/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 1989 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdio.h>
#include <math.h>
#define PI 3.141592654
#define hmot(n) hpos += n
#define hgoto(n) hpos = n
#define vmot(n) vgoto(vpos + n)
extern int hpos;
extern int vpos;
extern int size;
extern short *pstab;
extern int DX; /* step size in x */
extern int DY; /* step size in y */
extern int drawdot; /* character to use when drawing */
extern int drawsize; /* shrink point size by this facter */
int maxdots = 32000; /* maximum number of dots in an object */
#define sgn(n) ((n > 0) ? 1 : ((n < 0) ? -1 : 0))
#define abs(n) ((n) >= 0 ? (n) : -(n))
#define max(x,y) ((x) > (y) ? (x) : (y))
#define min(x,y) ((x) < (y) ? (x) : (y))
#define arcmove(x,y) { hgoto(x); vmot(-vpos-(y)); }
int
drawline(dx, dy, s) /* draw line from here to dx, dy using s */
int dx, dy;
char *s;
{
int xd, yd;
float val, slope;
int i, numdots;
int dirmot, perp;
int motincr, perpincr;
int ohpos, ovpos, osize, ofont;
float incrway;
int itemp; /*temp. storage for value returned byint function sgn*/
osize = size;
setsize(t_size(pstab[osize-1] / drawsize));
ohpos = hpos;
ovpos = vpos;
xd = dx / DX;
yd = dy / DX;
if (xd == 0) {
numdots = abs (yd);
numdots = min(numdots, maxdots);
motincr = DX * sgn (yd);
for (i = 0; i < numdots; i++) {
vmot(motincr);
put1(drawdot);
}
vgoto(ovpos + dy);
setsize(osize);
return (0);
}
if (yd == 0) {
numdots = abs (xd);
motincr = DX * sgn (xd);
for (i = 0; i < numdots; i++) {
hmot(motincr);
put1(drawdot);
}
hgoto(ohpos + dx);
setsize(osize);
return (0);
}
if (abs (xd) > abs (yd)) {
val = slope = (float) xd/yd;
numdots = abs (xd);
numdots = min(numdots, maxdots);
dirmot = 'h';
perp = 'v';
motincr = DX * sgn (xd);
perpincr = DX * sgn (yd);
}
else {
val = slope = (float) yd/xd;
numdots = abs (yd);
numdots = min(numdots, maxdots);
dirmot = 'v';
perp = 'h';
motincr = DX * sgn (yd);
perpincr = DX * sgn (xd);
}
incrway = itemp = sgn ((int) slope);
for (i = 0; i < numdots; i++) {
val -= incrway;
if (dirmot == 'h')
hmot(motincr);
else
vmot(motincr);
if (val * slope < 0) {
if (perp == 'h')
hmot(perpincr);
else
vmot(perpincr);
val += slope;
}
put1(drawdot);
}
hgoto(ohpos + dx);
vgoto(ovpos + dy);
setsize(osize);
return (0);
}
int
drawwig(s) /* draw wiggly line */
char *s;
{
int x[50], y[50], xp, yp, pxp, pyp;
float t1, t2, t3, w;
int i, j, numdots, N;
int osize, ofont;
char temp[50], *p, *getstr();
osize = size;
setsize(t_size(pstab[osize-1] / drawsize));
p = s;
for (N = 2; (p=getstr(p,temp)) != NULL && N < sizeof(x)/sizeof(x[0]); N++) {
x[N] = atoi(temp);
p = getstr(p, temp);
y[N] = atoi(temp);
}
x[0] = x[1] = hpos;
y[0] = y[1] = vpos;
for (i = 1; i < N; i++) {
x[i+1] += x[i];
y[i+1] += y[i];
}
x[N] = x[N-1];
y[N] = y[N-1];
pxp = pyp = -9999;
for (i = 0; i < N-1; i++) { /* interval */
numdots = (dist(x[i],y[i], x[i+1],y[i+1]) + dist(x[i+1],y[i+1], x[i+2],y[i+2])) / 2;
numdots /= DX;
numdots = min(numdots, maxdots);
for (j = 0; j < numdots; j++) { /* points within */
w = (float) j / numdots;
t1 = 0.5 * w * w;
w = w - 0.5;
t2 = 0.75 - w * w;
w = w - 0.5;
t3 = 0.5 * w * w;
xp = t1 * x[i+2] + t2 * x[i+1] + t3 * x[i] + 0.5;
yp = t1 * y[i+2] + t2 * y[i+1] + t3 * y[i] + 0.5;
if (xp != pxp || yp != pyp) {
hgoto(xp);
vgoto(yp);
put1(drawdot);
pxp = xp;
pyp = yp;
}
}
}
setsize(osize);
return (0);
}
char *getstr(p, temp) /* copy next non-blank string from p to temp, update p */
char *p, *temp;
{
while (*p == ' ' || *p == '\t' || *p == '\n')
p++;
if (*p == '\0') {
temp[0] = 0;
return(NULL);
}
while (*p != ' ' && *p != '\t' && *p != '\n' && *p != '\0')
*temp++ = *p++;
*temp = '\0';
return(p);
}
int
drawcirc(d)
{
int xc, yc;
xc = hpos;
yc = vpos;
conicarc(hpos + d/2, -vpos, hpos, -vpos, hpos, -vpos, d/2, d/2);
hgoto(xc + d); /* circle goes to right side */
vgoto(yc);
return (0);
}
int
dist(x1, y1, x2, y2) /* integer distance from x1,y1 to x2,y2 */
{
float dx, dy;
dx = x2 - x1;
dy = y2 - y1;
return sqrt(dx*dx + dy*dy) + 0.5;
}
int
drawarc(dx1, dy1, dx2, dy2)
{
int x0, y0, x2, y2, r;
x0 = hpos + dx1; /* center */
y0 = vpos + dy1;
x2 = x0 + dx2; /* "to" */
y2 = y0 + dy2;
r = sqrt((float) dx1 * dx1 + (float) dy1 * dy1) + 0.5;
conicarc(x0, -y0, hpos, -vpos, x2, -y2, r, r);
return (0);
}
int
drawellip(a, b)
{
int xc, yc;
xc = hpos;
yc = vpos;
conicarc(hpos + a/2, -vpos, hpos, -vpos, hpos, -vpos, a/2, b/2);
hgoto(xc + a);
vgoto(yc);
return (0);
}
#define sqr(x) (long int)(x)*(x)
int
conicarc(x, y, x0, y0, x1, y1, a, b)
{
/* based on Bresenham, CACM, Feb 77, pp 102-3 */
/* by Chris Van Wyk */
/* capitalized vars are an internal reference frame */
long dotcount = 0;
int osize, ofont;
int xs, ys, xt, yt, Xs, Ys, qs, Xt, Yt, qt,
M1x, M1y, M2x, M2y, M3x, M3y,
Q, move, Xc, Yc;
int ox1, oy1;
long delta;
float xc, yc;
float radius, slope;
float xstep, ystep;
osize = size;
setsize(t_size(pstab[osize-1] / drawsize));
ox1 = x1;
oy1 = y1;
if (a != b) /* an arc of an ellipse; internally, will still think of circle */
if (a > b) {
xstep = (float)a / b;
ystep = 1;
radius = b;
} else {
xstep = 1;
ystep = (float)b / a;
radius = a;
}
else { /* a circular arc; radius is computed from center and first point */
xstep = ystep = 1;
radius = sqrt((float)(sqr(x0 - x) + sqr(y0 - y)));
}
xc = x0;
yc = y0;
/* now, use start and end point locations to figure out
the angle at which start and end happen; use these
angles with known radius to figure out where start
and end should be
*/
slope = atan2((double)(y0 - y), (double)(x0 - x) );
if (slope == 0.0 && x0 < x)
slope = 3.14159265;
x0 = x + radius * cos(slope) + 0.5;
y0 = y + radius * sin(slope) + 0.5;
slope = atan2((double)(y1 - y), (double)(x1 - x));
if (slope == 0.0 && x1 < x)
slope = 3.14159265;
x1 = x + radius * cos(slope) + 0.5;
y1 = y + radius * sin(slope) + 0.5;
/* step 2: translate to zero-centered circle */
xs = x0 - x;
ys = y0 - y;
xt = x1 - x;
yt = y1 - y;
/* step 3: normalize to first quadrant */
if (xs < 0)
if (ys < 0) {
Xs = abs(ys);
Ys = abs(xs);
qs = 3;
M1x = 0;
M1y = -1;
M2x = 1;
M2y = -1;
M3x = 1;
M3y = 0;
} else {
Xs = abs(xs);
Ys = abs(ys);
qs = 2;
M1x = -1;
M1y = 0;
M2x = -1;
M2y = -1;
M3x = 0;
M3y = -1;
}
else if (ys < 0) {
Xs = abs(xs);
Ys = abs(ys);
qs = 0;
M1x = 1;
M1y = 0;
M2x = 1;
M2y = 1;
M3x = 0;
M3y = 1;
} else {
Xs = abs(ys);
Ys = abs(xs);
qs = 1;
M1x = 0;
M1y = 1;
M2x = -1;
M2y = 1;
M3x = -1;
M3y = 0;
}
Xc = Xs;
Yc = Ys;
if (xt < 0)
if (yt < 0) {
Xt = abs(yt);
Yt = abs(xt);
qt = 3;
} else {
Xt = abs(xt);
Yt = abs(yt);
qt = 2;
}
else if (yt < 0) {
Xt = abs(xt);
Yt = abs(yt);
qt = 0;
} else {
Xt = abs(yt);
Yt = abs(xt);
qt = 1;
}
/* step 4: calculate number of quadrant crossings */
if (((4 + qt - qs)
% 4 == 0)
&& (Xt <= Xs)
&& (Yt >= Ys)
)
Q = 3;
else
Q = (4 + qt - qs) % 4 - 1;
/* step 5: calculate initial decision difference */
delta = sqr(Xs + 1)
+ sqr(Ys - 1)
-sqr(xs)
-sqr(ys);
/* here begins the work of drawing
we hope it ends here too */
while ((Q >= 0)
|| ((Q > -2)
&& ((Xt > Xc)
&& (Yt < Yc)
)
)
) {
if (dotcount++ % DX == 0)
putdot((int)xc, (int)yc);
if (Yc < 0.5) {
/* reinitialize */
Xs = Xc = 0;
Ys = Yc = sqrt((float)(sqr(xs) + sqr(ys)));
delta = sqr(Xs + 1) + sqr(Ys - 1) - sqr(xs) - sqr(ys);
Q--;
M1x = M3x;
M1y = M3y;
{
int T;
T = M2y;
M2y = M2x;
M2x = -T;
T = M3y;
M3y = M3x;
M3x = -T;
}
} else {
if (delta <= 0)
if (2 * delta + 2 * Yc - 1 <= 0)
move = 1;
else
move = 2;
else if (2 * delta - 2 * Xc - 1 <= 0)
move = 2;
else
move = 3;
switch (move) {
case 1:
Xc++;
delta += 2 * Xc + 1;
xc += M1x * xstep;
yc += M1y * ystep;
break;
case 2:
Xc++;
Yc--;
delta += 2 * Xc - 2 * Yc + 2;
xc += M2x * xstep;
yc += M2y * ystep;
break;
case 3:
Yc--;
delta -= 2 * Yc + 1;
xc += M3x * xstep;
yc += M3y * ystep;
break;
}
}
}
setsize(osize);
drawline((int)xc-ox1,(int)yc-oy1,".");
return (0);
}
int
putdot(x, y)
{
arcmove(x, y);
put1(drawdot);
return (0);
}