->zone_fs_options = fstab.zone_fs_options;
/*
* For all lofs mounts, make sure that the 'special'
* entry points inside the alternate root. The
* source path for a lofs mount in a given zone needs
* to be relative to the root of the boot environment
* that contains the zone. Note that we don't do this
* for non-lofs mounts since they will have a device
* as a backing store and device paths must always be
* specified relative to the current boot environment.
*/
fsp->zone_fs_special[0] = '\0';
if (strcmp(fsp->zone_fs_type, MNTTYPE_LOFS) == 0) {
(void) strlcat(fsp->zone_fs_special, zonecfg_get_root(),
sizeof (fsp->zone_fs_special));
}
(void) strlcat(fsp->zone_fs_special, fstab.zone_fs_special,
sizeof (fsp->zone_fs_special));
}
(void) zonecfg_endfsent(handle);
return (0);
}
static int
mount_filesystems(zlog_t *zlogp, zone_mnt_t mount_cmd)
{
char rootpath[MAXPATHLEN];
char zonepath[MAXPATHLEN];
char brand[MAXNAMELEN];
char luroot[MAXPATHLEN];
int i, num_fs = 0;
struct zone_fstab *fs_ptr = NULL;
zone_dochandle_t handle = NULL;
zone_state_t zstate;
brand_handle_t bh;
plat_gmount_cb_data_t cb;
if (zone_get_state(zone_name, &zstate) != Z_OK ||
(zstate != ZONE_STATE_READY && zstate != ZONE_STATE_MOUNTED)) {
zerror(zlogp, B_FALSE,
"zone must be in '%s' or '%s' state to mount file-systems",
zone_state_str(ZONE_STATE_READY),
zone_state_str(ZONE_STATE_MOUNTED));
goto bad;
}
if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) {
zerror(zlogp, B_TRUE, "unable to determine zone path");
goto bad;
}
if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) {
zerror(zlogp, B_TRUE, "unable to determine zone root");
goto bad;
}
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
goto bad;
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK ||
zonecfg_setfsent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
goto bad;
}
/*
* If we are mounting the zone, then we must always use the default
* brand global mounts.
*/
if (ALT_MOUNT(mount_cmd)) {
(void) strlcpy(brand, default_brand, sizeof (brand));
} else {
(void) strlcpy(brand, brand_name, sizeof (brand));
}
/* Get a handle to the brand info for this zone */
if ((bh = brand_open(brand)) == NULL) {
zerror(zlogp, B_FALSE, "unable to determine zone brand");
zonecfg_fini_handle(handle);
return (-1);
}
/*
* Get the list of global filesystems to mount from the brand
* configuration.
*/
cb.pgcd_zlogp = zlogp;
cb.pgcd_fs_tab = &fs_ptr;
cb.pgcd_num_fs = &num_fs;
if (brand_platform_iter_gmounts(bh, zone_name, zonepath,
plat_gmount_cb, &cb) != 0) {
zerror(zlogp, B_FALSE, "unable to mount filesystems");
brand_close(bh);
zonecfg_fini_handle(handle);
return (-1);
}
brand_close(bh);
/*
* Iterate through the rest of the filesystems. Sort them all,
* then mount them in sorted order. This is to make sure the
* higher level directories (e.g., /usr) get mounted before
* any beneath them (e.g., /usr/local).
*/
if (mount_filesystems_fsent(handle, zlogp, &fs_ptr, &num_fs,
mount_cmd) != 0)
goto bad;
zonecfg_fini_handle(handle);
handle = NULL;
/*
* Normally when we mount a zone all the zone filesystems
* get mounted relative to rootpath, which is usually
* <zonepath>/root. But when mounting a zone for administration
* purposes via the zone "mount" state, build_mounted_pre_var()
* updates rootpath to be <zonepath>/lu/a so we'll mount all
* the zones filesystems there instead.
*
* build_mounted_pre_var() and build_mounted_post_var() will
* also do some extra work to create directories and lofs mount
* a bunch of global zone file system paths into <zonepath>/lu.
*
* This allows us to be able to enter the zone (now rooted at
* <zonepath>/lu) and run the upgrade/patch tools that are in the
* global zone and have them upgrade the to-be-modified zone's
* files mounted on /a. (Which mirrors the existing standard
* upgrade environment.)
*
* There is of course one catch. When doing the upgrade
* we need <zoneroot>/lu/dev to be the /dev filesystem
* for the zone and we don't want to have any /dev filesystem
* mounted at <zoneroot>/lu/a/dev. Since /dev is specified
* as a normal zone filesystem by default we'll try to mount
* it at <zoneroot>/lu/a/dev, so we have to detect this
* case and instead mount it at <zoneroot>/lu/dev.
*
* All this work is done in three phases:
* 1) Create and populate lu directory (build_mounted_pre_var()).
* 2) Mount the required filesystems as per the zone configuration.
* 3) Set up the rest of the scratch zone environment
* (build_mounted_post_var()).
*/
if (ALT_MOUNT(mount_cmd) && !build_mounted_pre_var(zlogp,
rootpath, sizeof (rootpath), zonepath, luroot, sizeof (luroot)))
goto bad;
qsort(fs_ptr, num_fs, sizeof (*fs_ptr), fs_compare);
for (i = 0; i < num_fs; i++) {
if (ALT_MOUNT(mount_cmd) &&
strcmp(fs_ptr[i].zone_fs_dir, "/dev") == 0) {
size_t slen = strlen(rootpath) - 2;
/*
* By default we'll try to mount /dev as /a/dev
* but /dev is special and always goes at the top
* so strip the trailing '/a' from the rootpath.
*/
assert(strcmp(&rootpath[slen], "/a") == 0);
rootpath[slen] = '\0';
if (mount_one(zlogp, &fs_ptr[i], rootpath, mount_cmd)
!= 0)
goto bad;
rootpath[slen] = '/';
continue;
}
if (mount_one(zlogp, &fs_ptr[i], rootpath, mount_cmd) != 0)
goto bad;
}
if (ALT_MOUNT(mount_cmd) &&
!build_mounted_post_var(zlogp, mount_cmd, rootpath, luroot))
goto bad;
/*
* For Trusted Extensions cross-mount each lower level /export/home
*/
if (mount_cmd == Z_MNT_BOOT &&
tsol_mounts(zlogp, zone_name, rootpath) != 0)
goto bad;
free_fs_data(fs_ptr, num_fs);
/*
* Everything looks fine.
*/
return (0);
bad:
if (handle != NULL)
zonecfg_fini_handle(handle);
free_fs_data(fs_ptr, num_fs);
return (-1);
}
/* caller makes sure neither parameter is NULL */
static int
addr2netmask(char *prefixstr, int maxprefixlen, uchar_t *maskstr)
{
int prefixlen;
prefixlen = atoi(prefixstr);
if (prefixlen < 0 || prefixlen > maxprefixlen)
return (1);
while (prefixlen > 0) {
if (prefixlen >= 8) {
*maskstr++ = 0xFF;
prefixlen -= 8;
continue;
}
*maskstr |= 1 << (8 - prefixlen);
prefixlen--;
}
return (0);
}
/*
* Tear down all interfaces belonging to the given zone. This should
* be called with the zone in a state other than "running", so that
* interfaces can't be assigned to the zone after this returns.
*
* If anything goes wrong, log an error message and return an error.
*/
static int
unconfigure_shared_network_interfaces(zlog_t *zlogp, zoneid_t zone_id)
{
struct lifnum lifn;
struct lifconf lifc;
struct lifreq *lifrp, lifrl;
int64_t lifc_flags = LIFC_NOXMIT | LIFC_ALLZONES;
int num_ifs, s, i, ret_code = 0;
uint_t bufsize;
char *buf = NULL;
if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
zerror(zlogp, B_TRUE, "could not get socket");
ret_code = -1;
goto bad;
}
lifn.lifn_family = AF_UNSPEC;
lifn.lifn_flags = (int)lifc_flags;
if (ioctl(s, SIOCGLIFNUM, (char *)&lifn) < 0) {
zerror(zlogp, B_TRUE,
"could not determine number of network interfaces");
ret_code = -1;
goto bad;
}
num_ifs = lifn.lifn_count;
bufsize = num_ifs * sizeof (struct lifreq);
if ((buf = malloc(bufsize)) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
ret_code = -1;
goto bad;
}
lifc.lifc_family = AF_UNSPEC;
lifc.lifc_flags = (int)lifc_flags;
lifc.lifc_len = bufsize;
lifc.lifc_buf = buf;
if (ioctl(s, SIOCGLIFCONF, (char *)&lifc) < 0) {
zerror(zlogp, B_TRUE, "could not get configured network "
"interfaces");
ret_code = -1;
goto bad;
}
lifrp = lifc.lifc_req;
for (i = lifc.lifc_len / sizeof (struct lifreq); i > 0; i--, lifrp++) {
(void) close(s);
if ((s = socket(lifrp->lifr_addr.ss_family, SOCK_DGRAM, 0)) <
0) {
zerror(zlogp, B_TRUE, "%s: could not get socket",
lifrl.lifr_name);
ret_code = -1;
continue;
}
(void) memset(&lifrl, 0, sizeof (lifrl));
(void) strncpy(lifrl.lifr_name, lifrp->lifr_name,
sizeof (lifrl.lifr_name));
if (ioctl(s, SIOCGLIFZONE, (caddr_t)&lifrl) < 0) {
if (errno == ENXIO)
/*
* Interface may have been removed by admin or
* another zone halting.
*/
continue;
zerror(zlogp, B_TRUE,
"%s: could not determine the zone to which this "
"network interface is bound", lifrl.lifr_name);
ret_code = -1;
continue;
}
if (lifrl.lifr_zoneid == zone_id) {
if (ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifrl) < 0) {
zerror(zlogp, B_TRUE,
"%s: could not remove network interface",
lifrl.lifr_name);
ret_code = -1;
continue;
}
}
}
bad:
if (s > 0)
(void) close(s);
if (buf)
free(buf);
return (ret_code);
}
static union sockunion {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_dl sdl;
struct sockaddr_in6 sin6;
} so_dst, so_ifp;
static struct {
struct rt_msghdr hdr;
char space[512];
} rtmsg;
static int
salen(struct sockaddr *sa)
{
switch (sa->sa_family) {
case AF_INET:
return (sizeof (struct sockaddr_in));
case AF_LINK:
return (sizeof (struct sockaddr_dl));
case AF_INET6:
return (sizeof (struct sockaddr_in6));
default:
return (sizeof (struct sockaddr));
}
}
#define ROUNDUP_LONG(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long))
/*
* Look up which zone is using a given IP address. The address in question
* is expected to have been stuffed into the structure to which lifr points
* via a previous SIOCGLIFADDR ioctl().
*
* This is done using black router socket magic.
*
* Return the name of the zone on success or NULL on failure.
*
* This is a lot of code for a simple task; a new ioctl request to take care
* of this might be a useful RFE.
*/
static char *
who_is_using(zlog_t *zlogp, struct lifreq *lifr)
{
static char answer[ZONENAME_MAX];
pid_t pid;
int s, rlen, l, i;
char *cp = rtmsg.space;
struct sockaddr_dl *ifp = NULL;
struct sockaddr *sa;
char save_if_name[LIFNAMSIZ];
answer[0] = '\0';
pid = getpid();
if ((s = socket(PF_ROUTE, SOCK_RAW, 0)) < 0) {
zerror(zlogp, B_TRUE, "could not get routing socket");
return (NULL);
}
if (lifr->lifr_addr.ss_family == AF_INET) {
struct sockaddr_in *sin4;
so_dst.sa.sa_family = AF_INET;
sin4 = (struct sockaddr_in *)&lifr->lifr_addr;
so_dst.sin.sin_addr = sin4->sin_addr;
} else {
struct sockaddr_in6 *sin6;
so_dst.sa.sa_family = AF_INET6;
sin6 = (struct sockaddr_in6 *)&lifr->lifr_addr;
so_dst.sin6.sin6_addr = sin6->sin6_addr;
}
so_ifp.sa.sa_family = AF_LINK;
(void) memset(&rtmsg, 0, sizeof (rtmsg));
rtmsg.hdr.rtm_type = RTM_GET;
rtmsg.hdr.rtm_flags = RTF_UP | RTF_HOST;
rtmsg.hdr.rtm_version = RTM_VERSION;
rtmsg.hdr.rtm_seq = ++rts_seqno;
rtmsg.hdr.rtm_addrs = RTA_IFP | RTA_DST;
l = ROUNDUP_LONG(salen(&so_dst.sa));
(void) memmove(cp, &(so_dst), l);
cp += l;
l = ROUNDUP_LONG(salen(&so_ifp.sa));
(void) memmove(cp, &(so_ifp), l);
cp += l;
rtmsg.hdr.rtm_msglen = l = cp - (char *)&rtmsg;
if ((rlen = write(s, &rtmsg, l)) < 0) {
zerror(zlogp, B_TRUE, "writing to routing socket");
return (NULL);
} else if (rlen < (int)rtmsg.hdr.rtm_msglen) {
zerror(zlogp, B_TRUE,
"write to routing socket got only %d for len\n", rlen);
return (NULL);
}
do {
l = read(s, &rtmsg, sizeof (rtmsg));
} while (l > 0 && (rtmsg.hdr.rtm_seq != rts_seqno ||
rtmsg.hdr.rtm_pid != pid));
if (l < 0) {
zerror(zlogp, B_TRUE, "reading from routing socket");
return (NULL);
}
if (rtmsg.hdr.rtm_version != RTM_VERSION) {
zerror(zlogp, B_FALSE,
"routing message version %d not understood",
rtmsg.hdr.rtm_version);
return (NULL);
}
if (rtmsg.hdr.rtm_msglen != (ushort_t)l) {
zerror(zlogp, B_FALSE, "message length mismatch, "
"expected %d bytes, returned %d bytes",
rtmsg.hdr.rtm_msglen, l);
return (NULL);
}
if (rtmsg.hdr.rtm_errno != 0) {
errno = rtmsg.hdr.rtm_errno;
zerror(zlogp, B_TRUE, "RTM_GET routing socket message");
return (NULL);
}
if ((rtmsg.hdr.rtm_addrs & RTA_IFP) == 0) {
zerror(zlogp, B_FALSE, "network interface not found");
return (NULL);
}
cp = ((char *)(&rtmsg.hdr + 1));
for (i = 1; i != 0; i <<= 1) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
sa = (struct sockaddr *)cp;
if (i != RTA_IFP) {
if ((i & rtmsg.hdr.rtm_addrs) != 0)
cp += ROUNDUP_LONG(salen(sa));
continue;
}
if (sa->sa_family == AF_LINK &&
((struct sockaddr_dl *)sa)->sdl_nlen != 0)
ifp = (struct sockaddr_dl *)sa;
break;
}
if (ifp == NULL) {
zerror(zlogp, B_FALSE, "network interface could not be "
"determined");
return (NULL);
}
/*
* We need to set the I/F name to what we got above, then do the
* appropriate ioctl to get its zone name. But lifr->lifr_name is
* used by the calling function to do a REMOVEIF, so if we leave the
* "good" zone's I/F name in place, *that* I/F will be removed instead
* of the bad one. So we save the old (bad) I/F name before over-
* writing it and doing the ioctl, then restore it after the ioctl.
*/
(void) strlcpy(save_if_name, lifr->lifr_name, sizeof (save_if_name));
(void) strncpy(lifr->lifr_name, ifp->sdl_data, ifp->sdl_nlen);
lifr->lifr_name[ifp->sdl_nlen] = '\0';
i = ioctl(s, SIOCGLIFZONE, lifr);
(void) strlcpy(lifr->lifr_name, save_if_name, sizeof (save_if_name));
if (i < 0) {
zerror(zlogp, B_TRUE,
"%s: could not determine the zone network interface "
"belongs to", lifr->lifr_name);
return (NULL);
}
if (getzonenamebyid(lifr->lifr_zoneid, answer, sizeof (answer)) < 0)
(void) snprintf(answer, sizeof (answer), "%d",
lifr->lifr_zoneid);
if (strlen(answer) > 0)
return (answer);
return (NULL);
}
/*
* Configures a single interface: a new virtual interface is added, based on
* the physical interface nwiftabptr->zone_nwif_physical, with the address
* specified in nwiftabptr->zone_nwif_address, for zone zone_id. Note that
* the "address" can be an IPv6 address (with a /prefixlength required), an
* IPv4 address (with a /prefixlength optional), or a name; for the latter,
* an IPv4 name-to-address resolution will be attempted.
*
* If anything goes wrong, we log an detailed error message, attempt to tear
* down whatever we set up and return an error.
*/
static int
configure_one_interface(zlog_t *zlogp, zoneid_t zone_id,
struct zone_nwiftab *nwiftabptr)
{
struct lifreq lifr;
struct sockaddr_in netmask4;
struct sockaddr_in6 netmask6;
struct sockaddr_storage laddr;
struct in_addr in4;
sa_family_t af;
char *slashp = strchr(nwiftabptr->zone_nwif_address, '/');
int s;
boolean_t got_netmask = B_FALSE;
boolean_t is_loopback = B_FALSE;
char addrstr4[INET_ADDRSTRLEN];
int res;
res = zonecfg_valid_net_address(nwiftabptr->zone_nwif_address, &lifr);
if (res != Z_OK) {
zerror(zlogp, B_FALSE, "%s: %s", zonecfg_strerror(res),
nwiftabptr->zone_nwif_address);
return (-1);
}
af = lifr.lifr_addr.ss_family;
if (af == AF_INET)
in4 = ((struct sockaddr_in *)(&lifr.lifr_addr))->sin_addr;
if ((s = socket(af, SOCK_DGRAM, 0)) < 0) {
zerror(zlogp, B_TRUE, "could not get socket");
return (-1);
}
/*
* This is a similar kind of "hack" like in addif() to get around
* the problem of SIOCLIFADDIF. The problem is that this ioctl
* does not include the netmask when adding a logical interface.
* To get around this problem, we first add the logical interface
* with a 0 address. After that, we set the netmask if provided.
* Finally we set the interface address.
*/
laddr = lifr.lifr_addr;
(void) strlcpy(lifr.lifr_name, nwiftabptr->zone_nwif_physical,
sizeof (lifr.lifr_name));
(void) memset(&lifr.lifr_addr, 0, sizeof (lifr.lifr_addr));
if (ioctl(s, SIOCLIFADDIF, (caddr_t)&lifr) < 0) {
/*
* Here, we know that the interface can't be brought up.
* A similar warning message was already printed out to
* the console by zoneadm(1M) so instead we log the
* message to syslog and continue.
*/
zerror(&logsys, B_TRUE, "WARNING: skipping network interface "
"'%s' which may not be present/plumbed in the "
"global zone.", lifr.lifr_name);
(void) close(s);
return (Z_OK);
}
/* Preserve literal IPv4 address for later potential printing. */
if (af == AF_INET)
(void) inet_ntop(AF_INET, &in4, addrstr4, INET_ADDRSTRLEN);
lifr.lifr_zoneid = zone_id;
if (ioctl(s, SIOCSLIFZONE, (caddr_t)&lifr) < 0) {
zerror(zlogp, B_TRUE, "%s: could not place network interface "
"into zone", lifr.lifr_name);
goto bad;
}
/*
* Loopback interface will use the default netmask assigned, if no
* netmask is found.
*/
if (strcmp(nwiftabptr->zone_nwif_physical, "lo0") == 0) {
is_loopback = B_TRUE;
}
if (af == AF_INET) {
/*
* The IPv4 netmask can be determined either
* directly if a prefix length was supplied with
* the address or via the netmasks database. Not
* being able to determine it is a common failure,
* but it often is not fatal to operation of the
* interface. In that case, a warning will be
* printed after the rest of the interface's
* parameters have been configured.
*/
(void) memset(&netmask4, 0, sizeof (netmask4));
if (slashp != NULL) {
if (addr2netmask(slashp + 1, V4_ADDR_LEN,
(uchar_t *)&netmask4.sin_addr) != 0) {
*slashp = '/';
zerror(zlogp, B_FALSE,
"%s: invalid prefix length in %s",
lifr.lifr_name,
nwiftabptr->zone_nwif_address);
goto bad;
}
got_netmask = B_TRUE;
} else if (getnetmaskbyaddr(in4,
&netmask4.sin_addr) == 0) {
got_netmask = B_TRUE;
}
if (got_netmask) {
netmask4.sin_family = af;
(void) memcpy(&lifr.lifr_addr, &netmask4,
sizeof (netmask4));
}
} else {
(void) memset(&netmask6, 0, sizeof (netmask6));
if (addr2netmask(slashp + 1, V6_ADDR_LEN,
(uchar_t *)&netmask6.sin6_addr) != 0) {
*slashp = '/';
zerror(zlogp, B_FALSE,
"%s: invalid prefix length in %s",
lifr.lifr_name,
nwiftabptr->zone_nwif_address);
goto bad;
}
got_netmask = B_TRUE;
netmask6.sin6_family = af;
(void) memcpy(&lifr.lifr_addr, &netmask6,
sizeof (netmask6));
}
if (got_netmask &&
ioctl(s, SIOCSLIFNETMASK, (caddr_t)&lifr) < 0) {
zerror(zlogp, B_TRUE, "%s: could not set netmask",
lifr.lifr_name);
goto bad;
}
/* Set the interface address */
lifr.lifr_addr = laddr;
if (ioctl(s, SIOCSLIFADDR, (caddr_t)&lifr) < 0) {
zerror(zlogp, B_TRUE,
"%s: could not set IP address to %s",
lifr.lifr_name, nwiftabptr->zone_nwif_address);
goto bad;
}
if (ioctl(s, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
zerror(zlogp, B_TRUE, "%s: could not get flags",
lifr.lifr_name);
goto bad;
}
lifr.lifr_flags |= IFF_UP;
if (ioctl(s, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
int save_errno = errno;
char *zone_using;
/*
* If we failed with something other than EADDRNOTAVAIL,
* then skip to the end. Otherwise, look up our address,
* then call a function to determine which zone is already
* using that address.
*/
if (errno != EADDRNOTAVAIL) {
zerror(zlogp, B_TRUE,
"%s: could not bring network interface up",
lifr.lifr_name);
goto bad;
}
if (ioctl(s, SIOCGLIFADDR, (caddr_t)&lifr) < 0) {
zerror(zlogp, B_TRUE, "%s: could not get address",
lifr.lifr_name);
goto bad;
}
zone_using = who_is_using(zlogp, &lifr);
errno = save_errno;
if (zone_using == NULL)
zerror(zlogp, B_TRUE,
"%s: could not bring network interface up",
lifr.lifr_name);
else
zerror(zlogp, B_TRUE, "%s: could not bring network "
"interface up: address in use by zone '%s'",
lifr.lifr_name, zone_using);
goto bad;
}
if (!got_netmask && !is_loopback) {
/*
* A common, but often non-fatal problem, is that the system
* cannot find the netmask for an interface address. This is
* often caused by it being only in /etc/inet/netmasks, but
* /etc/nsswitch.conf says to use NIS or NIS+ and it's not
* in that. This doesn't show up at boot because the netmask
* is obtained from /etc/inet/netmasks when no network
* interfaces are up, but isn't consulted when NIS/NIS+ is
* available. We warn the user here that something like this
* has happened and we're just running with a default and
* possible incorrect netmask.
*/
char buffer[INET6_ADDRSTRLEN];
void *addr;
const char *nomatch = "no matching subnet found in netmasks(4)";
if (af == AF_INET)
addr = &((struct sockaddr_in *)
(&lifr.lifr_addr))->sin_addr;
else
addr = &((struct sockaddr_in6 *)
(&lifr.lifr_addr))->sin6_addr;
/*
* Find out what netmask the interface is going to be using.
* If we just brought up an IPMP data address on an underlying
* interface above, the address will have already migrated, so
* the SIOCGLIFNETMASK won't be able to find it (but we need
* to bring the address up to get the actual netmask). Just
* omit printing the actual netmask in this corner-case.
*/
if (ioctl(s, SIOCGLIFNETMASK, (caddr_t)&lifr) < 0 ||
inet_ntop(af, addr, buffer, sizeof (buffer)) == NULL) {
zerror(zlogp, B_FALSE, "WARNING: %s; using default.",
nomatch);
} else {
zerror(zlogp, B_FALSE,
"WARNING: %s: %s: %s; using default of %s.",
lifr.lifr_name, nomatch, addrstr4, buffer);
}
}
/*
* If a default router was specified for this interface
* set the route now. Ignore if already set.
*/
if (strlen(nwiftabptr->zone_nwif_defrouter) > 0) {
int status;
char *argv[7];
argv[0] = "route";
argv[1] = "add";
argv[2] = "-ifp";
argv[3] = nwiftabptr->zone_nwif_physical;
argv[4] = "default";
argv[5] = nwiftabptr->zone_nwif_defrouter;
argv[6] = NULL;
status = forkexec(zlogp, "/usr/sbin/route", argv);
if (status != 0 && status != EEXIST)
zerror(zlogp, B_FALSE, "Unable to set route for "
"interface %s to %s\n",
nwiftabptr->zone_nwif_physical,
nwiftabptr->zone_nwif_defrouter);
}
(void) close(s);
return (Z_OK);
bad:
(void) ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifr);
(void) close(s);
return (-1);
}
/*
* Sets up network interfaces based on information from the zone configuration.
* IPv4 and IPv6 loopback interfaces are set up "for free", modeling the global
* system.
*
* If anything goes wrong, we log a general error message, attempt to tear down
* whatever we set up, and return an error.
*/
static int
configure_shared_network_interfaces(zlog_t *zlogp)
{
zone_dochandle_t handle;
struct zone_nwiftab nwiftab, loopback_iftab;
zoneid_t zoneid;
if ((zoneid = getzoneidbyname(zone_name)) == ZONE_ID_UNDEFINED) {
zerror(zlogp, B_TRUE, "unable to get zoneid");
return (-1);
}
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (zonecfg_setnwifent(handle) == Z_OK) {
for (;;) {
if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK)
break;
if (configure_one_interface(zlogp, zoneid, &nwiftab) !=
Z_OK) {
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
return (-1);
}
}
(void) zonecfg_endnwifent(handle);
}
zonecfg_fini_handle(handle);
if (is_system_labeled()) {
/*
* Labeled zones share the loopback interface
* so it is not plumbed for shared stack instances.
*/
return (0);
}
(void) strlcpy(loopback_iftab.zone_nwif_physical, "lo0",
sizeof (loopback_iftab.zone_nwif_physical));
(void) strlcpy(loopback_iftab.zone_nwif_address, "127.0.0.1",
sizeof (loopback_iftab.zone_nwif_address));
loopback_iftab.zone_nwif_defrouter[0] = '\0';
if (configure_one_interface(zlogp, zoneid, &loopback_iftab) != Z_OK)
return (-1);
/* Always plumb up the IPv6 loopback interface. */
(void) strlcpy(loopback_iftab.zone_nwif_address, "::1/128",
sizeof (loopback_iftab.zone_nwif_address));
if (configure_one_interface(zlogp, zoneid, &loopback_iftab) != Z_OK)
return (-1);
return (0);
}
static void
zdlerror(zlog_t *zlogp, dladm_status_t err, const char *dlname, const char *str)
{
char errmsg[DLADM_STRSIZE];
(void) dladm_status2str(err, errmsg);
zerror(zlogp, B_FALSE, "%s '%s': %s", str, dlname, errmsg);
}
static int
add_datalink(zlog_t *zlogp, char *zone_name, datalink_id_t linkid, char *dlname)
{
dladm_status_t err;
boolean_t cpuset, poolset;
char *poolp;
/* First check if it's in use by global zone. */
if (zonecfg_ifname_exists(AF_INET, dlname) ||
zonecfg_ifname_exists(AF_INET6, dlname)) {
zerror(zlogp, B_FALSE, "WARNING: skipping network interface "
"'%s' which is used in the global zone", dlname);
return (-1);
}
/* Set zoneid of this link. */
err = dladm_set_linkprop(dld_handle, linkid, "zone", &zone_name, 1,
DLADM_OPT_ACTIVE);
if (err != DLADM_STATUS_OK) {
zdlerror(zlogp, err, dlname,
"WARNING: unable to add network interface");
return (-1);
}
/*
* Set the pool of this link if the zone has a pool and
* neither the cpus nor the pool datalink property is
* already set.
*/
err = dladm_linkprop_is_set(dld_handle, linkid, DLADM_PROP_VAL_CURRENT,
"cpus", &cpuset);
if (err != DLADM_STATUS_OK) {
zdlerror(zlogp, err, dlname,
"WARNING: unable to check if cpus link property is set");
}
err = dladm_linkprop_is_set(dld_handle, linkid, DLADM_PROP_VAL_CURRENT,
"pool", &poolset);
if (err != DLADM_STATUS_OK) {
zdlerror(zlogp, err, dlname,
"WARNING: unable to check if pool link property is set");
}
if ((strlen(pool_name) != 0) && !cpuset && !poolset) {
poolp = pool_name;
err = dladm_set_linkprop(dld_handle, linkid, "pool",
&poolp, 1, DLADM_OPT_ACTIVE);
if (err != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE, "WARNING: unable to set "
"pool %s to datalink %s", pool_name, dlname);
bzero(pool_name, sizeof (pool_name));
}
} else {
bzero(pool_name, sizeof (pool_name));
}
return (0);
}
static boolean_t
sockaddr_to_str(sa_family_t af, const struct sockaddr *sockaddr,
char *straddr, size_t len)
{
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
const char *str = NULL;
if (af == AF_INET) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
sin = SIN(sockaddr);
str = inet_ntop(AF_INET, (void *)&sin->sin_addr, straddr, len);
} else if (af == AF_INET6) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
sin6 = SIN6(sockaddr);
str = inet_ntop(AF_INET6, (void *)&sin6->sin6_addr, straddr,
len);
}
return (str != NULL);
}
static int
ipv4_prefixlen(struct sockaddr_in *sin)
{
struct sockaddr_in *m;
struct sockaddr_storage mask;
m = SIN(&mask);
m->sin_family = AF_INET;
if (getnetmaskbyaddr(sin->sin_addr, &m->sin_addr) == 0) {
return (mask2plen((struct sockaddr *)&mask));
} else if (IN_CLASSA(htonl(sin->sin_addr.s_addr))) {
return (8);
} else if (IN_CLASSB(ntohl(sin->sin_addr.s_addr))) {
return (16);
} else if (IN_CLASSC(ntohl(sin->sin_addr.s_addr))) {
return (24);
}
return (0);
}
static int
zone_setattr_network(int type, zoneid_t zoneid, datalink_id_t linkid,
void *buf, size_t bufsize)
{
zone_net_data_t *zndata;
size_t znsize;
int err;
znsize = sizeof (*zndata) + bufsize;
zndata = calloc(1, znsize);
if (zndata == NULL)
return (ENOMEM);
zndata->zn_type = type;
zndata->zn_len = bufsize;
zndata->zn_linkid = linkid;
bcopy(buf, zndata->zn_val, zndata->zn_len);
err = zone_setattr(zoneid, ZONE_ATTR_NETWORK, zndata, znsize);
free(zndata);
return (err);
}
static int
add_net_for_linkid(zlog_t *zlogp, zoneid_t zoneid, zone_addr_list_t *start)
{
struct lifreq lifr;
char **astr, *address;
dladm_status_t dlstatus;
char *ip_nospoof = "ip-nospoof";
int nnet, naddr, err = 0, j;
size_t zlen, cpleft;
zone_addr_list_t *ptr, *end;
char tmp[INET6_ADDRSTRLEN], *maskstr;
char *zaddr, *cp;
struct in6_addr *routes = NULL;
boolean_t is_set;
datalink_id_t linkid;
assert(start != NULL);
naddr = 0; /* number of addresses */
nnet = 0; /* number of net resources */
linkid = start->za_linkid;
for (ptr = start; ptr != NULL && ptr->za_linkid == linkid;
ptr = ptr->za_next) {
nnet++;
}
end = ptr;
zlen = nnet * (INET6_ADDRSTRLEN + 1);
astr = calloc(1, nnet * sizeof (uintptr_t));
zaddr = calloc(1, zlen);
if (astr == NULL || zaddr == NULL) {
err = ENOMEM;
goto done;
}
cp = zaddr;
cpleft = zlen;
j = 0;
for (ptr = start; ptr != end; ptr = ptr->za_next) {
address = ptr->za_nwiftab.zone_nwif_allowed_address;
if (address[0] == '\0')
continue;
(void) snprintf(tmp, sizeof (tmp), "%s", address);
/*
* Validate the data. zonecfg_valid_net_address() clobbers
* the /<mask> in the address string.
*/
if (zonecfg_valid_net_address(address, &lifr) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid address [%s]\n",
address);
err = EINVAL;
goto done;
}
/*
* convert any hostnames to numeric address strings.
*/
if (!sockaddr_to_str(lifr.lifr_addr.ss_family,
(const struct sockaddr *)&lifr.lifr_addr, cp, cpleft)) {
err = EINVAL;
goto done;
}
/*
* make a copy of the numeric string for the data needed
* by the "allowed-ips" datalink property.
*/
astr[j] = strdup(cp);
if (astr[j] == NULL) {
err = ENOMEM;
goto done;
}
j++;
/*
* compute the default netmask from the address, if necessary
*/
if ((maskstr = strchr(tmp, '/')) == NULL) {
int prefixlen;
if (lifr.lifr_addr.ss_family == AF_INET) {
prefixlen = ipv4_prefixlen(
SIN(&lifr.lifr_addr));
} else {
struct sockaddr_in6 *sin6;
sin6 = SIN6(&lifr.lifr_addr);
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr))
prefixlen = 10;
else
prefixlen = 64;
}
(void) snprintf(tmp, sizeof (tmp), "%d", prefixlen);
maskstr = tmp;
} else {
maskstr++;
}
/* append the "/<netmask>" */
(void) strlcat(cp, "/", cpleft);
(void) strlcat(cp, maskstr, cpleft);
(void) strlcat(cp, ",", cpleft);
cp += strnlen(cp, zlen);
cpleft = &zaddr[INET6_ADDRSTRLEN] - cp;
}
naddr = j; /* the actual number of addresses in the net resource */
assert(naddr <= nnet);
/*
* zonecfg has already verified that the defrouter property can only
* be set if there is at least one address defined for the net resource.
* If j is 0, there are no addresses defined, and therefore no routers
* to configure, and we are done at that point.
*/
if (j == 0)
goto done;
/* over-write last ',' with '\0' */
zaddr[strnlen(zaddr, zlen) + 1] = '\0';
/*
* First make sure L3 protection is not already set on the link.
*/
dlstatus = dladm_linkprop_is_set(dld_handle, linkid, DLADM_OPT_ACTIVE,
"protection", &is_set);
if (dlstatus != DLADM_STATUS_OK) {
err = EINVAL;
zerror(zlogp, B_FALSE, "unable to check if protection is set");
goto done;
}
if (is_set) {
err = EINVAL;
zerror(zlogp, B_FALSE, "Protection is already set");
goto done;
}
dlstatus = dladm_linkprop_is_set(dld_handle, linkid, DLADM_OPT_ACTIVE,
"allowed-ips", &is_set);
if (dlstatus != DLADM_STATUS_OK) {
err = EINVAL;
zerror(zlogp, B_FALSE, "unable to check if allowed-ips is set");
goto done;
}
if (is_set) {
zerror(zlogp, B_FALSE, "allowed-ips is already set");
err = EINVAL;
goto done;
}
/*
* Enable ip-nospoof for the link, and add address to the allowed-ips
* list.
*/
dlstatus = dladm_set_linkprop(dld_handle, linkid, "protection",
&ip_nospoof, 1, DLADM_OPT_ACTIVE);
if (dlstatus != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE, "could not set protection\n");
err = EINVAL;
goto done;
}
dlstatus = dladm_set_linkprop(dld_handle, linkid, "allowed-ips",
astr, naddr, DLADM_OPT_ACTIVE);
if (dlstatus != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE, "could not set allowed-ips\n");
err = EINVAL;
goto done;
}
/* now set the address in the data-store */
err = zone_setattr_network(ZONE_NETWORK_ADDRESS, zoneid, linkid,
zaddr, strnlen(zaddr, zlen) + 1);
if (err != 0)
goto done;
/*
* add the defaultrouters
*/
routes = calloc(1, nnet * sizeof (*routes));
j = 0;
for (ptr = start; ptr != end; ptr = ptr->za_next) {
address = ptr->za_nwiftab.zone_nwif_defrouter;
if (address[0] == '\0')
continue;
if (strchr(address, '/') == NULL && strchr(address, ':') != 0) {
/*
* zonecfg_valid_net_address() expects numeric IPv6
* addresses to have a CIDR format netmask.
*/
(void) snprintf(tmp, sizeof (tmp), "/%d", V6_ADDR_LEN);
(void) strlcat(address, tmp, INET6_ADDRSTRLEN);
}
if (zonecfg_valid_net_address(address, &lifr) != Z_OK) {
zerror(zlogp, B_FALSE,
"invalid router [%s]\n", address);
err = EINVAL;
goto done;
}
if (lifr.lifr_addr.ss_family == AF_INET6) {
routes[j] = SIN6(&lifr.lifr_addr)->sin6_addr;
} else {
IN6_INADDR_TO_V4MAPPED(&SIN(&lifr.lifr_addr)->sin_addr,
&routes[j]);
}
j++;
}
assert(j <= nnet);
if (j > 0) {
err = zone_setattr_network(ZONE_NETWORK_DEFROUTER, zoneid,
linkid, routes, j * sizeof (*routes));
}
done:
free(routes);
for (j = 0; j < naddr; j++)
free(astr[j]);
free(astr);
free(zaddr);
return (err);
}
static int
add_net(zlog_t *zlogp, zoneid_t zoneid, zone_addr_list_t *zalist)
{
zone_addr_list_t *ptr;
datalink_id_t linkid;
int err;
if (zalist == NULL)
return (0);
linkid = zalist->za_linkid;
err = add_net_for_linkid(zlogp, zoneid, zalist);
if (err != 0)
return (err);
for (ptr = zalist; ptr != NULL; ptr = ptr->za_next) {
if (ptr->za_linkid == linkid)
continue;
linkid = ptr->za_linkid;
err = add_net_for_linkid(zlogp, zoneid, ptr);
if (err != 0)
return (err);
}
return (0);
}
/*
* Add "new" to the list of network interfaces to be configured by
* add_net on zone boot in "old". The list of interfaces in "old" is
* sorted by datalink_id_t, with interfaces sorted FIFO for a given
* datalink_id_t.
*
* Returns the merged list of IP interfaces containing "old" and "new"
*/
static zone_addr_list_t *
add_ip_interface(zone_addr_list_t *old, zone_addr_list_t *new)
{
zone_addr_list_t *ptr, *next;
datalink_id_t linkid = new->za_linkid;
assert(old != new);
if (old == NULL)
return (new);
for (ptr = old; ptr != NULL; ptr = ptr->za_next) {
if (ptr->za_linkid == linkid)
break;
}
if (ptr == NULL) {
/* linkid does not already exist, add to the beginning */
new->za_next = old;
return (new);
}
/*
* adding to the middle of the list; ptr points at the first
* occurrence of linkid. Find the last occurrence.
*/
while ((next = ptr->za_next) != NULL) {
if (next->za_linkid != linkid)
break;
ptr = next;
}
/* insert new after ptr */
new->za_next = next;
ptr->za_next = new;
return (old);
}
void
free_ip_interface(zone_addr_list_t *zalist)
{
zone_addr_list_t *ptr, *new;
for (ptr = zalist; ptr != NULL; ) {
new = ptr;
ptr = ptr->za_next;
free(new);
}
}
/*
* Add the kernel access control information for the interface names.
* If anything goes wrong, we log a general error message, attempt to tear down
* whatever we set up, and return an error.
*/
static int
configure_exclusive_network_interfaces(zlog_t *zlogp, zoneid_t zoneid)
{
zone_dochandle_t handle;
struct zone_nwiftab nwiftab;
char rootpath[MAXPATHLEN];
char path[MAXPATHLEN];
datalink_id_t linkid;
di_prof_t prof = NULL;
boolean_t added = B_FALSE;
zone_addr_list_t *zalist = NULL, *new;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (zonecfg_setnwifent(handle) != Z_OK) {
zonecfg_fini_handle(handle);
return (0);
}
for (;;) {
if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK)
break;
if (prof == NULL) {
if (zone_get_devroot(zone_name, rootpath,
sizeof (rootpath)) != Z_OK) {
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
zerror(zlogp, B_TRUE,
"unable to determine dev root");
return (-1);
}
(void) snprintf(path, sizeof (path), "%s%s", rootpath,
"/dev");
if (di_prof_init(path, &prof) != 0) {
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
zerror(zlogp, B_TRUE,
"failed to initialize profile");
return (-1);
}
}
/*
* Create the /dev entry for backward compatibility.
* Only create the /dev entry if it's not in use.
* Note that the zone still boots when the assigned
* interface is inaccessible, used by others, etc.
* Also, when vanity naming is used, some interface do
* do not have corresponding /dev node names (for example,
* vanity named aggregations). The /dev entry is not
* created in that case. The /dev/net entry is always
* accessible.
*/
if (dladm_name2info(dld_handle, nwiftab.zone_nwif_physical,
&linkid, NULL, NULL, NULL) == DLADM_STATUS_OK &&
add_datalink(zlogp, zone_name, linkid,
nwiftab.zone_nwif_physical) == 0) {
added = B_TRUE;
} else {
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
zerror(zlogp, B_TRUE, "failed to add network device");
return (-1);
}
/* set up the new IP interface, and add them all later */
new = malloc(sizeof (*new));
if (new == NULL) {
zerror(zlogp, B_TRUE, "no memory for %s",
nwiftab.zone_nwif_physical);
zonecfg_fini_handle(handle);
free_ip_interface(zalist);
}
bzero(new, sizeof (*new));
new->za_nwiftab = nwiftab;
new->za_linkid = linkid;
zalist = add_ip_interface(zalist, new);
}
if (zalist != NULL) {
if ((errno = add_net(zlogp, zoneid, zalist)) != 0) {
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
zerror(zlogp, B_TRUE, "failed to add address");
free_ip_interface(zalist);
return (-1);
}
free_ip_interface(zalist);
}
(void) zonecfg_endnwifent(handle);
zonecfg_fini_handle(handle);
if (prof != NULL && added) {
if (di_prof_commit(prof) != 0) {
zerror(zlogp, B_TRUE, "failed to commit profile");
return (-1);
}
}
if (prof != NULL)
di_prof_fini(prof);
return (0);
}
static int
remove_datalink_pool(zlog_t *zlogp, zoneid_t zoneid)
{
ushort_t flags;
zone_iptype_t iptype;
int i, dlnum = 0;
datalink_id_t *dllink, *dllinks = NULL;
dladm_status_t err;
if (strlen(pool_name) == 0)
return (0);
if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &flags,
sizeof (flags)) < 0) {
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_FALSE, "unable to determine ip-type");
return (-1);
}
} else {
if (flags & ZF_NET_EXCL)
iptype = ZS_EXCLUSIVE;
else
iptype = ZS_SHARED;
}
if (iptype == ZS_EXCLUSIVE) {
/*
* Get the datalink count and for each datalink,
* attempt to clear the pool property and clear
* the pool_name.
*/
if (zone_list_datalink(zoneid, &dlnum, NULL) != 0) {
zerror(zlogp, B_TRUE, "unable to count network "
"interfaces");
return (-1);
}
if (dlnum == 0)
return (0);
if ((dllinks = malloc(dlnum * sizeof (datalink_id_t)))
== NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (-1);
}
if (zone_list_datalink(zoneid, &dlnum, dllinks) != 0) {
zerror(zlogp, B_TRUE, "unable to list network "
"interfaces");
return (-1);
}
bzero(pool_name, sizeof (pool_name));
for (i = 0, dllink = dllinks; i < dlnum; i++, dllink++) {
err = dladm_set_linkprop(dld_handle, *dllink, "pool",
NULL, 0, DLADM_OPT_ACTIVE);
if (err != DLADM_STATUS_OK) {
zerror(zlogp, B_TRUE,
"WARNING: unable to clear pool");
}
}
free(dllinks);
}
return (0);
}
static int
remove_datalink_protect(zlog_t *zlogp, zoneid_t zoneid)
{
ushort_t flags;
zone_iptype_t iptype;
int i, dlnum = 0;
dladm_status_t dlstatus;
datalink_id_t *dllink, *dllinks = NULL;
if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &flags,
sizeof (flags)) < 0) {
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_FALSE, "unable to determine ip-type");
return (-1);
}
} else {
if (flags & ZF_NET_EXCL)
iptype = ZS_EXCLUSIVE;
else
iptype = ZS_SHARED;
}
if (iptype != ZS_EXCLUSIVE)
return (0);
/*
* Get the datalink count and for each datalink,
* attempt to clear the pool property and clear
* the pool_name.
*/
if (zone_list_datalink(zoneid, &dlnum, NULL) != 0) {
zerror(zlogp, B_TRUE, "unable to count network interfaces");
return (-1);
}
if (dlnum == 0)
return (0);
if ((dllinks = malloc(dlnum * sizeof (datalink_id_t))) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (-1);
}
if (zone_list_datalink(zoneid, &dlnum, dllinks) != 0) {
zerror(zlogp, B_TRUE, "unable to list network interfaces");
free(dllinks);
return (-1);
}
for (i = 0, dllink = dllinks; i < dlnum; i++, dllink++) {
char dlerr[DLADM_STRSIZE];
dlstatus = dladm_set_linkprop(dld_handle, *dllink,
"protection", NULL, 0, DLADM_OPT_ACTIVE);
if (dlstatus == DLADM_STATUS_NOTFOUND) {
/* datalink does not belong to the GZ */
continue;
}
if (dlstatus != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE,
dladm_status2str(dlstatus, dlerr));
free(dllinks);
return (-1);
}
dlstatus = dladm_set_linkprop(dld_handle, *dllink,
"allowed-ips", NULL, 0, DLADM_OPT_ACTIVE);
if (dlstatus != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE,
dladm_status2str(dlstatus, dlerr));
free(dllinks);
return (-1);
}
}
free(dllinks);
return (0);
}
static int
unconfigure_exclusive_network_interfaces(zlog_t *zlogp, zoneid_t zoneid)
{
int dlnum = 0;
/*
* The kernel shutdown callback for the dls module should have removed
* all datalinks from this zone. If any remain, then there's a
* problem.
*/
if (zone_list_datalink(zoneid, &dlnum, NULL) != 0) {
zerror(zlogp, B_TRUE, "unable to list network interfaces");
return (-1);
}
if (dlnum != 0) {
zerror(zlogp, B_FALSE,
"datalinks remain in zone after shutdown");
return (-1);
}
return (0);
}
static int
tcp_abort_conn(zlog_t *zlogp, zoneid_t zoneid,
const struct sockaddr_storage *local, const struct sockaddr_storage *remote)
{
int fd;
struct strioctl ioc;
tcp_ioc_abort_conn_t conn;
int error;
conn.ac_local = *local;
conn.ac_remote = *remote;
conn.ac_start = TCPS_SYN_SENT;
conn.ac_end = TCPS_TIME_WAIT;
conn.ac_zoneid = zoneid;
ioc.ic_cmd = TCP_IOC_ABORT_CONN;
ioc.ic_timout = -1; /* infinite timeout */
ioc.ic_len = sizeof (conn);
ioc.ic_dp = (char *)&conn;
if ((fd = open("/dev/tcp", O_RDONLY)) < 0) {
zerror(zlogp, B_TRUE, "unable to open %s", "/dev/tcp");
return (-1);
}
error = ioctl(fd, I_STR, &ioc);
(void) close(fd);
if (error == 0 || errno == ENOENT) /* ENOENT is not an error */
return (0);
return (-1);
}
static int
tcp_abort_connections(zlog_t *zlogp, zoneid_t zoneid)
{
struct sockaddr_storage l, r;
struct sockaddr_in *local, *remote;
struct sockaddr_in6 *local6, *remote6;
int error;
/*
* Abort IPv4 connections.
*/
bzero(&l, sizeof (*local));
local = (struct sockaddr_in *)&l;
local->sin_family = AF_INET;
local->sin_addr.s_addr = INADDR_ANY;
local->sin_port = 0;
bzero(&r, sizeof (*remote));
remote = (struct sockaddr_in *)&r;
remote->sin_family = AF_INET;
remote->sin_addr.s_addr = INADDR_ANY;
remote->sin_port = 0;
if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0)
return (error);
/*
* Abort IPv6 connections.
*/
bzero(&l, sizeof (*local6));
local6 = (struct sockaddr_in6 *)&l;
local6->sin6_family = AF_INET6;
local6->sin6_port = 0;
local6->sin6_addr = in6addr_any;
bzero(&r, sizeof (*remote6));
remote6 = (struct sockaddr_in6 *)&r;
remote6->sin6_family = AF_INET6;
remote6->sin6_port = 0;
remote6->sin6_addr = in6addr_any;
if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0)
return (error);
return (0);
}
static int
get_privset(zlog_t *zlogp, priv_set_t *privs, zone_mnt_t mount_cmd)
{
int error = -1;
zone_dochandle_t handle;
char *privname = NULL;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (ALT_MOUNT(mount_cmd)) {
zone_iptype_t iptype;
const char *curr_iptype;
if (zonecfg_get_iptype(handle, &iptype) != Z_OK) {
zerror(zlogp, B_TRUE, "unable to determine ip-type");
zonecfg_fini_handle(handle);
return (-1);
}
switch (iptype) {
case ZS_SHARED:
curr_iptype = "shared";
break;
case ZS_EXCLUSIVE:
curr_iptype = "exclusive";
break;
}
if (zonecfg_default_privset(privs, curr_iptype) == Z_OK) {
zonecfg_fini_handle(handle);
return (0);
}
zerror(zlogp, B_FALSE,
"failed to determine the zone's default privilege set");
zonecfg_fini_handle(handle);
return (-1);
}
switch (zonecfg_get_privset(handle, privs, &privname)) {
case Z_OK:
error = 0;
break;
case Z_PRIV_PROHIBITED:
zerror(zlogp, B_FALSE, "privilege \"%s\" is not permitted "
"within the zone's privilege set", privname);
break;
case Z_PRIV_REQUIRED:
zerror(zlogp, B_FALSE, "required privilege \"%s\" is missing "
"from the zone's privilege set", privname);
break;
case Z_PRIV_UNKNOWN:
zerror(zlogp, B_FALSE, "unknown privilege \"%s\" specified "
"in the zone's privilege set", privname);
break;
default:
zerror(zlogp, B_FALSE, "failed to determine the zone's "
"privilege set");
break;
}
free(privname);
zonecfg_fini_handle(handle);
return (error);
}
static int
get_rctls(zlog_t *zlogp, char **bufp, size_t *bufsizep)
{
nvlist_t *nvl = NULL;
char *nvl_packed = NULL;
size_t nvl_size = 0;
nvlist_t **nvlv = NULL;
int rctlcount = 0;
int error = -1;
zone_dochandle_t handle;
struct zone_rctltab rctltab;
rctlblk_t *rctlblk = NULL;
uint64_t maxlwps;
uint64_t maxprocs;
*bufp = NULL;
*bufsizep = 0;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
rctltab.zone_rctl_valptr = NULL;
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
zerror(zlogp, B_TRUE, "%s failed", "nvlist_alloc");
goto out;
}
/*
* Allow the administrator to control both the maximum number of
* process table slots and the maximum number of lwps with just the
* max-processes property. If only the max-processes property is set,
* we add a max-lwps property with a limit derived from max-processes.
*/
if (zonecfg_get_aliased_rctl(handle, ALIAS_MAXPROCS, &maxprocs)
== Z_OK &&
zonecfg_get_aliased_rctl(handle, ALIAS_MAXLWPS, &maxlwps)
== Z_NO_ENTRY) {
if (zonecfg_set_aliased_rctl(handle, ALIAS_MAXLWPS,
maxprocs * LWPS_PER_PROCESS) != Z_OK) {
zerror(zlogp, B_FALSE, "unable to set max-lwps alias");
goto out;
}
}
if (zonecfg_setrctlent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setrctlent");
goto out;
}
if ((rctlblk = malloc(rctlblk_size())) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
goto out;
}
while (zonecfg_getrctlent(handle, &rctltab) == Z_OK) {
struct zone_rctlvaltab *rctlval;
uint_t i, count;
const char *name = rctltab.zone_rctl_name;
/* zoneadm should have already warned about unknown rctls. */
if (!zonecfg_is_rctl(name)) {
zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr);
rctltab.zone_rctl_valptr = NULL;
continue;
}
count = 0;
for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL;
rctlval = rctlval->zone_rctlval_next) {
count++;
}
if (count == 0) { /* ignore */
continue; /* Nothing to free */
}
if ((nvlv = malloc(sizeof (*nvlv) * count)) == NULL)
goto out;
i = 0;
for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL;
rctlval = rctlval->zone_rctlval_next, i++) {
if (nvlist_alloc(&nvlv[i], NV_UNIQUE_NAME, 0) != 0) {
zerror(zlogp, B_TRUE, "%s failed",
"nvlist_alloc");
goto out;
}
if (zonecfg_construct_rctlblk(rctlval, rctlblk)
!= Z_OK) {
zerror(zlogp, B_FALSE, "invalid rctl value: "
"(priv=%s,limit=%s,action=%s)",
rctlval->zone_rctlval_priv,
rctlval->zone_rctlval_limit,
rctlval->zone_rctlval_action);
goto out;
}
if (!zonecfg_valid_rctl(name, rctlblk)) {
zerror(zlogp, B_FALSE,
"(priv=%s,limit=%s,action=%s) is not a "
"valid value for rctl '%s'",
rctlval->zone_rctlval_priv,
rctlval->zone_rctlval_limit,
rctlval->zone_rctlval_action,
name);
goto out;
}
if (nvlist_add_uint64(nvlv[i], "privilege",
rctlblk_get_privilege(rctlblk)) != 0) {
zerror(zlogp, B_FALSE, "%s failed",
"nvlist_add_uint64");
goto out;
}
if (nvlist_add_uint64(nvlv[i], "limit",
rctlblk_get_value(rctlblk)) != 0) {
zerror(zlogp, B_FALSE, "%s failed",
"nvlist_add_uint64");
goto out;
}
if (nvlist_add_uint64(nvlv[i], "action",
(uint_t)rctlblk_get_local_action(rctlblk, NULL))
!= 0) {
zerror(zlogp, B_FALSE, "%s failed",
"nvlist_add_uint64");
goto out;
}
}
zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr);
rctltab.zone_rctl_valptr = NULL;
if (nvlist_add_nvlist_array(nvl, (char *)name, nvlv, count)
!= 0) {
zerror(zlogp, B_FALSE, "%s failed",
"nvlist_add_nvlist_array");
goto out;
}
for (i = 0; i < count; i++)
nvlist_free(nvlv[i]);
free(nvlv);
nvlv = NULL;
rctlcount++;
}
(void) zonecfg_endrctlent(handle);
if (rctlcount == 0) {
error = 0;
goto out;
}
if (nvlist_pack(nvl, &nvl_packed, &nvl_size, NV_ENCODE_NATIVE, 0)
!= 0) {
zerror(zlogp, B_FALSE, "%s failed", "nvlist_pack");
goto out;
}
error = 0;
*bufp = nvl_packed;
*bufsizep = nvl_size;
out:
free(rctlblk);
zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr);
if (error && nvl_packed != NULL)
free(nvl_packed);
nvlist_free(nvl);
if (nvlv != NULL)
free(nvlv);
if (handle != NULL)
zonecfg_fini_handle(handle);
return (error);
}
static int
get_implicit_datasets(zlog_t *zlogp, char **retstr)
{
char cmdbuf[2 * MAXPATHLEN];
if (query_hook[0] == '\0')
return (0);
if (snprintf(cmdbuf, sizeof (cmdbuf), "%s datasets", query_hook)
> sizeof (cmdbuf))
return (-1);
if (do_subproc(zlogp, cmdbuf, retstr) != 0)
return (-1);
return (0);
}
static int
get_datasets(zlog_t *zlogp, char **bufp, size_t *bufsizep)
{
zone_dochandle_t handle;
struct zone_dstab dstab;
size_t total, offset, len;
int error = -1;
char *str = NULL;
char *implicit_datasets = NULL;
int implicit_len = 0;
*bufp = NULL;
*bufsizep = 0;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (get_implicit_datasets(zlogp, &implicit_datasets) != 0) {
zerror(zlogp, B_FALSE, "getting implicit datasets failed");
goto out;
}
if (zonecfg_setdsent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setdsent");
goto out;
}
total = 0;
while (zonecfg_getdsent(handle, &dstab) == Z_OK)
total += strlen(dstab.zone_dataset_name) + 1;
(void) zonecfg_enddsent(handle);
if (implicit_datasets != NULL)
implicit_len = strlen(implicit_datasets);
if (implicit_len > 0)
total += implicit_len + 1;
if (total == 0) {
error = 0;
goto out;
}
if ((str = malloc(total)) == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
goto out;
}
if (zonecfg_setdsent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setdsent");
goto out;
}
offset = 0;
while (zonecfg_getdsent(handle, &dstab) == Z_OK) {
len = strlen(dstab.zone_dataset_name);
(void) strlcpy(str + offset, dstab.zone_dataset_name,
total - offset);
offset += len;
if (offset < total - 1)
str[offset++] = ',';
}
(void) zonecfg_enddsent(handle);
if (implicit_len > 0)
(void) strlcpy(str + offset, implicit_datasets, total - offset);
error = 0;
*bufp = str;
*bufsizep = total;
out:
if (error != 0 && str != NULL)
free(str);
if (handle != NULL)
zonecfg_fini_handle(handle);
if (implicit_datasets != NULL)
free(implicit_datasets);
return (error);
}
static int
validate_datasets(zlog_t *zlogp)
{
zone_dochandle_t handle;
struct zone_dstab dstab;
zfs_handle_t *zhp;
libzfs_handle_t *hdl;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (-1);
}
if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if (zonecfg_setdsent(handle) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (-1);
}
if ((hdl = libzfs_init()) == NULL) {
zerror(zlogp, B_FALSE, "opening ZFS library");
zonecfg_fini_handle(handle);
return (-1);
}
while (zonecfg_getdsent(handle, &dstab) == Z_OK) {
if ((zhp = zfs_open(hdl, dstab.zone_dataset_name,
ZFS_TYPE_FILESYSTEM)) == NULL) {
zerror(zlogp, B_FALSE, "cannot open ZFS dataset '%s'",
dstab.zone_dataset_name);
zonecfg_fini_handle(handle);
libzfs_fini(hdl);
return (-1);
}
/*
* Automatically set the 'zoned' property. We check the value
* first because we'll get EPERM if it is already set.
*/
if (!zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
zfs_prop_set(zhp, zfs_prop_to_name(ZFS_PROP_ZONED),
"on") != 0) {
zerror(zlogp, B_FALSE, "cannot set 'zoned' "
"property for ZFS dataset '%s'\n",
dstab.zone_dataset_name);
zonecfg_fini_handle(handle);
zfs_close(zhp);
libzfs_fini(hdl);
return (-1);
}
zfs_close(zhp);
}
(void) zonecfg_enddsent(handle);
zonecfg_fini_handle(handle);
libzfs_fini(hdl);
return (0);
}
/*
* Return true if the path is its own zfs file system. We determine this
* by stat-ing the path to see if it is zfs and stat-ing the parent to see
* if it is a different fs.
*/
boolean_t
is_zonepath_zfs(char *zonepath)
{
int res;
char *path;
char *parent;
struct statvfs64 buf1, buf2;
if (statvfs64(zonepath, &buf1) != 0)
return (B_FALSE);
if (strcmp(buf1.f_basetype, "zfs") != 0)
return (B_FALSE);
if ((path = strdup(zonepath)) == NULL)
return (B_FALSE);
parent = dirname(path);
res = statvfs64(parent, &buf2);
free(path);
if (res != 0)
return (B_FALSE);
if (buf1.f_fsid == buf2.f_fsid)
return (B_FALSE);
return (B_TRUE);
}
/*
* Verify the MAC label in the root dataset for the zone.
* If the label exists, it must match the label configured for the zone.
* Otherwise if there's no label on the dataset, create one here.
*/
static int
validate_rootds_label(zlog_t *zlogp, char *rootpath, m_label_t *zone_sl)
{
int error = -1;
zfs_handle_t *zhp;
libzfs_handle_t *hdl;
m_label_t ds_sl;
char zonepath[MAXPATHLEN];
char ds_hexsl[MAXNAMELEN];
if (!is_system_labeled())
return (0);
if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) {
zerror(zlogp, B_TRUE, "unable to determine zone path");
return (-1);
}
if (!is_zonepath_zfs(zonepath))
return (0);
if ((hdl = libzfs_init()) == NULL) {
zerror(zlogp, B_FALSE, "opening ZFS library");
return (-1);
}
if ((zhp = zfs_path_to_zhandle(hdl, rootpath,
ZFS_TYPE_FILESYSTEM)) == NULL) {
zerror(zlogp, B_FALSE, "cannot open ZFS dataset for path '%s'",
rootpath);
libzfs_fini(hdl);
return (-1);
}
/* Get the mlslabel property if it exists. */
if ((zfs_prop_get(zhp, ZFS_PROP_MLSLABEL, ds_hexsl, MAXNAMELEN,
NULL, NULL, 0, B_TRUE) != 0) ||
(strcmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)) {
char *str2 = NULL;
/*
* No label on the dataset (or default only); create one.
* (Only do this automatic labeling for the labeled brand.)
*/
if (strcmp(brand_name, LABELED_BRAND_NAME) != 0) {
error = 0;
goto out;
}
error = l_to_str_internal(zone_sl, &str2);
if (error)
goto out;
if (str2 == NULL) {
error = -1;
goto out;
}
if ((error = zfs_prop_set(zhp,
zfs_prop_to_name(ZFS_PROP_MLSLABEL), str2)) != 0) {
zerror(zlogp, B_FALSE, "cannot set 'mlslabel' "
"property for root dataset at '%s'\n", rootpath);
}
free(str2);
goto out;
}
/* Convert the retrieved dataset label to binary form. */
error = hexstr_to_label(ds_hexsl, &ds_sl);
if (error) {
zerror(zlogp, B_FALSE, "invalid 'mlslabel' "
"property on root dataset at '%s'\n", rootpath);
goto out; /* exit with error */
}
/*
* Perform a MAC check by comparing the zone label with the
* dataset label.
*/
error = (!blequal(zone_sl, &ds_sl));
if (error)
zerror(zlogp, B_FALSE, "Rootpath dataset has mismatched label");
out:
zfs_close(zhp);
libzfs_fini(hdl);
return (error);
}
/*
* Mount lower level home directories into/from current zone
* Share exported directories specified in dfstab for zone
*/
static int
tsol_mounts(zlog_t *zlogp, char *zone_name, char *rootpath)
{
zoneid_t *zids = NULL;
priv_set_t *zid_privs;
const priv_impl_info_t *ip = NULL;
uint_t nzents_saved;
uint_t nzents;
int i;
char readonly[] = "ro";
struct zone_fstab lower_fstab;
char *argv[4];
if (!is_system_labeled())
return (0);
if (zid_label == NULL) {
zid_label = m_label_alloc(MAC_LABEL);
if (zid_label == NULL)
return (-1);
}
/* Make sure our zone has an /export/home dir */
(void) make_one_dir(zlogp, rootpath, "/export/home",
DEFAULT_DIR_MODE, DEFAULT_DIR_USER, DEFAULT_DIR_GROUP);
lower_fstab.zone_fs_raw[0] = '\0';
(void) strlcpy(lower_fstab.zone_fs_type, MNTTYPE_LOFS,
sizeof (lower_fstab.zone_fs_type));
lower_fstab.zone_fs_options = NULL;
(void) zonecfg_add_fs_option(&lower_fstab, readonly);
/*
* Get the list of zones from the kernel
*/
if (zone_list(NULL, &nzents) != 0) {
zerror(zlogp, B_TRUE, "unable to list zones");
zonecfg_free_fs_option_list(lower_fstab.zone_fs_options);
return (-1);
}
again:
if (nzents == 0) {
zonecfg_free_fs_option_list(lower_fstab.zone_fs_options);
return (-1);
}
zids = malloc(nzents * sizeof (zoneid_t));
if (zids == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (-1);
}
nzents_saved = nzents;
if (zone_list(zids, &nzents) != 0) {
zerror(zlogp, B_TRUE, "unable to list zones");
zonecfg_free_fs_option_list(lower_fstab.zone_fs_options);
free(zids);
return (-1);
}
if (nzents != nzents_saved) {
/* list changed, try again */
free(zids);
goto again;
}
ip = getprivimplinfo();
if ((zid_privs = priv_allocset()) == NULL) {
zerror(zlogp, B_TRUE, "%s failed", "priv_allocset");
zonecfg_free_fs_option_list(
lower_fstab.zone_fs_options);
free(zids);
return (-1);
}
for (i = 0; i < nzents; i++) {
char zid_name[ZONENAME_MAX];
zone_state_t zid_state;
char zid_rpath[MAXPATHLEN];
struct stat stat_buf;
if (zids[i] == GLOBAL_ZONEID)
continue;
if (getzonenamebyid(zids[i], zid_name, ZONENAME_MAX) == -1)
continue;
/*
* Do special setup for the zone we are booting
*/
if (strcmp(zid_name, zone_name) == 0) {
struct zone_fstab autofs_fstab;
char map_path[MAXPATHLEN];
int fd;
/*
* Create auto_home_<zone> map for this zone
* in the global zone. The non-global zone entry
* will be created by automount when the zone
* is booted.
*/
(void) snprintf(autofs_fstab.zone_fs_special,
MAXPATHLEN, "auto_home_%s", zid_name);
(void) snprintf(autofs_fstab.zone_fs_dir, MAXPATHLEN,
"/zone/%s/home", zid_name);
(void) snprintf(map_path, sizeof (map_path),
"/etc/%s", autofs_fstab.zone_fs_special);
/*
* If the map file doesn't exist create a template
*/
if ((fd = open(map_path, O_RDWR | O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR | S_IRGRP| S_IROTH)) != -1) {
int len;
char map_rec[MAXPATHLEN];
len = snprintf(map_rec, sizeof (map_rec),
"+%s\n*\t-fstype=lofs\t:%s/export/home/&\n",
autofs_fstab.zone_fs_special, rootpath);
(void) write(fd, map_rec, len);
(void) close(fd);
}
/*
* Mount auto_home_<zone> in the global zone if absent.
* If it's already of type autofs, then
* don't mount it again.
*/
if ((stat(autofs_fstab.zone_fs_dir, &stat_buf) == -1) ||
strcmp(stat_buf.st_fstype, MNTTYPE_AUTOFS) != 0) {
char optstr[] = "indirect,ignore,nobrowse";
(void) make_one_dir(zlogp, "",
autofs_fstab.zone_fs_dir, DEFAULT_DIR_MODE,
DEFAULT_DIR_USER, DEFAULT_DIR_GROUP);
/*
* Mount will fail if automounter has already
* processed the auto_home_<zonename> map
*/
(void) domount(zlogp, MNTTYPE_AUTOFS, optstr,
autofs_fstab.zone_fs_special,
autofs_fstab.zone_fs_dir);
}
continue;
}
if (zone_get_state(zid_name, &zid_state) != Z_OK ||
(zid_state != ZONE_STATE_READY &&
zid_state != ZONE_STATE_RUNNING))
/* Skip over zones without mounted filesystems */
continue;
if (zone_getattr(zids[i], ZONE_ATTR_SLBL, zid_label,
sizeof (m_label_t)) < 0)
/* Skip over zones with unspecified label */
continue;
if (zone_getattr(zids[i], ZONE_ATTR_ROOT, zid_rpath,
sizeof (zid_rpath)) == -1)
/* Skip over zones with bad path */
continue;
if (zone_getattr(zids[i], ZONE_ATTR_PRIVSET, zid_privs,
sizeof (priv_chunk_t) * ip->priv_setsize) == -1)
/* Skip over zones with bad privs */
continue;
/*
* Reading down is valid according to our label model
* but some customers want to disable it because it
* allows execute down and other possible attacks.
* Therefore, we restrict this feature to zones that
* have the NET_MAC_AWARE privilege which is required
* for NFS read-down semantics.
*/
if ((bldominates(zlabel, zid_label)) &&
(priv_ismember(zprivs, PRIV_NET_MAC_AWARE))) {
/*
* Our zone dominates this one.
* Create a lofs mount from lower zone's /export/home
*/
(void) snprintf(lower_fstab.zone_fs_dir, MAXPATHLEN,
"%s/zone/%s/export/home", rootpath, zid_name);
/*
* If the target is already an LOFS mount
* then don't do it again.
*/
if ((stat(lower_fstab.zone_fs_dir, &stat_buf) == -1) ||
strcmp(stat_buf.st_fstype, MNTTYPE_LOFS) != 0) {
if (snprintf(lower_fstab.zone_fs_special,
MAXPATHLEN, "%s/export",
zid_rpath) > MAXPATHLEN)
continue;
/*
* Make sure the lower-level home exists
*/
if (make_one_dir(zlogp,
lower_fstab.zone_fs_special, "/home",
DEFAULT_DIR_MODE, DEFAULT_DIR_USER,
DEFAULT_DIR_GROUP) != 0)
continue;
(void) strlcat(lower_fstab.zone_fs_special,
"/home", MAXPATHLEN);
/*
* Mount can fail because the lower-level
* zone may have already done a mount up.
*/
(void) mount_one(zlogp, &lower_fstab, "",
Z_MNT_BOOT);
}
} else if ((bldominates(zid_label, zlabel)) &&
(priv_ismember(zid_privs, PRIV_NET_MAC_AWARE))) {
/*
* This zone dominates our zone.
* Create a lofs mount from our zone's /export/home
*/
if (snprintf(lower_fstab.zone_fs_dir, MAXPATHLEN,
"%s/zone/%s/export/home", zid_rpath,
zone_name) > MAXPATHLEN)
continue;
/*
* If the target is already an LOFS mount
* then don't do it again.
*/
if ((stat(lower_fstab.zone_fs_dir, &stat_buf) == -1) ||
strcmp(stat_buf.st_fstype, MNTTYPE_LOFS) != 0) {
(void) snprintf(lower_fstab.zone_fs_special,
MAXPATHLEN, "%s/export/home", rootpath);
/*
* Mount can fail because the higher-level
* zone may have already done a mount down.
*/
(void) mount_one(zlogp, &lower_fstab, "",
Z_MNT_BOOT);
}
}
}
zonecfg_free_fs_option_list(lower_fstab.zone_fs_options);
priv_freeset(zid_privs);
free(zids);
/*
* Now share any exported directories from this zone.
* Each zone can have its own dfstab.
*/
argv[0] = "zoneshare";
argv[1] = "-z";
argv[2] = zone_name;
argv[3] = NULL;
(void) forkexec(zlogp, "/usr/lib/zones/zoneshare", argv);
/* Don't check for errors since they don't affect the zone */
return (0);
}
/*
* Unmount lofs mounts from higher level zones
* Unshare nfs exported directories
*/
static void
tsol_unmounts(zlog_t *zlogp, char *zone_name)
{
zoneid_t *zids = NULL;
uint_t nzents_saved;
uint_t nzents;
int i;
char *argv[4];
char path[MAXPATHLEN];
if (!is_system_labeled())
return;
/*
* Get the list of zones from the kernel
*/
if (zone_list(NULL, &nzents) != 0) {
return;
}
if (zid_label == NULL) {
zid_label = m_label_alloc(MAC_LABEL);
if (zid_label == NULL)
return;
}
again:
if (nzents == 0)
return;
zids = malloc(nzents * sizeof (zoneid_t));
if (zids == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return;
}
nzents_saved = nzents;
if (zone_list(zids, &nzents) != 0) {
free(zids);
return;
}
if (nzents != nzents_saved) {
/* list changed, try again */
free(zids);
goto again;
}
for (i = 0; i < nzents; i++) {
char zid_name[ZONENAME_MAX];
zone_state_t zid_state;
char zid_rpath[MAXPATHLEN];
if (zids[i] == GLOBAL_ZONEID)
continue;
if (getzonenamebyid(zids[i], zid_name, ZONENAME_MAX) == -1)
continue;
/*
* Skip the zone we are halting
*/
if (strcmp(zid_name, zone_name) == 0)
continue;
if ((zone_getattr(zids[i], ZONE_ATTR_STATUS, &zid_state,
sizeof (zid_state)) < 0) ||
(zid_state < ZONE_IS_READY))
/* Skip over zones without mounted filesystems */
continue;
if (zone_getattr(zids[i], ZONE_ATTR_SLBL, zid_label,
sizeof (m_label_t)) < 0)
/* Skip over zones with unspecified label */
continue;
if (zone_getattr(zids[i], ZONE_ATTR_ROOT, zid_rpath,
sizeof (zid_rpath)) == -1)
/* Skip over zones with bad path */
continue;
if (zlabel != NULL && bldominates(zid_label, zlabel)) {
/*
* This zone dominates our zone.
* Unmount the lofs mount of our zone's /export/home
*/
if (snprintf(path, MAXPATHLEN,
"%s/zone/%s/export/home", zid_rpath,
zone_name) > MAXPATHLEN)
continue;
/* Skip over mount failures */
(void) umount(path);
}
}
free(zids);
/*
* Unmount global zone autofs trigger for this zone
*/
(void) snprintf(path, MAXPATHLEN, "/zone/%s/home", zone_name);
/* Skip over mount failures */
(void) umount(path);
/*
* Next unshare any exported directories from this zone.
*/
argv[0] = "zoneunshare";
argv[1] = "-z";
argv[2] = zone_name;
argv[3] = NULL;
(void) forkexec(zlogp, "/usr/lib/zones/zoneunshare", argv);
/* Don't check for errors since they don't affect the zone */
/*
* Finally, deallocate any devices in the zone.
*/
argv[0] = "deallocate";
argv[1] = "-Isz";
argv[2] = zone_name;
argv[3] = NULL;
(void) forkexec(zlogp, "/usr/sbin/deallocate", argv);
/* Don't check for errors since they don't affect the zone */
}
/*
* Fetch the Trusted Extensions label and multi-level ports (MLPs) for
* this zone.
*/
static tsol_zcent_t *
get_zone_label(zlog_t *zlogp, priv_set_t *privs)
{
FILE *fp;
tsol_zcent_t *zcent = NULL;
char line[MAXTNZLEN];
if ((fp = fopen(TNZONECFG_PATH, "r")) == NULL) {
zerror(zlogp, B_TRUE, "%s", TNZONECFG_PATH);
return (NULL);
}
while (fgets(line, sizeof (line), fp) != NULL) {
/*
* Check for malformed database
*/
if (strlen(line) == MAXTNZLEN - 1)
break;
if ((zcent = tsol_sgetzcent(line, NULL, NULL)) == NULL)
continue;
if (strcmp(zcent->zc_name, zone_name) == 0)
break;
tsol_freezcent(zcent);
zcent = NULL;
}
(void) fclose(fp);
if (zcent == NULL) {
zerror(zlogp, B_FALSE, "zone requires a label assignment. "
"See tnzonecfg(4)");
} else {
if (zlabel == NULL)
zlabel = m_label_alloc(MAC_LABEL);
/*
* Save this zone's privileges for later read-down processing
*/
if ((zprivs = priv_allocset()) == NULL) {
zerror(zlogp, B_TRUE, "%s failed", "priv_allocset");
return (NULL);
} else {
priv_copyset(privs, zprivs);
}
}
return (zcent);
}
/*
* Add the Trusted Extensions multi-level ports for this zone.
*/
static void
set_mlps(zlog_t *zlogp, zoneid_t zoneid, tsol_zcent_t *zcent)
{
tsol_mlp_t *mlp;
tsol_mlpent_t tsme;
if (!is_system_labeled())
return;
tsme.tsme_zoneid = zoneid;
tsme.tsme_flags = 0;
for (mlp = zcent->zc_private_mlp; !TSOL_MLP_END(mlp); mlp++) {
tsme.tsme_mlp = *mlp;
if (tnmlp(TNDB_LOAD, &tsme) != 0) {
zerror(zlogp, B_TRUE, "cannot set zone-specific MLP "
"on %d-%d/%d", mlp->mlp_port,
mlp->mlp_port_upper, mlp->mlp_ipp);
}
}
tsme.tsme_flags = TSOL_MEF_SHARED;
for (mlp = zcent->zc_shared_mlp; !TSOL_MLP_END(mlp); mlp++) {
tsme.tsme_mlp = *mlp;
if (tnmlp(TNDB_LOAD, &tsme) != 0) {
zerror(zlogp, B_TRUE, "cannot set shared MLP "
"on %d-%d/%d", mlp->mlp_port,
mlp->mlp_port_upper, mlp->mlp_ipp);
}
}
}
static void
remove_mlps(zlog_t *zlogp, zoneid_t zoneid)
{
tsol_mlpent_t tsme;
if (!is_system_labeled())
return;
(void) memset(&tsme, 0, sizeof (tsme));
tsme.tsme_zoneid = zoneid;
if (tnmlp(TNDB_FLUSH, &tsme) != 0)
zerror(zlogp, B_TRUE, "cannot flush MLPs");
}
int
prtmount(const struct mnttab *fs, void *x)
{
zerror((zlog_t *)x, B_FALSE, " %s", fs->mnt_mountp);
return (0);
}
/*
* Look for zones running on the main system that are using this root (or any
* subdirectory of it). Return B_TRUE and print an error if a conflicting zone
* is found or if we can't tell.
*/
static boolean_t
duplicate_zone_root(zlog_t *zlogp, const char *rootpath)
{
zoneid_t *zids = NULL;
uint_t nzids = 0;
boolean_t retv;
int rlen, zlen;
char zroot[MAXPATHLEN];
char zonename[ZONENAME_MAX];
for (;;) {
nzids += 10;
zids = malloc(nzids * sizeof (*zids));
if (zids == NULL) {
zerror(zlogp, B_TRUE, "memory allocation failed");
return (B_TRUE);
}
if (zone_list(zids, &nzids) == 0)
break;
free(zids);
}
retv = B_FALSE;
rlen = strlen(rootpath);
while (nzids > 0) {
/*
* Ignore errors; they just mean that the zone has disappeared
* while we were busy.
*/
if (zone_getattr(zids[--nzids], ZONE_ATTR_ROOT, zroot,
sizeof (zroot)) == -1)
continue;
zlen = strlen(zroot);
if (zlen > rlen)
zlen = rlen;
if (strncmp(rootpath, zroot, zlen) == 0 &&
(zroot[zlen] == '\0' || zroot[zlen] == '/') &&
(rootpath[zlen] == '\0' || rootpath[zlen] == '/')) {
if (getzonenamebyid(zids[nzids], zonename,
sizeof (zonename)) == -1)
(void) snprintf(zonename, sizeof (zonename),
"id %d", (int)zids[nzids]);
zerror(zlogp, B_FALSE,
"zone root %s already in use by zone %s",
rootpath, zonename);
retv = B_TRUE;
break;
}
}
free(zids);
return (retv);
}
/*
* Search for loopback mounts that use this same source node (same device and
* inode). Return B_TRUE if there is one or if we can't tell.
*/
static boolean_t
duplicate_reachable_path(zlog_t *zlogp, const char *rootpath)
{
struct stat64 rst, zst;
struct mnttab *mnp;
if (stat64(rootpath, &rst) == -1) {
zerror(zlogp, B_TRUE, "can't stat %s", rootpath);
return (B_TRUE);
}
if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1)
return (B_TRUE);
for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) {
if (mnp->mnt_fstype == NULL ||
strcmp(MNTTYPE_LOFS, mnp->mnt_fstype) != 0)
continue;
/* We're looking at a loopback mount. Stat it. */
if (mnp->mnt_special != NULL &&
stat64(mnp->mnt_special, &zst) != -1 &&
rst.st_dev == zst.st_dev && rst.st_ino == zst.st_ino) {
zerror(zlogp, B_FALSE,
"zone root %s is reachable through %s",
rootpath, mnp->mnt_mountp);
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* Set memory cap and pool info for the zone's resource management
* configuration.
*/
static int
setup_zone_rm(zlog_t *zlogp, char *zone_name, zoneid_t zoneid)
{
int res;
uint64_t tmp;
struct zone_mcaptab mcap;
char sched[MAXNAMELEN];
zone_dochandle_t handle = NULL;
char pool_err[128];
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (Z_BAD_HANDLE);
}
if ((res = zonecfg_get_snapshot_handle(zone_name, handle)) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
zonecfg_fini_handle(handle);
return (res);
}
/*
* If a memory cap is configured, set the cap in the kernel using
* zone_setattr() and make sure the rcapd SMF service is enabled.
*/
if (zonecfg_getmcapent(handle, &mcap) == Z_OK) {
uint64_t num;
char smf_err[128];
num = (uint64_t)strtoull(mcap.zone_physmem_cap, NULL, 10);
if (zone_setattr(zoneid, ZONE_ATTR_PHYS_MCAP, &num, 0) == -1) {
zerror(zlogp, B_TRUE, "could not set zone memory cap");
zonecfg_fini_handle(handle);
return (Z_INVAL);
}
if (zonecfg_enable_rcapd(smf_err, sizeof (smf_err)) != Z_OK) {
zerror(zlogp, B_FALSE, "enabling system/rcap service "
"failed: %s", smf_err);
zonecfg_fini_handle(handle);
return (Z_INVAL);
}
}
/* Get the scheduling class set in the zone configuration. */
if (zonecfg_get_sched_class(handle, sched, sizeof (sched)) == Z_OK &&
strlen(sched) > 0) {
if (zone_setattr(zoneid, ZONE_ATTR_SCHED_CLASS, sched,
strlen(sched)) == -1)
zerror(zlogp, B_TRUE, "WARNING: unable to set the "
"default scheduling class");
} else if (zonecfg_get_aliased_rctl(handle, ALIAS_SHARES, &tmp)
== Z_OK) {
/*
* If the zone has the zone.cpu-shares rctl set then we want to
* use the Fair Share Scheduler (FSS) for processes in the
* zone. Check what scheduling class the zone would be running
* in by default so we can print a warning and modify the class
* if we wouldn't be using FSS.
*/
char class_name[PC_CLNMSZ];
if (zonecfg_get_dflt_sched_class(handle, class_name,
sizeof (class_name)) != Z_OK) {
zerror(zlogp, B_FALSE, "WARNING: unable to determine "
"the zone's scheduling class");
} else if (strcmp("FSS", class_name) != 0) {
zerror(zlogp, B_FALSE, "WARNING: The zone.cpu-shares "
"rctl is set but\nFSS is not the default "
"scheduling class for\nthis zone. FSS will be "
"used for processes\nin the zone but to get the "
"full benefit of FSS,\nit should be the default "
"scheduling class.\nSee dispadmin(1M) for more "
"details.");
if (zone_setattr(zoneid, ZONE_ATTR_SCHED_CLASS, "FSS",
strlen("FSS")) == -1)
zerror(zlogp, B_TRUE, "WARNING: unable to set "
"zone scheduling class to FSS");
}
}
/*
* The next few blocks of code attempt to set up temporary pools as
* well as persistent pools. In all cases we call the functions
* unconditionally. Within each funtion the code will check if the
* zone is actually configured for a temporary pool or persistent pool
* and just return if there is nothing to do.
*
* If we are rebooting we want to attempt to reuse any temporary pool
* that was previously set up. zonecfg_bind_tmp_pool() will do the
* right thing in all cases (reuse or create) based on the current
* zonecfg.
*/
if ((res = zonecfg_bind_tmp_pool(handle, zoneid, pool_err,
sizeof (pool_err))) != Z_OK) {
if (res == Z_POOL || res == Z_POOL_CREATE || res == Z_POOL_BIND)
zerror(zlogp, B_FALSE, "%s: %s\ndedicated-cpu setting "
"cannot be instantiated", zonecfg_strerror(res),
pool_err);
else
zerror(zlogp, B_FALSE, "could not bind zone to "
"temporary pool: %s", zonecfg_strerror(res));
zonecfg_fini_handle(handle);
return (Z_POOL_BIND);
}
/*
* Check if we need to warn about poold not being enabled.
*/
if (zonecfg_warn_poold(handle)) {
zerror(zlogp, B_FALSE, "WARNING: A range of dedicated-cpus has "
"been specified\nbut the dynamic pool service is not "
"enabled.\nThe system will not dynamically adjust the\n"
"processor allocation within the specified range\n"
"until svc:/system/pools/dynamic is enabled.\n"
"See poold(1M).");
}
/* The following is a warning, not an error. */
if ((res = zonecfg_bind_pool(handle, zoneid, pool_err,
sizeof (pool_err))) != Z_OK) {
if (res == Z_POOL_BIND)
zerror(zlogp, B_FALSE, "WARNING: unable to bind to "
"pool '%s'; using default pool.", pool_err);
else if (res == Z_POOL)
zerror(zlogp, B_FALSE, "WARNING: %s: %s",
zonecfg_strerror(res), pool_err);
else
zerror(zlogp, B_FALSE, "WARNING: %s",
zonecfg_strerror(res));
}
/* Update saved pool name in case it has changed */
(void) zonecfg_get_poolname(handle, zone_name, pool_name,
sizeof (pool_name));
zonecfg_fini_handle(handle);
return (Z_OK);
}
static void
report_prop_err(zlog_t *zlogp, const char *name, const char *value, int res)
{
switch (res) {
case Z_TOO_BIG:
zerror(zlogp, B_FALSE, "%s property value is too large.", name);
break;
case Z_INVALID_PROPERTY:
zerror(zlogp, B_FALSE, "%s property value \"%s\" is not valid",
name, value);
break;
default:
zerror(zlogp, B_TRUE, "fetching property %s: %d", name, res);
break;
}
}
/*
* Sets the hostid of the new zone based on its configured value. The zone's
* zone_t structure must already exist in kernel memory. 'zlogp' refers to the
* log used to report errors and warnings and must be non-NULL. 'zone_namep'
* is the name of the new zone and must be non-NULL. 'zoneid' is the numeric
* ID of the new zone.
*
* This function returns zero on success and a nonzero error code on failure.
*/
static int
setup_zone_hostid(zone_dochandle_t handle, zlog_t *zlogp, zoneid_t zoneid)
{
int res;
char hostidp[HW_HOSTID_LEN];
unsigned int hostid;
res = zonecfg_get_hostid(handle, hostidp, sizeof (hostidp));
if (res == Z_BAD_PROPERTY) {
return (Z_OK);
} else if (res != Z_OK) {
report_prop_err(zlogp, "hostid", hostidp, res);
return (res);
}
hostid = (unsigned int)strtoul(hostidp, NULL, 16);
if ((res = zone_setattr(zoneid, ZONE_ATTR_HOSTID, &hostid,
sizeof (hostid))) != 0) {
zerror(zlogp, B_TRUE,
"zone hostid is not valid: %s: %d", hostidp, res);
return (Z_SYSTEM);
}
return (res);
}
static int
setup_zone_secflags(zone_dochandle_t handle, zlog_t *zlogp, zoneid_t zoneid)
{
psecflags_t secflags;
struct zone_secflagstab tab = {0};
secflagdelta_t delt;
int res;
res = zonecfg_lookup_secflags(handle, &tab);
if ((res != Z_OK) &&
/* The general defaulting code will handle this */
(res != Z_NO_ENTRY) && (res != Z_BAD_PROPERTY)) {
zerror(zlogp, B_FALSE, "security-flags property is "
"invalid: %d", res);
return (res);
}
if (strlen(tab.zone_secflags_lower) == 0)
(void) strlcpy(tab.zone_secflags_lower, "none",
sizeof (tab.zone_secflags_lower));
if (strlen(tab.zone_secflags_default) == 0)
(void) strlcpy(tab.zone_secflags_default,
tab.zone_secflags_lower,
sizeof (tab.zone_secflags_default));
if (strlen(tab.zone_secflags_upper) == 0)
(void) strlcpy(tab.zone_secflags_upper, "all",
sizeof (tab.zone_secflags_upper));
if (secflags_parse(NULL, tab.zone_secflags_default,
&delt) == -1) {
zerror(zlogp, B_FALSE, "default security-flags: '%s'"
"are invalid", tab.zone_secflags_default);
return (Z_BAD_PROPERTY);
} else if (delt.psd_ass_active != B_TRUE) {
zerror(zlogp, B_FALSE, "relative security-flags are not "
"allowed in zone configuration (default "
"security-flags: '%s')",
tab.zone_secflags_default);
return (Z_BAD_PROPERTY);
} else {
secflags_copy(&secflags.psf_inherit, &delt.psd_assign);
secflags_copy(&secflags.psf_effective, &delt.psd_assign);
}
if (secflags_parse(NULL, tab.zone_secflags_lower,
&delt) == -1) {
zerror(zlogp, B_FALSE, "lower security-flags: '%s'"
"are invalid", tab.zone_secflags_lower);
return (Z_BAD_PROPERTY);
} else if (delt.psd_ass_active != B_TRUE) {
zerror(zlogp, B_FALSE, "relative security-flags are not "
"allowed in zone configuration (lower "
"security-flags: '%s')",
tab.zone_secflags_lower);
return (Z_BAD_PROPERTY);
} else {
secflags_copy(&secflags.psf_lower, &delt.psd_assign);
}
if (secflags_parse(NULL, tab.zone_secflags_upper,
&delt) == -1) {
zerror(zlogp, B_FALSE, "upper security-flags: '%s'"
"are invalid", tab.zone_secflags_upper);
return (Z_BAD_PROPERTY);
} else if (delt.psd_ass_active != B_TRUE) {
zerror(zlogp, B_FALSE, "relative security-flags are not "
"allowed in zone configuration (upper "
"security-flags: '%s')",
tab.zone_secflags_upper);
return (Z_BAD_PROPERTY);
} else {
secflags_copy(&secflags.psf_upper, &delt.psd_assign);
}
if (!psecflags_validate(&secflags)) {
zerror(zlogp, B_TRUE, "security-flags violate invariants");
return (Z_BAD_PROPERTY);
}
if ((res = zone_setattr(zoneid, ZONE_ATTR_SECFLAGS, &secflags,
sizeof (secflags))) != 0) {
zerror(zlogp, B_TRUE,
"security-flags couldn't be set: %d", res);
return (Z_SYSTEM);
}
return (Z_OK);
}
static int
setup_zone_fs_allowed(zone_dochandle_t handle, zlog_t *zlogp, zoneid_t zoneid)
{
char fsallowed[ZONE_FS_ALLOWED_MAX];
char *fsallowedp = fsallowed;
int len = sizeof (fsallowed);
int res;
res = zonecfg_get_fs_allowed(handle, fsallowed, len);
if (res == Z_BAD_PROPERTY) {
/* No value, set the defaults */
(void) strlcpy(fsallowed, DFLT_FS_ALLOWED, len);
} else if (res != Z_OK) {
report_prop_err(zlogp, "fs-allowed", fsallowed, res);
return (res);
} else if (fsallowed[0] == '-') {
/* dropping default filesystems - use remaining list */
if (fsallowed[1] != ',')
return (Z_OK);
fsallowedp += 2;
len -= 2;
} else {
/* Has a value, append the defaults */
if (strlcat(fsallowed, ",", len) >= len ||
strlcat(fsallowed, DFLT_FS_ALLOWED, len) >= len) {
report_prop_err(zlogp, "fs-allowed", fsallowed,
Z_TOO_BIG);
return (Z_TOO_BIG);
}
}
if (zone_setattr(zoneid, ZONE_ATTR_FS_ALLOWED, fsallowedp, len) != 0) {
zerror(zlogp, B_TRUE,
"fs-allowed couldn't be set: %s: %d", fsallowedp, res);
return (Z_SYSTEM);
}
return (Z_OK);
}
static int
setup_zone_attrs(zlog_t *zlogp, char *zone_namep, zoneid_t zoneid)
{
zone_dochandle_t handle;
int res = Z_OK;
if ((handle = zonecfg_init_handle()) == NULL) {
zerror(zlogp, B_TRUE, "getting zone configuration handle");
return (Z_BAD_HANDLE);
}
if ((res = zonecfg_get_snapshot_handle(zone_namep, handle)) != Z_OK) {
zerror(zlogp, B_FALSE, "invalid configuration");
goto out;
}
if ((res = setup_zone_hostid(handle, zlogp, zoneid)) != Z_OK)
goto out;
if ((res = setup_zone_fs_allowed(handle, zlogp, zoneid)) != Z_OK)
goto out;
if ((res = setup_zone_secflags(handle, zlogp, zoneid)) != Z_OK)
goto out;
out:
zonecfg_fini_handle(handle);
return (res);
}
zoneid_t
vplat_create(zlog_t *zlogp, zone_mnt_t mount_cmd)
{
zoneid_t rval = -1;
priv_set_t *privs;
char rootpath[MAXPATHLEN];
char *rctlbuf = NULL;
size_t rctlbufsz = 0;
char *zfsbuf = NULL;
size_t zfsbufsz = 0;
zoneid_t zoneid = -1;
int xerr;
char *kzone;
FILE *fp = NULL;
tsol_zcent_t *zcent = NULL;
int match = 0;
int doi = 0;
int flags;
zone_iptype_t iptype;
if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) {
zerror(zlogp, B_TRUE, "unable to determine zone root");
return (-1);
}
if (zonecfg_in_alt_root())
resolve_lofs(zlogp, rootpath, sizeof (rootpath));
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_TRUE, "unable to determine ip-type");
return (-1);
}
switch (iptype) {
case ZS_SHARED:
flags = 0;
break;
case ZS_EXCLUSIVE:
flags = ZCF_NET_EXCL;
break;
}
if ((privs = priv_allocset()) == NULL) {
zerror(zlogp, B_TRUE, "%s failed", "priv_allocset");
return (-1);
}
priv_emptyset(privs);
if (get_privset(zlogp, privs, mount_cmd) != 0)
goto error;
if (mount_cmd == Z_MNT_BOOT &&
get_rctls(zlogp, &rctlbuf, &rctlbufsz) != 0) {
zerror(zlogp, B_FALSE, "Unable to get list of rctls");
goto error;
}
if (get_datasets(zlogp, &zfsbuf, &zfsbufsz) != 0) {
zerror(zlogp, B_FALSE, "Unable to get list of ZFS datasets");
goto error;
}
if (mount_cmd == Z_MNT_BOOT && is_system_labeled()) {
zcent = get_zone_label(zlogp, privs);
if (zcent != NULL) {
match = zcent->zc_match;
doi = zcent->zc_doi;
*zlabel = zcent->zc_label;
} else {
goto error;
}
if (validate_rootds_label(zlogp, rootpath, zlabel) != 0)
goto error;
}
kzone = zone_name;
/*
* We must do this scan twice. First, we look for zones running on the
* main system that are using this root (or any subdirectory of it).
* Next, we reduce to the shortest path and search for loopback mounts
* that use this same source node (same device and inode).
*/
if (duplicate_zone_root(zlogp, rootpath))
goto error;
if (duplicate_reachable_path(zlogp, rootpath))
goto error;
if (ALT_MOUNT(mount_cmd)) {
root_to_lu(zlogp, rootpath, sizeof (rootpath), B_TRUE);
/*
* Forge up a special root for this zone. When a zone is
* mounted, we can't let the zone have its own root because the
* tools that will be used in this "scratch zone" need access
* to both the zone's resources and the running machine's
* executables.
*
* Note that the mkdir here also catches read-only filesystems.
*/
if (mkdir(rootpath, 0755) != 0 && errno != EEXIST) {
zerror(zlogp, B_TRUE, "cannot create %s", rootpath);
goto error;
}
if (domount(zlogp, "tmpfs", "", "swap", rootpath) != 0)
goto error;
}
if (zonecfg_in_alt_root()) {
/*
* If we are mounting up a zone in an alternate root partition,
* then we have some additional work to do before starting the
* zone. First, resolve the root path down so that we're not
* fooled by duplicates. Then forge up an internal name for
* the zone.
*/
if ((fp = zonecfg_open_scratch("", B_TRUE)) == NULL) {
zerror(zlogp, B_TRUE, "cannot open mapfile");
goto error;
}
if (zonecfg_lock_scratch(fp) != 0) {
zerror(zlogp, B_TRUE, "cannot lock mapfile");
goto error;
}
if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(),
NULL, 0) == 0) {
zerror(zlogp, B_FALSE, "scratch zone already running");
goto error;
}
/* This is the preferred name */
(void) snprintf(kernzone, sizeof (kernzone), "SUNWlu-%s",
zone_name);
srandom(getpid());
while (zonecfg_reverse_scratch(fp, kernzone, NULL, 0, NULL,
0) == 0) {
/* This is just an arbitrary name; note "." usage */
(void) snprintf(kernzone, sizeof (kernzone),
"SUNWlu.%08lX%08lX", random(), random());
}
kzone = kernzone;
}
xerr = 0;
if ((zoneid = zone_create(kzone, rootpath, privs, rctlbuf,
rctlbufsz, zfsbuf, zfsbufsz, &xerr, match, doi, zlabel,
flags)) == -1) {
if (xerr == ZE_AREMOUNTS) {
if (zonecfg_find_mounts(rootpath, NULL, NULL) < 1) {
zerror(zlogp, B_FALSE,
"An unknown file-system is mounted on "
"a subdirectory of %s", rootpath);
} else {
zerror(zlogp, B_FALSE,
"These file-systems are mounted on "
"subdirectories of %s:", rootpath);
(void) zonecfg_find_mounts(rootpath,
prtmount, zlogp);
}
} else if (xerr == ZE_CHROOTED) {
zerror(zlogp, B_FALSE, "%s: "
"cannot create a zone from a chrooted "
"environment", "zone_create");
} else if (xerr == ZE_LABELINUSE) {
char zonename[ZONENAME_MAX];
(void) getzonenamebyid(getzoneidbylabel(zlabel),
zonename, ZONENAME_MAX);
zerror(zlogp, B_FALSE, "The zone label is already "
"used by the zone '%s'.", zonename);
} else {
zerror(zlogp, B_TRUE, "%s failed", "zone_create");
}
goto error;
}
if (zonecfg_in_alt_root() &&
zonecfg_add_scratch(fp, zone_name, kernzone,
zonecfg_get_root()) == -1) {
zerror(zlogp, B_TRUE, "cannot add mapfile entry");
goto error;
}
/*
* The following actions are not performed when merely mounting a zone
* for administrative use.
*/
if (mount_cmd == Z_MNT_BOOT) {
brand_handle_t bh;
struct brand_attr attr;
char modname[MAXPATHLEN];
if (setup_zone_attrs(zlogp, zone_name, zoneid) != Z_OK)
goto error;
if ((bh = brand_open(brand_name)) == NULL) {
zerror(zlogp, B_FALSE,
"unable to determine brand name");
goto error;
}
if (!is_system_labeled() &&
(strcmp(brand_name, LABELED_BRAND_NAME) == 0)) {
brand_close(bh);
zerror(zlogp, B_FALSE,
"cannot boot labeled zone on unlabeled system");
goto error;
}
/*
* If this brand requires any kernel support, now is the time to
* get it loaded and initialized.
*/
if (brand_get_modname(bh, modname, MAXPATHLEN) < 0) {
brand_close(bh);
zerror(zlogp, B_FALSE,
"unable to determine brand kernel module");
goto error;
}
brand_close(bh);
if (strlen(modname) > 0) {
(void) strlcpy(attr.ba_brandname, brand_name,
sizeof (attr.ba_brandname));
(void) strlcpy(attr.ba_modname, modname,
sizeof (attr.ba_modname));
if (zone_setattr(zoneid, ZONE_ATTR_BRAND, &attr,
sizeof (attr) != 0)) {
zerror(zlogp, B_TRUE,
"could not set zone brand attribute.");
goto error;
}
}
if (setup_zone_rm(zlogp, zone_name, zoneid) != Z_OK)
goto error;
set_mlps(zlogp, zoneid, zcent);
}
rval = zoneid;
zoneid = -1;
error:
if (zoneid != -1) {
(void) zone_shutdown(zoneid);
(void) zone_destroy(zoneid);
}
if (rctlbuf != NULL)
free(rctlbuf);
priv_freeset(privs);
if (fp != NULL)
zonecfg_close_scratch(fp);
lofs_discard_mnttab();
if (zcent != NULL)
tsol_freezcent(zcent);
return (rval);
}
/*
* Enter the zone and write a /etc/zones/index file there. This allows
* libzonecfg (and thus zoneadm) to report the UUID and potentially other zone
* details from inside the zone.
*/
static void
write_index_file(zoneid_t zoneid)
{
FILE *zef;
FILE *zet;
struct zoneent *zep;
pid_t child;
int tmpl_fd;
ctid_t ct;
int fd;
char uuidstr[UUID_PRINTABLE_STRING_LENGTH];
/* Locate the zone entry in the global zone's index file */
if ((zef = setzoneent()) == NULL)
return;
while ((zep = getzoneent_private(zef)) != NULL) {
if (strcmp(zep->zone_name, zone_name) == 0)
break;
free(zep);
}
endzoneent(zef);
if (zep == NULL)
return;
if ((tmpl_fd = init_template()) == -1) {
free(zep);
return;
}
if ((child = fork()) == -1) {
(void) ct_tmpl_clear(tmpl_fd);
(void) close(tmpl_fd);
free(zep);
return;
}
/* parent waits for child to finish */
if (child != 0) {
free(zep);
if (contract_latest(&ct) == -1)
ct = -1;
(void) ct_tmpl_clear(tmpl_fd);
(void) close(tmpl_fd);
(void) waitpid(child, NULL, 0);
(void) contract_abandon_id(ct);
return;
}
/* child enters zone and sets up index file */
(void) ct_tmpl_clear(tmpl_fd);
if (zone_enter(zoneid) != -1) {
(void) mkdir(ZONE_CONFIG_ROOT, ZONE_CONFIG_MODE);
(void) chown(ZONE_CONFIG_ROOT, ZONE_CONFIG_UID,
ZONE_CONFIG_GID);
fd = open(ZONE_INDEX_FILE, O_WRONLY|O_CREAT|O_TRUNC,
ZONE_INDEX_MODE);
if (fd != -1 && (zet = fdopen(fd, "w")) != NULL) {
(void) fchown(fd, ZONE_INDEX_UID, ZONE_INDEX_GID);
if (uuid_is_null(zep->zone_uuid))
uuidstr[0] = '\0';
else
uuid_unparse(zep->zone_uuid, uuidstr);
(void) fprintf(zet, "%s:%s:/:%s\n", zep->zone_name,
zone_state_str(zep->zone_state),
uuidstr);
(void) fclose(zet);
}
}
_exit(0);
}
int
vplat_bringup(zlog_t *zlogp, zone_mnt_t mount_cmd, zoneid_t zoneid)
{
char zonepath[MAXPATHLEN];
if (mount_cmd == Z_MNT_BOOT && validate_datasets(zlogp) != 0) {
lofs_discard_mnttab();
return (-1);
}
/*
* Before we try to mount filesystems we need to create the
* attribute backing store for /dev
*/
if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) {
lofs_discard_mnttab();
return (-1);
}
resolve_lofs(zlogp, zonepath, sizeof (zonepath));
/* Make /dev directory owned by root, grouped sys */
if (make_one_dir(zlogp, zonepath, "/dev", DEFAULT_DIR_MODE,
0, 3) != 0) {
lofs_discard_mnttab();
return (-1);
}
if (mount_filesystems(zlogp, mount_cmd) != 0) {
lofs_discard_mnttab();
return (-1);
}
if (mount_cmd == Z_MNT_BOOT) {
zone_iptype_t iptype;
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_TRUE, "unable to determine ip-type");
lofs_discard_mnttab();
return (-1);
}
switch (iptype) {
case ZS_SHARED:
/* Always do this to make lo0 get configured */
if (configure_shared_network_interfaces(zlogp) != 0) {
lofs_discard_mnttab();
return (-1);
}
break;
case ZS_EXCLUSIVE:
if (configure_exclusive_network_interfaces(zlogp,
zoneid) !=
0) {
lofs_discard_mnttab();
return (-1);
}
break;
}
}
write_index_file(zoneid);
lofs_discard_mnttab();
return (0);
}
static int
lu_root_teardown(zlog_t *zlogp)
{
char zroot[MAXPATHLEN];
if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) {
zerror(zlogp, B_FALSE, "unable to determine zone root");
return (-1);
}
root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE);
/*
* At this point, the processes are gone, the filesystems (save the
* root) are unmounted, and the zone is on death row. But there may
* still be creds floating about in the system that reference the
* zone_t, and which pin down zone_rootvp causing this call to fail
* with EBUSY. Thus, we try for a little while before just giving up.
* (How I wish this were not true, and umount2 just did the right
* thing, or tmpfs supported MS_FORCE This is a gross hack.)
*/
if (umount2(zroot, MS_FORCE) != 0) {
if (errno == ENOTSUP && umount2(zroot, 0) == 0)
goto unmounted;
if (errno == EBUSY) {
int tries = 10;
while (--tries >= 0) {
(void) sleep(1);
if (umount2(zroot, 0) == 0)
goto unmounted;
if (errno != EBUSY)
break;
}
}
zerror(zlogp, B_TRUE, "unable to unmount '%s'", zroot);
return (-1);
}
unmounted:
/*
* Only zones in an alternate root environment have scratch zone
* entries.
*/
if (zonecfg_in_alt_root()) {
FILE *fp;
int retv;
if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) {
zerror(zlogp, B_TRUE, "cannot open mapfile");
return (-1);
}
retv = -1;
if (zonecfg_lock_scratch(fp) != 0)
zerror(zlogp, B_TRUE, "cannot lock mapfile");
else if (zonecfg_delete_scratch(fp, kernzone) != 0)
zerror(zlogp, B_TRUE, "cannot delete map entry");
else
retv = 0;
zonecfg_close_scratch(fp);
return (retv);
} else {
return (0);
}
}
int
vplat_teardown(zlog_t *zlogp, boolean_t unmount_cmd, boolean_t rebooting)
{
char *kzone;
zoneid_t zoneid;
int res;
char pool_err[128];
char zpath[MAXPATHLEN];
char cmdbuf[MAXPATHLEN];
brand_handle_t bh = NULL;
dladm_status_t status;
char errmsg[DLADM_STRSIZE];
ushort_t flags;
kzone = zone_name;
if (zonecfg_in_alt_root()) {
FILE *fp;
if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) {
zerror(zlogp, B_TRUE, "unable to open map file");
goto error;
}
if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(),
kernzone, sizeof (kernzone)) != 0) {
zerror(zlogp, B_FALSE, "unable to find scratch zone");
zonecfg_close_scratch(fp);
goto error;
}
zonecfg_close_scratch(fp);
kzone = kernzone;
}
if ((zoneid = getzoneidbyname(kzone)) == ZONE_ID_UNDEFINED) {
if (!bringup_failure_recovery)
zerror(zlogp, B_TRUE, "unable to get zoneid");
if (unmount_cmd)
(void) lu_root_teardown(zlogp);
goto error;
}
if (remove_datalink_pool(zlogp, zoneid) != 0) {
zerror(zlogp, B_FALSE, "unable clear datalink pool property");
goto error;
}
if (remove_datalink_protect(zlogp, zoneid) != 0) {
zerror(zlogp, B_FALSE,
"unable clear datalink protect property");
goto error;
}
/*
* The datalinks assigned to the zone will be removed from the NGZ as
* part of zone_shutdown() so that we need to remove protect/pool etc.
* before zone_shutdown(). Even if the shutdown itself fails, the zone
* will not be able to violate any constraints applied because the
* datalinks are no longer available to the zone.
*/
if (zone_shutdown(zoneid) != 0) {
zerror(zlogp, B_TRUE, "unable to shutdown zone");
goto error;
}
/* Get the zonepath of this zone */
if (zone_get_zonepath(zone_name, zpath, sizeof (zpath)) != Z_OK) {
zerror(zlogp, B_FALSE, "unable to determine zone path");
goto error;
}
/* Get a handle to the brand info for this zone */
if ((bh = brand_open(brand_name)) == NULL) {
zerror(zlogp, B_FALSE, "unable to determine zone brand");
return (-1);
}
/*
* If there is a brand 'halt' callback, execute it now to give the
* brand a chance to cleanup any custom configuration.
*/
(void) strcpy(cmdbuf, EXEC_PREFIX);
if (brand_get_halt(bh, zone_name, zpath, cmdbuf + EXEC_LEN,
sizeof (cmdbuf) - EXEC_LEN) < 0) {
brand_close(bh);
zerror(zlogp, B_FALSE, "unable to determine branded zone's "
"halt callback.");
goto error;
}
brand_close(bh);
if ((strlen(cmdbuf) > EXEC_LEN) &&
(do_subproc(zlogp, cmdbuf, NULL) != Z_OK)) {
zerror(zlogp, B_FALSE, "%s failed", cmdbuf);
goto error;
}
if (!unmount_cmd) {
zone_iptype_t iptype;
if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &flags,
sizeof (flags)) < 0) {
if (vplat_get_iptype(zlogp, &iptype) < 0) {
zerror(zlogp, B_TRUE, "unable to determine "
"ip-type");
goto error;
}
} else {
if (flags & ZF_NET_EXCL)
iptype = ZS_EXCLUSIVE;
else
iptype = ZS_SHARED;
}
switch (iptype) {
case ZS_SHARED:
if (unconfigure_shared_network_interfaces(zlogp,
zoneid) != 0) {
zerror(zlogp, B_FALSE, "unable to unconfigure "
"network interfaces in zone");
goto error;
}
break;
case ZS_EXCLUSIVE:
if (unconfigure_exclusive_network_interfaces(zlogp,
zoneid) != 0) {
zerror(zlogp, B_FALSE, "unable to unconfigure "
"network interfaces in zone");
goto error;
}
status = dladm_zone_halt(dld_handle, zoneid);
if (status != DLADM_STATUS_OK) {
zerror(zlogp, B_FALSE, "unable to notify "
"dlmgmtd of zone halt: %s",
dladm_status2str(status, errmsg));
}
break;
}
}
if (!unmount_cmd && tcp_abort_connections(zlogp, zoneid) != 0) {
zerror(zlogp, B_TRUE, "unable to abort TCP connections");
goto error;
}
if (unmount_filesystems(zlogp, zoneid, unmount_cmd) != 0) {
zerror(zlogp, B_FALSE,
"unable to unmount file systems in zone");
goto error;
}
/*
* If we are rebooting then we normally don't want to destroy an
* existing temporary pool at this point so that we can just reuse it
* when the zone boots back up. However, it is also possible we were
* running with a temporary pool and the zone configuration has been
* modified to no longer use a temporary pool. In that case we need
* to destroy the temporary pool now. This case looks like the case
* where we never had a temporary pool configured but
* zonecfg_destroy_tmp_pool will do the right thing either way.
*/
if (!unmount_cmd) {
boolean_t destroy_tmp_pool = B_TRUE;
if (rebooting) {
struct zone_psettab pset_tab;
zone_dochandle_t handle;
if ((handle = zonecfg_init_handle()) != NULL &&
zonecfg_get_handle(zone_name, handle) == Z_OK &&
zonecfg_lookup_pset(handle, &pset_tab) == Z_OK)
destroy_tmp_pool = B_FALSE;
zonecfg_fini_handle(handle);
}
if (destroy_tmp_pool) {
if ((res = zonecfg_destroy_tmp_pool(zone_name, pool_err,
sizeof (pool_err))) != Z_OK) {
if (res == Z_POOL)
zerror(zlogp, B_FALSE, pool_err);
}
}
}
remove_mlps(zlogp, zoneid);
if (zone_destroy(zoneid) != 0) {
zerror(zlogp, B_TRUE, "unable to destroy zone");
goto error;
}
/*
* Special teardown for alternate boot environments: remove the tmpfs
* root for the zone and then remove it from the map file.
*/
if (unmount_cmd && lu_root_teardown(zlogp) != 0)
goto error;
lofs_discard_mnttab();
return (0);
error:
lofs_discard_mnttab();
return (-1);
}