/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
*/
#include "statcommon.h"
#include "dsr.h"
#include <stdlib.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>
#include <limits.h>
#include <poll.h>
#define ARRAY_SIZE(a) (sizeof (a) / sizeof (*a))
/*
* The time we delay before retrying after an allocation
* failure, in milliseconds
*/
#define RETRY_DELAY 200
static char *cpu_states[] = {
"cpu_ticks_idle",
"cpu_ticks_user",
"cpu_ticks_kernel",
"cpu_ticks_wait"
};
static kstat_t *
kstat_lookup_read(kstat_ctl_t *kc, char *module,
int instance, char *name)
{
kstat_t *ksp = kstat_lookup(kc, module, instance, name);
if (ksp == NULL)
return (NULL);
if (kstat_read(kc, ksp, NULL) == -1)
return (NULL);
return (ksp);
}
/*
* Note: the following helpers do not clean up on the failure case,
* because it is left to the free_snapshot() in the acquire_snapshot()
* failure path.
*/
static int
acquire_cpus(struct snapshot *ss, kstat_ctl_t *kc)
{
size_t i;
ss->s_nr_cpus = sysconf(_SC_CPUID_MAX) + 1;
ss->s_cpus = calloc(ss->s_nr_cpus, sizeof (struct cpu_snapshot));
if (ss->s_cpus == NULL)
goto out;
for (i = 0; i < ss->s_nr_cpus; i++) {
kstat_t *ksp;
ss->s_cpus[i].cs_id = ID_NO_CPU;
ss->s_cpus[i].cs_state = p_online(i, P_STATUS);
/* If no valid CPU is present, move on to the next one */
if (ss->s_cpus[i].cs_state == -1)
continue;
ss->s_cpus[i].cs_id = i;
if ((ksp = kstat_lookup_read(kc, "cpu_info", i, NULL)) == NULL)
goto out;
(void) pset_assign(PS_QUERY, i, &ss->s_cpus[i].cs_pset_id);
if (ss->s_cpus[i].cs_pset_id == PS_NONE)
ss->s_cpus[i].cs_pset_id = ID_NO_PSET;
if (!CPU_ACTIVE(&ss->s_cpus[i]))
continue;
if ((ksp = kstat_lookup_read(kc, "cpu", i, "vm")) == NULL)
goto out;
if (kstat_copy(ksp, &ss->s_cpus[i].cs_vm))
goto out;
if ((ksp = kstat_lookup_read(kc, "cpu", i, "sys")) == NULL)
goto out;
if (kstat_copy(ksp, &ss->s_cpus[i].cs_sys))
goto out;
}
errno = 0;
out:
return (errno);
}
static int
acquire_psets(struct snapshot *ss)
{
psetid_t *pids = NULL;
struct pset_snapshot *ps;
size_t pids_nr;
size_t i, j;
/*
* Careful in this code. We have to use pset_list
* twice, but inbetween pids_nr can change at will.
* We delay the setting of s_nr_psets until we have
* the "final" value of pids_nr.
*/
if (pset_list(NULL, &pids_nr) < 0)
return (errno);
if ((pids = calloc(pids_nr, sizeof (psetid_t))) == NULL)
goto out;
if (pset_list(pids, &pids_nr) < 0)
goto out;
ss->s_psets = calloc(pids_nr + 1, sizeof (struct pset_snapshot));
if (ss->s_psets == NULL)
goto out;
ss->s_nr_psets = pids_nr + 1;
/* CPUs not in any actual pset */
ps = &ss->s_psets[0];
ps->ps_id = 0;
ps->ps_cpus = calloc(ss->s_nr_cpus, sizeof (struct cpu_snapshot *));
if (ps->ps_cpus == NULL)
goto out;
/* CPUs in a a pset */
for (i = 1; i < ss->s_nr_psets; i++) {
ps = &ss->s_psets[i];
ps->ps_id = pids[i - 1];
ps->ps_cpus =
calloc(ss->s_nr_cpus, sizeof (struct cpu_snapshot *));
if (ps->ps_cpus == NULL)
goto out;
}
for (i = 0; i < ss->s_nr_psets; i++) {
ps = &ss->s_psets[i];
for (j = 0; j < ss->s_nr_cpus; j++) {
if (!CPU_ACTIVE(&ss->s_cpus[j]))
continue;
if (ss->s_cpus[j].cs_pset_id != ps->ps_id)
continue;
ps->ps_cpus[ps->ps_nr_cpus++] = &ss->s_cpus[j];
}
}
errno = 0;
out:
free(pids);
return (errno);
}
static int
acquire_intrs(struct snapshot *ss, kstat_ctl_t *kc)
{
kstat_t *ksp;
size_t i = 0;
kstat_t *sys_misc;
kstat_named_t *clock;
/* clock interrupt */
ss->s_nr_intrs = 1;
for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) {
if (ksp->ks_type == KSTAT_TYPE_INTR)
ss->s_nr_intrs++;
}
ss->s_intrs = calloc(ss->s_nr_intrs, sizeof (struct intr_snapshot));
if (ss->s_intrs == NULL)
return (errno);
sys_misc = kstat_lookup_read(kc, "unix", 0, "system_misc");
if (sys_misc == NULL)
goto out;
clock = (kstat_named_t *)kstat_data_lookup(sys_misc, "clk_intr");
if (clock == NULL)
goto out;
(void) strlcpy(ss->s_intrs[0].is_name, "clock", KSTAT_STRLEN);
ss->s_intrs[0].is_total = clock->value.ui32;
i = 1;
for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) {
kstat_intr_t *ki;
int j;
if (ksp->ks_type != KSTAT_TYPE_INTR)
continue;
if (kstat_read(kc, ksp, NULL) == -1)
goto out;
ki = KSTAT_INTR_PTR(ksp);
(void) strlcpy(ss->s_intrs[i].is_name, ksp->ks_name,
KSTAT_STRLEN);
ss->s_intrs[i].is_total = 0;
for (j = 0; j < KSTAT_NUM_INTRS; j++)
ss->s_intrs[i].is_total += ki->intrs[j];
i++;
}
errno = 0;
out:
return (errno);
}
int
acquire_sys(struct snapshot *ss, kstat_ctl_t *kc)
{
size_t i;
kstat_named_t *knp;
kstat_t *ksp;
if ((ksp = kstat_lookup(kc, "unix", 0, "sysinfo")) == NULL)
return (errno);
if (kstat_read(kc, ksp, &ss->s_sys.ss_sysinfo) == -1)
return (errno);
if ((ksp = kstat_lookup(kc, "unix", 0, "vminfo")) == NULL)
return (errno);
if (kstat_read(kc, ksp, &ss->s_sys.ss_vminfo) == -1)
return (errno);
if ((ksp = kstat_lookup(kc, "unix", 0, "dnlcstats")) == NULL)
return (errno);
if (kstat_read(kc, ksp, &ss->s_sys.ss_nc) == -1)
return (errno);
if ((ksp = kstat_lookup(kc, "unix", 0, "system_misc")) == NULL)
return (errno);
if (kstat_read(kc, ksp, NULL) == -1)
return (errno);
knp = (kstat_named_t *)kstat_data_lookup(ksp, "clk_intr");
if (knp == NULL)
return (errno);
ss->s_sys.ss_ticks = knp->value.l;
knp = (kstat_named_t *)kstat_data_lookup(ksp, "deficit");
if (knp == NULL)
return (errno);
ss->s_sys.ss_deficit = knp->value.l;
for (i = 0; i < ss->s_nr_cpus; i++) {
if (!CPU_ACTIVE(&ss->s_cpus[i]))
continue;
if (kstat_add(&ss->s_cpus[i].cs_sys, &ss->s_sys.ss_agg_sys))
return (errno);
if (kstat_add(&ss->s_cpus[i].cs_vm, &ss->s_sys.ss_agg_vm))
return (errno);
ss->s_nr_active_cpus++;
}
return (0);
}
struct snapshot *
acquire_snapshot(kstat_ctl_t *kc, int types, struct iodev_filter *iodev_filter)
{
struct snapshot *ss = NULL;
int err;
retry:
err = 0;
/* ensure any partial resources are freed on a retry */
free_snapshot(ss);
ss = safe_alloc(sizeof (struct snapshot));
(void) memset(ss, 0, sizeof (struct snapshot));
ss->s_types = types;
/* wait for a possibly up-to-date chain */
while (kstat_chain_update(kc) == -1) {
if (errno == EAGAIN)
(void) poll(NULL, 0, RETRY_DELAY);
else
fail(1, "kstat_chain_update failed");
}
if (!err && (types & SNAP_INTERRUPTS))
err = acquire_intrs(ss, kc);
if (!err && (types & (SNAP_CPUS | SNAP_SYSTEM | SNAP_PSETS)))
err = acquire_cpus(ss, kc);
if (!err && (types & SNAP_PSETS))
err = acquire_psets(ss);
if (!err && (types & (SNAP_IODEVS | SNAP_CONTROLLERS |
SNAP_IOPATHS_LI | SNAP_IOPATHS_LTI)))
err = acquire_iodevs(ss, kc, iodev_filter);
if (!err && (types & SNAP_SYSTEM))
err = acquire_sys(ss, kc);
switch (err) {
case 0:
break;
case EAGAIN:
(void) poll(NULL, 0, RETRY_DELAY);
/* a kstat disappeared from under us */
/*FALLTHRU*/
case ENXIO:
case ENOENT:
goto retry;
default:
fail(1, "acquiring snapshot failed");
}
return (ss);
}
void
free_snapshot(struct snapshot *ss)
{
size_t i;
if (ss == NULL)
return;
while (ss->s_iodevs) {
struct iodev_snapshot *tmp = ss->s_iodevs;
ss->s_iodevs = ss->s_iodevs->is_next;
free_iodev(tmp);
}
if (ss->s_cpus) {
for (i = 0; i < ss->s_nr_cpus; i++) {
free(ss->s_cpus[i].cs_vm.ks_data);
free(ss->s_cpus[i].cs_sys.ks_data);
}
free(ss->s_cpus);
}
if (ss->s_psets) {
for (i = 0; i < ss->s_nr_psets; i++)
free(ss->s_psets[i].ps_cpus);
free(ss->s_psets);
}
free(ss->s_sys.ss_agg_sys.ks_data);
free(ss->s_sys.ss_agg_vm.ks_data);
free(ss);
}
kstat_ctl_t *
open_kstat(void)
{
kstat_ctl_t *kc;
while ((kc = kstat_open()) == NULL) {
if (errno == EAGAIN)
(void) poll(NULL, 0, RETRY_DELAY);
else
fail(1, "kstat_open failed");
}
return (kc);
}
void *
safe_alloc(size_t size)
{
void *ptr;
while ((ptr = malloc(size)) == NULL) {
if (errno == EAGAIN)
(void) poll(NULL, 0, RETRY_DELAY);
else
fail(1, "malloc failed");
}
return (ptr);
}
char *
safe_strdup(char *str)
{
char *ret;
if (str == NULL)
return (NULL);
while ((ret = strdup(str)) == NULL) {
if (errno == EAGAIN)
(void) poll(NULL, 0, RETRY_DELAY);
else
fail(1, "malloc failed");
}
return (ret);
}
uint64_t
kstat_delta(kstat_t *old, kstat_t *new, char *name)
{
kstat_named_t *knew = kstat_data_lookup(new, name);
if (old && old->ks_data) {
kstat_named_t *kold = kstat_data_lookup(old, name);
return (knew->value.ui64 - kold->value.ui64);
}
return (knew->value.ui64);
}
int
kstat_copy(const kstat_t *src, kstat_t *dst)
{
*dst = *src;
if (src->ks_data != NULL) {
if ((dst->ks_data = malloc(src->ks_data_size)) == NULL)
return (-1);
bcopy(src->ks_data, dst->ks_data, src->ks_data_size);
} else {
dst->ks_data = NULL;
dst->ks_data_size = 0;
}
return (0);
}
int
kstat_add(const kstat_t *src, kstat_t *dst)
{
size_t i;
kstat_named_t *from;
kstat_named_t *to;
if (dst->ks_data == NULL)
return (kstat_copy(src, dst));
from = src->ks_data;
to = dst->ks_data;
for (i = 0; i < src->ks_ndata; i++) {
/* "addition" makes little sense for strings */
if (from->data_type != KSTAT_DATA_CHAR &&
from->data_type != KSTAT_DATA_STRING)
(to)->value.ui64 += (from)->value.ui64;
from++;
to++;
}
return (0);
}
uint64_t
cpu_ticks_delta(kstat_t *old, kstat_t *new)
{
uint64_t ticks = 0;
size_t i;
for (i = 0; i < ARRAY_SIZE(cpu_states); i++)
ticks += kstat_delta(old, new, cpu_states[i]);
return (ticks);
}
int
nr_active_cpus(struct snapshot *ss)
{
size_t i;
int count = 0;
for (i = 0; i < ss->s_nr_cpus; i++) {
if (CPU_ACTIVE(&ss->s_cpus[i]))
count++;
}
return (count);
}
/*
* Return the number of ticks delta between two hrtime_t
* values. Attempt to cater for various kinds of overflow
* in hrtime_t - no matter how improbable.
*/
uint64_t
hrtime_delta(hrtime_t old, hrtime_t new)
{
uint64_t del;
if ((new >= old) && (old >= 0L))
return (new - old);
else {
/*
* We've overflowed the positive portion of an
* hrtime_t.
*/
if (new < 0L) {
/*
* The new value is negative. Handle the
* case where the old value is positive or
* negative.
*/
uint64_t n1;
uint64_t o1;
n1 = -new;
if (old > 0L)
return (n1 - old);
else {
o1 = -old;
del = n1 - o1;
return (del);
}
} else {
/*
* Either we've just gone from being negative
* to positive *or* the last entry was positive
* and the new entry is also positive but *less*
* than the old entry. This implies we waited
* quite a few days on a very fast system between
* iostat displays.
*/
if (old < 0L) {
uint64_t o2;
o2 = -old;
del = UINT64_MAX - o2;
} else {
del = UINT64_MAX - old;
}
del += new;
return (del);
}
}
}