util.c revision 5aefb6555731130ca4fd295960123d71f2d21fe8
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Utility routines for run-time linker. some are duplicated here from libc
* (with different names) to avoid name space collisions.
*/
#include "_synonyms.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/lwp.h>
#include <sys/debug.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
#include <dlfcn.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/auxv.h>
#include <debug.h>
#include <conv.h>
#include "_rtld.h"
#include "_audit.h"
#include "msg.h"
static int ld_flags_env(const char *, Word *, Word *, uint_t, int);
/*
* All error messages go through eprintf(). During process initialization these
* messages should be directed to the standard error, however once control has
* been passed to the applications code these messages should be stored in an
* internal buffer for use with dlerror(). Note, fatal error conditions that
* may occur while running the application will still cause a standard error
* message, see rtldexit() in this file for details.
* The `application' flag serves to indicate the transition between process
* initialization and when the applications code is running.
*/
/*
* Null function used as place where a debugger can set a breakpoint.
*/
void
rtld_db_dlactivity(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Null function used as place where debugger can set a pre .init
* processing breakpoint.
*/
void
rtld_db_preinit(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Null function used as place where debugger can set a post .init
* processing breakpoint.
*/
void
rtld_db_postinit(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Debugger Event Notification
*
* This function centralizes all debugger event notification (ala rtld_db).
*
* There's a simple intent, focused on insuring the primary link-map control
* list (or each link-map list) is consistent, and the indication that objects
* have been added or deleted from this list. Although an RD_ADD and RD_DELETE
* event are posted for each of these, most debuggers don't care, as their
* view is that these events simply convey an "inconsistent" state.
*
* We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
* enter ld.so.1.
*
* With auditors, we may be in the process of relocating a collection of
* objects, and will leave() ld.so.1 to call the auditor. At this point we
* must indicate an RD_CONSISTENT event, but librtld_db will not report an
* object to the debuggers until relocation processing has been completed on it.
* To allow for the collection of these objects that are pending relocation, an
* RD_ADD event is set after completing a series of relocations on the primary
* link-map control list.
*
* Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
* required later (LML_FLG_DBNOTIF):
*
* i the first time we add or delete an object to the primary link-map
* control list.
* ii the first time we move a secondary link-map control list to the primary
* link-map control list (effectively, this is like adding a group of
* objects to the primary link-map control list).
* iii the first time we relocate a series of objects on the primary link-map
* control list.
*
* Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and
*
* i each time we leave the runtime linker.
*/
void
rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
{
void (*fptr)();
switch (event) {
case RD_PREINIT:
fptr = rtld_db_preinit;
break;
case RD_POSTINIT:
fptr = rtld_db_postinit;
break;
case RD_DLACTIVITY:
switch (state) {
case RT_CONSISTENT:
lml->lm_flags &= ~LML_FLG_DBNOTIF;
/*
* Do we need to send a notification?
*/
if ((rtld_flags & RT_FL_DBNOTIF) == 0)
return;
rtld_flags &= ~RT_FL_DBNOTIF;
break;
case RT_ADD:
case RT_DELETE:
lml->lm_flags |= LML_FLG_DBNOTIF;
/*
* If we are already in an inconsistent state, no
* notification is required.
*/
if (rtld_flags & RT_FL_DBNOTIF)
return;
rtld_flags |= RT_FL_DBNOTIF;
break;
};
fptr = rtld_db_dlactivity;
break;
default:
/*
* RD_NONE - do nothing
*/
break;
};
/*
* Set event state and call 'notification' function.
*
* The debugging clients have previously been told about these
* notification functions and have set breakpoints on them if they
* are interested in the notification.
*/
r_debug.rtd_rdebug.r_state = state;
r_debug.rtd_rdebug.r_rdevent = event;
fptr(lml);
r_debug.rtd_rdebug.r_rdevent = RD_NONE;
}
#if defined(sparc) || defined(i386) || defined(__amd64)
/*
* Stack Cleanup.
*
* This function is invoked to 'remove' arguments that were passed in on the
* stack. This is most likely if ld.so.1 was invoked directly. In that case
* we want to remove ld.so.1 as well as it's arguments from the argv[] array.
* Which means we then need to slide everything above it on the stack down
* accordingly.
*
* While the stack layout is platform specific - it just so happens that x86,
* sparc, sparcv9, and amd64 all share the following initial stack layout.
*
* !_______________________! high addresses
* ! !
* ! Information !
* ! Block !
* ! (size varies) !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Auxiliary !
* ! vector !
* ! 2 word entries !
* ! !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Environment !
* ! pointers !
* ! ... !
* ! (one word each) !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Argument ! low addresses
* ! pointers !
* ! Argc words !
* !_______________________!
* ! !
* ! Argc !
* !_______________________!
* ! ... !
*
*/
static void
stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
{
int ndx;
long *argc;
char **oargv, **nargv;
char **oenvp, **nenvp;
auxv_t *oauxv, *nauxv;
/*
* Slide ARGV[] and update argc. The argv pointer remains the same,
* however slide the applications arguments over the arguments to
* ld.so.1.
*/
nargv = &argv[0];
oargv = &argv[rmcnt];
for (ndx = 0; oargv[ndx]; ndx++)
nargv[ndx] = oargv[ndx];
nargv[ndx] = oargv[ndx];
argc = (long *)((uintptr_t)argv - sizeof (long *));
*argc -= rmcnt;
/*
* Slide ENVP[], and update the environment array pointer.
*/
ndx++;
nenvp = &nargv[ndx];
oenvp = &oargv[ndx];
*envp = nenvp;
for (ndx = 0; oenvp[ndx]; ndx++)
nenvp[ndx] = oenvp[ndx];
nenvp[ndx] = oenvp[ndx];
/*
* Slide AUXV[], and update the aux vector pointer.
*/
ndx++;
nauxv = (auxv_t *)&nenvp[ndx];
oauxv = (auxv_t *)&oenvp[ndx];
*auxv = nauxv;
for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
nauxv[ndx] = oauxv[ndx];
nauxv[ndx] = oauxv[ndx];
}
#else
/*
* Verify that the above routine is appropriate for any new platforms.
*/
#error unsupported architecture!
#endif
/*
* The only command line argument recognized is -e, followed by a runtime
* linker environment variable.
*/
int
rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
Word *lmtflags, int aout)
{
int ndx;
for (ndx = 1; argv[ndx]; ndx++) {
char *str;
if (argv[ndx][0] != '-')
break;
if (argv[ndx][1] == '\0') {
ndx++;
break;
}
if (argv[ndx][1] != 'e')
return (1);
if (argv[ndx][2] == '\0') {
ndx++;
if (argv[ndx] == NULL)
return (1);
str = argv[ndx];
} else
str = &argv[ndx][2];
/*
* If the environment variable starts with LD_, strip the LD_.
* Otherwise, take things as is.
*/
if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
(str[3] != '\0'))
str += 3;
if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1)
return (1);
}
/*
* Make sure an object file has been specified.
*/
if (argv[ndx] == 0)
return (1);
/*
* Having gotten the arguments, clean ourselves off of the stack.
*/
stack_cleanup(argv, envp, auxv, ndx);
return (0);
}
/*
* Compare function for FullpathNode AVL tree.
*/
static int
fpavl_compare(const void * n1, const void * n2)
{
uint_t hash1, hash2;
const char *st1, *st2;
int rc;
hash1 = ((FullpathNode *)n1)->fpn_hash;
hash2 = ((FullpathNode *)n2)->fpn_hash;
if (hash1 > hash2)
return (1);
if (hash1 < hash2)
return (-1);
st1 = ((FullpathNode *)n1)->fpn_name;
st2 = ((FullpathNode *)n2)->fpn_name;
rc = strcmp(st1, st2);
if (rc > 0)
return (1);
if (rc < 0)
return (-1);
return (0);
}
/*
* Determine if a given pathname has already been loaded in the AVL tree.
* If the pathname does not exist in the AVL tree, the next insertion point
* is deposited in "where". This value can be used by fpavl_insert() to
* expedite the insertion.
*/
Rt_map *
fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where)
{
FullpathNode fpn, *fpnp;
avl_tree_t *avlt;
/*
* Create the avl tree if required.
*/
if ((avlt = lml->lm_fpavl) == NULL) {
if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0)
return (0);
avl_create(avlt, fpavl_compare, sizeof (FullpathNode),
SGSOFFSETOF(FullpathNode, fpn_avl));
lml->lm_fpavl = avlt;
}
fpn.fpn_name = name;
fpn.fpn_hash = sgs_str_hash(name);
if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
return (NULL);
return (fpnp->fpn_lmp);
}
/*
* Insert a name into the FullpathNode AVL tree for the link-map list. The
* objects NAME() is the path that would have originally been searched for, and
* is therefore the name to associate with any "where" value. If the object has
* a different PATHNAME(), perhaps because it has resolved to a different file
* (see fullpath), then this name is recorded also. See load_file().
*/
int
fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
{
FullpathNode *fpnp;
if (where == 0) {
/* LINTED */
Rt_map *_lmp = fpavl_loaded(lml, name, &where);
/*
* We better not get a hit now, we do not want duplicates in
* the tree.
*/
ASSERT(_lmp == 0);
}
/*
* Insert new node in tree
*/
if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0)
return (0);
fpnp->fpn_name = name;
fpnp->fpn_hash = sgs_str_hash(name);
fpnp->fpn_lmp = lmp;
if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *),
AL_CNT_FPNODE) == 0) {
free(fpnp);
return (0);
}
ASSERT(lml->lm_fpavl != NULL);
avl_insert(lml->lm_fpavl, fpnp, where);
return (1);
}
/*
* Remove an object from the Fullpath AVL tree. Note, this is called *before*
* the objects link-map is torn down (remove_so), which is where any NAME() and
* PATHNAME() strings will be deallocated.
*/
void
fpavl_remove(Rt_map *lmp)
{
FullpathNode **fpnpp;
Aliste off;
for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) {
FullpathNode *fpnp = *fpnpp;
avl_remove(LIST(lmp)->lm_fpavl, fpnp);
free(fpnp);
}
free(FPNODE(lmp));
FPNODE(lmp) = 0;
}
/*
* Prior to calling an object, either via a .plt or through dlsym(), make sure
* its .init has fired. Through topological sorting, ld.so.1 attempts to fire
* init's in the correct order, however, this order is typically based on needed
* dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
* still occur and result in bindings that were not captured during topological
* sorting. This routine compensates for this lack of binding information, and
* provides for dynamic .init firing.
*/
void
is_dep_init(Rt_map * dlmp, Rt_map * clmp)
{
Rt_map ** tobj;
/*
* If the caller is an auditor, and the destination isn't, then don't
* run any .inits (see comments in load_completion()).
*/
if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
(LIST(clmp) != LIST(dlmp)))
return;
if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST)))
return;
if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
(FLG_RT_RELOCED | FLG_RT_INITDONE))
return;
if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
(FLG_RT_RELOCED | FLG_RT_INITCALL)) {
DBG_CALL(Dbg_util_no_init(dlmp));
return;
}
if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
tobj[0] = dlmp;
call_init(tobj, DBG_INIT_DYN);
}
}
/*
* In a threaded environment insure the thread responsible for loading an object
* has completed .init processing for that object before any new thread is
* allowed to access the object. This check is only valid with libthread
* TI_VERSION 2, where ld.so.1 implements locking through low level mutexes.
*
* When a new link-map is created, the thread that causes it to be loaded is
* identified by THREADID(dlmp). Compare this with the current thread to
* determine if it must be blocked.
*
* NOTE, there are a number of instances (typically only for .plt processing)
* where we must skip this test:
*
* . any thread id of 0 - threads that call thr_exit() may be in this state
* thus we can't deduce what tid they used to be. Also some of the
* lib/libthread worker threads have this id and must bind (to themselves
* or libc) for libthread to function.
*
* . libthread itself binds to libc, and as libthread is INITFIRST
* libc's .init can't have fired yet. Luckly libc's .init is not required
* by libthreads binding.
*
* . if the caller is an auditor, and the destination isn't, then don't
* block (see comments in load_completion()).
*/
void
is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what)
{
thread_t tid;
if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
(LIST(clmp) != LIST(dlmp)))
return;
if ((rtld_flags & RT_FL_CONCUR) &&
((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) &&
((FLAGS(clmp) & FLG_RT_INITFRST) == 0) &&
((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) {
while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) {
FLAGS1(dlmp) |= FL1_RT_INITWAIT;
DBG_CALL(Dbg_util_wait(clmp, dlmp, what));
(void) rt_cond_wait(CONDVAR(dlmp), &rtldlock);
}
}
}
/*
* Execute .{preinit|init|fini}array sections
*/
void
call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
{
int start, stop, incr, ndx;
uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr));
if (array == NULL)
return;
/*
* initarray & preinitarray are walked from beginning to end - while
* finiarray is walked from end to beginning.
*/
if (shtype == SHT_FINI_ARRAY) {
start = arraycnt - 1;
stop = incr = -1;
} else {
start = 0;
stop = arraycnt;
incr = 1;
}
/*
* Call the .*array[] entries
*/
for (ndx = start; ndx != stop; ndx += incr) {
void (* fptr)() = (void(*)())array[ndx];
DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
leave(LIST(lmp));
(*fptr)();
(void) enter();
}
}
/*
* Execute any .init sections. These are passed to us in an lmp array which
* (by default) will have been sorted.
*/
void
call_init(Rt_map ** tobj, int flag)
{
Rt_map ** _tobj, ** _nobj;
static List pending = { NULL, NULL };
/*
* If we're in the middle of an INITFIRST, this must complete before
* any new init's are fired. In this case add the object list to the
* pending queue and return. We'll pick up the queue after any
* INITFIRST objects have their init's fired.
*/
if (rtld_flags & RT_FL_INITFIRST) {
(void) list_append(&pending, tobj);
return;
}
/*
* If a 'thread initialization' is pending - call it now before any
* .init code is fired. Also clear the thrinit() to mark it as done.
* Note, this is called for each link-map list, which is what libc
* expects.
*/
if (thrinit) {
void (*_thrinit)() = thrinit;
thrinit = 0;
leave((Lm_list *)0);
_thrinit();
(void) enter();
}
/*
* Traverse the tobj array firing each objects init.
*/
for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
Rt_map * lmp = *_tobj;
void (* iptr)() = INIT(lmp);
if (FLAGS(lmp) & FLG_RT_INITCALL)
continue;
FLAGS(lmp) |= FLG_RT_INITCALL;
/*
* Establish an initfirst state if necessary - no other inits
* will be fired (because of additional relocation bindings)
* when in this state.
*/
if (FLAGS(lmp) & FLG_RT_INITFRST)
rtld_flags |= RT_FL_INITFIRST;
if (INITARRAY(lmp) || iptr) {
Aliste off;
Bnd_desc ** bdpp;
/*
* Make sure that all dependencies that have been
* relocated to are initialized before this objects
* .init is executed. This insures that a dependency
* on an external item that must first be initialized
* by its associated object is satisfied.
*/
for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) {
Bnd_desc * bdp = *bdpp;
if ((bdp->b_flags & BND_REFER) == 0)
continue;
is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT);
}
DBG_CALL(Dbg_util_call_init(lmp, flag));
}
if (iptr) {
leave(LIST(lmp));
(*iptr)();
(void) enter();
}
call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
SHT_INIT_ARRAY);
if (INITARRAY(lmp) || iptr)
DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
/*
* Set the initdone flag regardless of whether this object
* actually contains an .init section. This flag prevents us
* from processing this section again for an .init and also
* signifies that a .fini must be called should it exist.
* Clear the sort field for use in later .fini processing.
*/
FLAGS(lmp) |= FLG_RT_INITDONE;
SORTVAL(lmp) = -1;
/*
* Wake anyone up who might be waiting on this .init.
*/
if (FLAGS1(lmp) & FL1_RT_INITWAIT) {
DBG_CALL(Dbg_util_broadcast(lmp));
(void) rt_cond_broadcast(CONDVAR(lmp));
FLAGS1(lmp) &= ~FL1_RT_INITWAIT;
}
/*
* If we're firing an INITFIRST object, and other objects must
* be fired which are not INITFIRST, make sure we grab any
* pending objects that might have been delayed as this
* INITFIRST was processed.
*/
if ((rtld_flags & RT_FL_INITFIRST) &&
((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
Listnode * lnp;
Rt_map ** pobj;
rtld_flags &= ~RT_FL_INITFIRST;
while ((lnp = pending.head) != NULL) {
if ((pending.head = lnp->next) == NULL)
pending.tail = NULL;
pobj = lnp->data;
free(lnp);
call_init(pobj, DBG_INIT_PEND);
}
}
}
free(tobj);
}
/*
* Function called by atexit(3C). Calls all .fini sections related with the
* mains dependent shared libraries in the order in which the shared libraries
* have been loaded. Skip any .fini defined in the main executable, as this
* will be called by crt0 (main was never marked as initdone).
*/
void
call_fini(Lm_list * lml, Rt_map ** tobj)
{
Rt_map **_tobj;
for (_tobj = tobj; *_tobj != NULL; _tobj++) {
Rt_map * clmp, * lmp = *_tobj;
Aliste off;
Bnd_desc ** bdpp;
/*
* If concurrency checking isn't enabled only fire .fini if
* .init has completed. We collect all .fini sections of
* objects that had their .init collected, but that doesn't
* mean at the time that the .init had completed.
*/
if ((rtld_flags & RT_FL_CONCUR) ||
(FLAGS(lmp) & FLG_RT_INITDONE)) {
void (*fptr)() = FINI(lmp);
if (FINIARRAY(lmp) || fptr) {
/*
* If concurrency checking is enabled make sure
* this object's .init is completed before
* calling any .fini.
*/
is_dep_ready(lmp, lmp, DBG_WAIT_FINI);
DBG_CALL(Dbg_util_call_fini(lmp));
}
call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
SHT_FINI_ARRAY);
if (fptr) {
leave(LIST(lmp));
(*fptr)();
(void) enter();
}
}
/*
* Skip main, this is explicitly called last in atexit_fini().
*/
if (FLAGS(lmp) & FLG_RT_ISMAIN)
continue;
/*
* Audit `close' operations at this point. The library has
* exercised its last instructions (regardless of whether it
* will be unmapped or not).
*
* First call any global auditing.
*/
if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE)
_audit_objclose(&(auditors->ad_list), lmp);
/*
* Finally determine whether this object has local auditing
* requirements by inspecting itself and then its dependencies.
*/
if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0)
continue;
if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE)
_audit_objclose(&(AUDITORS(lmp)->ad_list), lmp);
for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
Bnd_desc * bdp = *bdpp;
clmp = bdp->b_caller;
if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) {
_audit_objclose(&(AUDITORS(clmp)->ad_list), lmp);
break;
}
}
}
DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
pltcntu32, pltcntu44, pltcntfull, pltcntfar));
free(tobj);
}
void
atexit_fini()
{
Rt_map ** tobj, * lmp;
Lm_list * lml;
Listnode * lnp;
(void) enter();
rtld_flags |= RT_FL_ATEXIT;
lml = &lml_main;
lml->lm_flags |= LML_FLG_ATEXIT;
lmp = (Rt_map *)lml->lm_head;
/*
* Display any objects that haven't been referenced so far.
*/
unused(lml);
/*
* Reverse topologically sort the main link-map for .fini execution.
*/
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj);
/*
* Add an explicit close to main and ld.so.1. Although main's .fini is
* collected in call_fini() to provide for FINITARRAY processing, its
* audit_objclose is explicitly skipped. This provides for it to be
* called last, here. This is the reverse of the explicit calls to
* audit_objopen() made in setup().
*/
if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) {
audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head);
audit_objclose(lmp, lmp);
}
/*
* Now that all .fini code has been run, see what unreferenced objects
* remain. Any difference between this and the above unused() would
* indicate an object is only being used for .fini processing, which
* might be fine, but might also indicate an overhead whose removal
* would be worth considering.
*/
unused(lml);
/*
* Traverse any alternative link-map lists.
*/
for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) {
if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM))
continue;
if ((lmp = (Rt_map *)lml->lm_head) == 0)
continue;
lml->lm_flags |= LML_FLG_ATEXIT;
/*
* Reverse topologically sort the link-map for .fini execution.
*/
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj);
unused(lml);
}
/*
* Finally reverse topologically sort the runtime linkers link-map for
* .fini execution.
*/
lml = &lml_rtld;
lml->lm_flags |= LML_FLG_ATEXIT;
lmp = (Rt_map *)lml->lm_head;
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj);
leave(&lml_main);
}
/*
* This routine is called to complete any runtime linker activity which may have
* resulted in objects being loaded. This is called from all user entry points
* and from any internal dl*() requests.
*/
void
load_completion(Rt_map * nlmp, Rt_map * clmp)
{
Rt_map **tobj = 0;
/*
* Establish any .init processing. Note, in a world of lazy loading,
* objects may have been loaded regardless of whether the users request
* was fulfilled (i.e., a dlsym() request may have failed to find a
* symbol but objects might have been loaded during its search). Thus,
* any tsorting starts from the nlmp (new link-maps) pointer and not
* necessarily from the link-map that may have satisfied the request.
*
* Note, if the caller is an auditor, and the destination isn't, then
* don't run any .inits. This scenario is typical of an auditor trying
* to inspect another link-map for symbols. Allow this inspection
* without running any code on the inspected link-map, as running this
* code may reenter the auditor, who has not yet finished their own
* initialization.
*/
if (nlmp && ((clmp == 0) ||
((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) == 0) ||
(LIST(clmp) == LIST(nlmp)))) {
if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init,
RT_SORT_REV)) == (Rt_map **)S_ERROR)
tobj = 0;
}
/*
* Indicate the link-map list is consistent.
*/
if (clmp &&
((LIST(clmp)->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY))
audit_activity(clmp, LA_ACT_CONSISTENT);
/*
* Fire any .init's.
*/
if (tobj)
call_init(tobj, DBG_INIT_SORT);
}
/*
* Append an item to the specified list, and return a pointer to the list
* node created.
*/
Listnode *
list_append(List *lst, const void *item)
{
Listnode * _lnp;
if ((_lnp = malloc(sizeof (Listnode))) == 0)
return (0);
_lnp->data = (void *)item;
_lnp->next = NULL;
if (lst->head == NULL)
lst->tail = lst->head = _lnp;
else {
lst->tail->next = _lnp;
lst->tail = lst->tail->next;
}
return (_lnp);
}
/*
* Add an item after specified listnode, and return a pointer to the list
* node created.
*/
Listnode *
list_insert(List *lst, const void *item, Listnode *lnp)
{
Listnode * _lnp;
if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
return (0);
_lnp->data = (void *)item;
_lnp->next = lnp->next;
if (_lnp->next == NULL)
lst->tail = _lnp;
lnp->next = _lnp;
return (_lnp);
}
/*
* Prepend an item to the specified list, and return a pointer to the
* list node created.
*/
Listnode *
list_prepend(List * lst, const void * item)
{
Listnode * _lnp;
if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
return (0);
_lnp->data = (void *)item;
if (lst->head == NULL) {
_lnp->next = NULL;
lst->tail = lst->head = _lnp;
} else {
_lnp->next = lst->head;
lst->head = _lnp;
}
return (_lnp);
}
/*
* Delete a 'listnode' from a list.
*/
void
list_delete(List * lst, void * item)
{
Listnode * clnp, * plnp;
for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) {
if (item == clnp->data)
break;
plnp = clnp;
}
if (clnp == 0)
return;
if (lst->head == clnp)
lst->head = clnp->next;
if (lst->tail == clnp)
lst->tail = plnp;
if (plnp)
plnp->next = clnp->next;
free(clnp);
}
/*
* Append an item to the specified link map control list.
*/
void
lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
{
Lm_cntl *lmc;
int add = 1;
/*
* Indicate that this link-map list has a new object.
*/
(lml->lm_obj)++;
/*
* Alert the debuggers that we are about to mess with the main link-map
* control list.
*/
if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
rd_event(lml, RD_DLACTIVITY, RT_DELETE);
/* LINTED */
lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco);
/*
* A link-map list header points to one of more link-map control lists
* (see include/rtld.h). The initial list, pointed to by lm_cntl, is
* the list of relocated objects. Other lists maintain objects that
* are still being analyzed or relocated. This list provides the core
* link-map list information used by all ld.so.1 routines.
*/
if (lmc->lc_head == NULL) {
/*
* If this is the first link-map for the given control list,
* initialize the list.
*/
lmc->lc_head = lmc->lc_tail = lmp;
add = 0;
} else if (FLAGS(lmp) & FLG_RT_INTRPOSE) {
Rt_map *tlmp;
/*
* If this is an interposer then append the link-map following
* any other interposers (these are objects that have been
* previously preloaded, or were identified with -z interpose).
* Interposers can only be inserted on the first link-map
* control list, as once relocation has started, interposition
* from new interposers can't be guaranteed.
*
* NOTE: We do not interpose on the head of a list. This model
* evolved because dynamic executables have already been fully
* relocated within themselves and thus can't be interposed on.
* Nowadays it's possible to have shared objects at the head of
* a list, which conceptually means they could be interposed on.
* But, shared objects can be created via dldump() and may only
* be partially relocated (just relatives), in which case they
* are interposable, but are marked as fixed (ET_EXEC).
*
* Thus we really don't have a clear method of deciding when the
* head of a link-map is interposable. So, to be consistent,
* for now only add interposers after the link-map lists head
* object.
*/
for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp;
tlmp = (Rt_map *)NEXT(tlmp)) {
if (FLAGS(tlmp) & FLG_RT_INTRPOSE)
continue;
/*
* Insert the new link-map before this non-interposer,
* and indicate an interposer is found.
*/
NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp;
PREV(lmp) = PREV(tlmp);
NEXT(lmp) = (Link_map *)tlmp;
PREV(tlmp) = (Link_map *)lmp;
lmc->lc_flags |= LMC_FLG_REANALYZE;
add = 0;
break;
}
}
/*
* Fall through to appending the new link map to the tail of the list.
* If we're processing the initial objects of this link-map list, add
* them to the backward compatibility list.
*/
if (add) {
NEXT(lmc->lc_tail) = (Link_map *)lmp;
PREV(lmp) = (Link_map *)lmc->lc_tail;
lmc->lc_tail = lmp;
}
/*
* Having added this link-map to a control list, indicate which control
* list the link-map belongs to. Note, control list information is
* always maintained as an offset, as the Alist can be reallocated.
*/
CNTL(lmp) = lmco;
/*
* Indicate if an interposer is found. Note that the first object on a
* link-map can be explicitly defined as an interposer so that it can
* provide interposition over direct binding requests.
*/
if (FLAGS(lmp) & FLG_RT_INTRPOSE)
lml->lm_flags |= LML_FLG_INTRPOSE;
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (lmco == ALO_DATA) {
lml->lm_head = lmc->lc_head;
lml->lm_tail = lmc->lc_tail;
}
}
/*
* Delete an item from the specified link map control list.
*/
void
lm_delete(Lm_list *lml, Rt_map *lmp)
{
Lm_cntl *lmc;
/*
* If the control list pointer hasn't been initialized, this object
* never got added to a link-map list.
*/
if (CNTL(lmp) == 0)
return;
/*
* Alert the debuggers that we are about to mess with the main link-map
* control list.
*/
if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
rd_event(lml, RD_DLACTIVITY, RT_DELETE);
/* LINTED */
lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp));
if (lmc->lc_head == lmp)
lmc->lc_head = (Rt_map *)NEXT(lmp);
else
NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp);
if (lmc->lc_tail == lmp)
lmc->lc_tail = (Rt_map *)PREV(lmp);
else
PREV((Rt_map *)NEXT(lmp)) = PREV(lmp);
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) {
lml->lm_head = lmc->lc_head;
lml->lm_tail = lmc->lc_tail;
}
/*
* Indicate we have one less object on this control list.
*/
(lml->lm_obj)--;
}
/*
* Move a link-map control list to another. Objects that are being relocated
* are maintained on secondary control lists. Once their relocation is
* complete, the entire list is appended to the previous control list, as this
* list must have been the trigger for generating the new control list.
*/
void
lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
{
Rt_map *lmp;
DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
/*
* Alert the debuggers that we are about to mess with the main link-map
* control list.
*/
if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
rd_event(lml, RD_DLACTIVITY, RT_ADD);
/*
* Indicate each new link-map has been moved to the previous link-map
* control list.
*/
for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp))
CNTL(lmp) = plmco;
/*
* Move the new link-map control list, to the callers link-map control
* list.
*/
if (plmc->lc_head == 0) {
plmc->lc_head = nlmc->lc_head;
PREV(nlmc->lc_head) = 0;
} else {
NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
}
plmc->lc_tail = nlmc->lc_tail;
nlmc->lc_head = nlmc->lc_tail = 0;
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (plmco == ALO_DATA) {
lml->lm_head = plmc->lc_head;
lml->lm_tail = plmc->lc_tail;
}
}
/*
* Dlopening a family of objects occurs on a new link-map control list. If the
* dlopen fails, then its handle is used to tear down the family (dlclose).
* However, the relocation of this family may have triggered other objects to
* be loaded, and after their relocation they will have been moved to the
* dlopen families control list. After a dlopen() failure, see if there are
* any objects that can be savaged before tearing down this control list.
*/
int
lm_salvage(Lm_list *lml, int test, Aliste nlmco)
{
Lm_cntl *nlmc;
/*
* If a dlopen occurred on a new link-map list, then its dlclose may
* have completely torn down the link-map list. Check that the link-map
* list still exists before proceeding.
*/
if (test) {
Listnode *lnp;
Lm_list *tlml;
int found = 0;
for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) {
if (tlml == lml) {
found++;
break;
}
}
if (found == 0)
return (0);
}
/* LINTED */
nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco);
/*
* If this link-map control list still contains objects, determine the
* previous control list and move the objects.
*/
if (nlmc->lc_head) {
Lm_cntl *plmc;
Aliste plmco;
plmco = nlmco - lml->lm_lists->al_size;
/* LINTED */
plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco);
lm_move(lml, nlmco, plmco, nlmc, plmc);
}
return (1);
}
/*
* Environment variables can have a variety of defined permutations, and thus
* the following infrastructure exists to allow this variety and to select the
* required definition.
*
* Environment variables can be defined as 32- or 64-bit specific, and if so
* they will take precedence over any instruction set neutral form. Typically
* this is only useful when the environment value is an informational string.
*
* Environment variables may be obtained from the standard user environment or
* from a configuration file. The latter provides a fallback if no user
* environment setting is found, and can take two forms:
*
* . a replaceable definition - this will be used if no user environment
* setting has been seen, or
*
* . an permanent definition - this will be used no matter what user
* environment setting is seen. In the case of list variables it will be
* appended to any process environment setting seen.
*
* Environment variables can be defined without a value (ie. LD_XXXX=) so as to
* override any replaceable environment variables from a configuration file.
*/
static u_longlong_t rplgen; /* replaceable generic */
/* variables */
static u_longlong_t rplisa; /* replaceable ISA specific */
/* variables */
static u_longlong_t prmgen; /* permanent generic */
/* variables */
static u_longlong_t prmisa; /* permanent ISA specific */
/* variables */
/*
* Classify an environment variables type.
*/
#define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */
/* the wrong ISA */
#define ENV_TYP_ISA 0x2 /* variable is ISA specific */
#define ENV_TYP_CONFIG 0x4 /* variable obtained from a */
/* config file */
#define ENV_TYP_PERMANT 0x8 /* variable is permanent */
/*
* Identify all environment variables.
*/
#define ENV_FLG_AUDIT 0x0000000001ULL
#define ENV_FLG_AUDIT_ARGS 0x0000000002ULL
#define ENV_FLG_BIND_NOW 0x0000000004ULL
#define ENV_FLG_BIND_NOT 0x0000000008ULL
#define ENV_FLG_BINDINGS 0x0000000010ULL
#define ENV_FLG_CONCURRENCY 0x0000000020ULL
#define ENV_FLG_CONFGEN 0x0000000040ULL
#define ENV_FLG_CONFIG 0x0000000080ULL
#define ENV_FLG_DEBUG 0x0000000100ULL
#define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL
#define ENV_FLG_DEMANGLE 0x0000000400ULL
#define ENV_FLG_FLAGS 0x0000000800ULL
#define ENV_FLG_INIT 0x0000001000ULL
#define ENV_FLG_LIBPATH 0x0000002000ULL
#define ENV_FLG_LOADAVAIL 0x0000004000ULL
#define ENV_FLG_LOADFLTR 0x0000008000ULL
#define ENV_FLG_NOAUDIT 0x0000010000ULL
#define ENV_FLG_NOAUXFLTR 0x0000020000ULL
#define ENV_FLG_NOBAPLT 0x0000040000ULL
#define ENV_FLG_NOCONFIG 0x0000080000ULL
#define ENV_FLG_NODIRCONFIG 0x0000100000ULL
#define ENV_FLG_NODIRECT 0x0000200000ULL
#define ENV_FLG_NOENVCONFIG 0x0000400000ULL
#define ENV_FLG_NOLAZY 0x0000800000ULL
#define ENV_FLG_NOOBJALTER 0x0001000000ULL
#define ENV_FLG_NOVERSION 0x0002000000ULL
#define ENV_FLG_PRELOAD 0x0004000000ULL
#define ENV_FLG_PROFILE 0x0008000000ULL
#define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL
#define ENV_FLG_SIGNAL 0x0020000000ULL
#define ENV_FLG_TRACE_OBJS 0x0040000000ULL
#define ENV_FLG_TRACE_PTHS 0x0080000000ULL
#define ENV_FLG_UNREF 0x0100000000ULL
#define ENV_FLG_UNUSED 0x0200000000ULL
#define ENV_FLG_VERBOSE 0x0400000000ULL
#define ENV_FLG_WARN 0x0800000000ULL
#define ENV_FLG_NOFLTCONFIG 0x1000000000ULL
#define ENV_FLG_BIND_LAZY 0x2000000000ULL
#ifdef SIEBEL_DISABLE
#define ENV_FLG_FIX_1 0x8000000000ULL
#endif
#define SEL_REPLACE 0x0001
#define SEL_PERMANT 0x0002
#define SEL_ACT_RT 0x0100 /* setting rtld_flags */
#define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
#define SEL_ACT_STR 0x0400 /* setting string value */
#define SEL_ACT_LML 0x0800 /* setting lml_flags */
#define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
#define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */
#define SEL_ACT_SPEC_2 0x4000 /* need special handling */
/*
* Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
* and len specifies its length (comparing a strings length before the string
* itself speed things up). s2 points to the token itself which has already
* had any leading white-space removed.
*/
static void
ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
Word *lmtflags, uint_t env_flags, int aout)
{
u_longlong_t variable = 0;
unsigned short select = 0;
const char **str;
Word val = 0;
/*
* Determine whether we're dealing with a replaceable or permanent
* string.
*/
if (env_flags & ENV_TYP_PERMANT) {
/*
* If the string is from a configuration file and defined as
* permanent, assign it as permanent.
*/
select |= SEL_PERMANT;
} else
select |= SEL_REPLACE;
/*
* Parse the variable given.
*
* The LD_AUDIT family.
*/
if (*s1 == 'A') {
if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
/*
* Replaceable and permanent audit objects can exist.
*/
select |= SEL_ACT_STR;
if (select & SEL_REPLACE)
str = &rpl_audit;
else {
str = &prm_audit;
rpl_audit = 0;
}
variable = ENV_FLG_AUDIT;
} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
/*
* A specialized variable for plt_exit() use, not
* documented for general use.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_AUDIT_ARGS;
}
}
/*
* The LD_BIND family and LD_BREADTH (historic).
*/
else if (*s1 == 'B') {
if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_LAZY),
MSG_LD_BIND_LAZY_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_BINDLAZY;
variable = ENV_FLG_BIND_LAZY;
} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_BINDNOW;
variable = ENV_FLG_BIND_NOW;
} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
/*
* Another trick, enabled to help debug AOUT
* applications under BCP, but not documented for
* general use.
*/
select |= SEL_ACT_RT;
val = RT_FL_NOBIND;
variable = ENV_FLG_BIND_NOT;
} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
/*
* This variable is simply for backward compatibility.
* If this and LD_DEBUG are both specified, only one of
* the strings is going to get processed.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_BINDINGS;
#ifndef LD_BREADTH_DISABLED
} else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) {
/*
* Besides some old patches this is no longer available.
*/
rtld_flags |= RT_FL_BREADTH;
return;
#endif
}
}
/*
* LD_CONCURRENCY and LD_CONFIG family.
*/
else if (*s1 == 'C') {
if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CONCURRENCY),
MSG_LD_CONCURRENCY_SIZE) == 0)) {
/*
* Waiting in the wings, as concurrency checking isn't
* yet enabled.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_CONCURRENCY;
} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
/*
* Set by crle(1) to indicate it's building a
* configuration file, not documented for general use.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_CONFGEN;
} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
/*
* Secure applications must use a default configuration
* file. A setting from a configuration file doesn't
* make sense (given we must be reading a configuration
* file to have gotten this).
*/
if ((rtld_flags & RT_FL_SECURE) ||
(env_flags & ENV_TYP_CONFIG))
return;
select |= SEL_ACT_STR;
str = &config->c_name;
variable = ENV_FLG_CONFIG;
}
}
/*
* The LD_DEBUG family and LD_DEMANGLE.
*/
else if (*s1 == 'D') {
if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
select |= SEL_ACT_STR;
if (select & SEL_REPLACE)
str = &rpl_debug;
else {
str = &prm_debug;
rpl_debug = 0;
}
variable = ENV_FLG_DEBUG;
} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = &dbg_file;
variable = ENV_FLG_DEBUG_OUTPUT;
} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_DEMANGLE;
variable = ENV_FLG_DEMANGLE;
}
}
/*
* LD_FLAGS - collect the best variable definition. On completion of
* environment variable processing pass the result to ld_flags_env()
* where they'll be decomposed and passed back to this routine.
*/
else if (*s1 == 'F') {
if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
select |= SEL_ACT_SPEC_1;
if (select & SEL_REPLACE)
str = &rpl_ldflags;
else {
str = &prm_ldflags;
rpl_ldflags = 0;
}
variable = ENV_FLG_FLAGS;
}
}
/*
* LD_INIT (internal, used by ldd(1)).
*/
else if (*s1 == 'I') {
if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_INIT;
variable = ENV_FLG_INIT;
}
}
/*
* The LD_LIBRARY_PATH and LD_LOAD families.
*/
else if (*s1 == 'L') {
if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
select |= SEL_ACT_SPEC_1;
if (select & SEL_REPLACE)
str = &rpl_libpath;
else {
str = &prm_libpath;
rpl_libpath = 0;
}
variable = ENV_FLG_LIBPATH;
} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
/*
* Internal use by crle(1), not documented for general
* use.
*/
select |= SEL_ACT_LML;
val = LML_FLG_LOADAVAIL;
variable = ENV_FLG_LOADAVAIL;
} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_LOADFLTR;
}
}
/*
* The LD_NO family.
*/
else if (*s1 == 'N') {
if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOAUDIT;
variable = ENV_FLG_NOAUDIT;
} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOAUXFLTR;
variable = ENV_FLG_NOAUXFLTR;
} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOBAPLT;
variable = ENV_FLG_NOBAPLT;
} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOCFG;
variable = ENV_FLG_NOCONFIG;
} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NODIRCONFIG),
MSG_LD_NODIRCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NODIRCFG;
variable = ENV_FLG_NODIRCONFIG;
} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
select |= SEL_ACT_LMLT;
val = LML_TFLG_NODIRECT;
variable = ENV_FLG_NODIRECT;
} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOENVCONFIG),
MSG_LD_NOENVCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOENVCFG;
variable = ENV_FLG_NOENVCONFIG;
} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOFLTCONFIG),
MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_NOFLTCFG;
variable = ENV_FLG_NOFLTCONFIG;
} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
select |= SEL_ACT_LMLT;
val = LML_TFLG_NOLAZYLD;
variable = ENV_FLG_NOLAZY;
} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOOBJALTER),
MSG_LD_NOOBJALTER_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOOBJALT;
variable = ENV_FLG_NOOBJALTER;
} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOVERSION;
variable = ENV_FLG_NOVERSION;
}
}
/*
* LD_ORIGIN.
*/
else if (*s1 == 'O') {
#ifndef EXPAND_RELATIVE
if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) {
/*
* Besides some old patches this is no longer required.
*/
rtld_flags |= RT_FL_RELATIVE;
}
#endif
return;
}
/*
* LD_PRELOAD and LD_PROFILE family.
*/
else if (*s1 == 'P') {
if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
select |= SEL_ACT_STR;
if (select & SEL_REPLACE)
str = &rpl_preload;
else {
str = &prm_preload;
rpl_preload = 0;
}
variable = ENV_FLG_PRELOAD;
} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
/*
* Only one user library can be profiled at a time.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_PROFILE;
} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
/*
* Only one user library can be profiled at a time.
*/
select |= SEL_ACT_STR;
str = &profile_out;
variable = ENV_FLG_PROFILE_OUTPUT;
}
}
/*
* LD_SIGNAL.
*/
else if (*s1 == 'S') {
if (rtld_flags & RT_FL_SECURE)
return;
if ((len == MSG_LD_SIGNAL_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
MSG_LD_SIGNAL_SIZE) == 0)) {
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_SIGNAL;
}
}
/*
* The LD_TRACE family (internal, used by ldd(1)).
*/
else if (*s1 == 'T') {
if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
(((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_TRACE_OBJS;
} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_TRACE_PTHS),
MSG_LD_TRACE_PTHS_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_SEARCH;
variable = ENV_FLG_TRACE_PTHS;
}
}
/*
* LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
*/
else if (*s1 == 'U') {
if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_UNREF;
variable = ENV_FLG_UNREF;
} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_UNUSED;
variable = ENV_FLG_UNUSED;
}
}
/*
* LD_VERBOSE (internal, used by ldd(1)).
*/
else if (*s1 == 'V') {
if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_VERBOSE;
variable = ENV_FLG_VERBOSE;
}
}
/*
* LD_WARN (internal, used by ldd(1)).
*/
else if (*s1 == 'W') {
if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_WARN;
variable = ENV_FLG_WARN;
}
#ifdef SIEBEL_DISABLE
}
/*
* LD__FIX__ (undocumented, enable future technology that can't be
* delivered in a patch release).
*/
else if (*s1 == '_') {
if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_DISFIX_1;
variable = ENV_FLG_FIX_1;
}
#endif
}
if (variable == 0)
return;
/*
* If the variable is already processed with ISA specific variable,
* no further processing needed.
*/
if (((select & SEL_REPLACE) && (rplisa & variable)) ||
((select & SEL_PERMANT) && (prmisa & variable)))
return;
/*
* Now mark the appropriate variables.
* If the replaceable variable is already set, then the
* process environment variable must be set. Any replaceable
* variable specified in a configuration file can be ignored.
*/
if (env_flags & ENV_TYP_ISA) {
/*
* This is ISA setting. We do the setting
* even if s2 is NULL.
* If s2 is NULL, we might need to undo
* the setting.
*/
if (select & SEL_REPLACE) {
if (rplisa & variable)
return;
rplisa |= variable;
} else {
prmisa |= variable;
}
} else if (s2) {
/*
* This is non0-ISA setting
*/
if (select & SEL_REPLACE) {
if (rplgen & variable)
return;
rplgen |= variable;
} else
prmgen |= variable;
} else
/*
* This is non-ISA setting which
* can be ignored.
*/
return;
/*
* Now perform the setting.
*/
if (select & SEL_ACT_RT) {
if (s2)
rtld_flags |= val;
else
rtld_flags &= ~val;
} else if (select & SEL_ACT_RT2) {
if (s2)
rtld_flags2 |= val;
else
rtld_flags2 &= ~val;
} else if (select & SEL_ACT_STR)
*str = s2;
else if (select & SEL_ACT_LML) {
if (s2)
*lmflags |= val;
else
*lmflags &= ~val;
} else if (select & SEL_ACT_LMLT) {
if (s2)
*lmtflags |= val;
else
*lmtflags &= ~val;
} else if (select & SEL_ACT_SPEC_1) {
/*
* variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
*/
*str = s2;
if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
if (s2) {
if (variable == ENV_FLG_FLAGS)
env_info |= ENV_INF_FLAGCFG;
else
env_info |= ENV_INF_PATHCFG;
} else {
if (variable == ENV_FLG_FLAGS)
env_info &= ~ENV_INF_FLAGCFG;
else
env_info &= ~ENV_INF_PATHCFG;
}
}
} else if (select & SEL_ACT_SPEC_2) {
/*
* variables can be: ENV_FLG_
* AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN,
* LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS
*/
if (variable == ENV_FLG_AUDIT_ARGS) {
if (s2) {
audit_argcnt = atoi(s2);
audit_argcnt += audit_argcnt % 2;
} else
audit_argcnt = 0;
} else if (variable == ENV_FLG_BINDINGS) {
if (s2)
rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
else
rpl_debug = 0;
} else if (variable == ENV_FLG_CONCURRENCY) {
if (s2)
rtld_flags &= ~RT_FL_NOCONCUR;
else
rtld_flags |= RT_FL_NOCONCUR;
} else if (variable == ENV_FLG_CONFGEN) {
if (s2) {
rtld_flags |= RT_FL_CONFGEN;
*lmflags |= LML_FLG_IGNRELERR;
} else {
rtld_flags &= ~RT_FL_CONFGEN;
*lmflags &= ~LML_FLG_IGNRELERR;
}
} else if (variable == ENV_FLG_LOADFLTR) {
if (s2) {
*lmtflags |= LML_TFLG_LOADFLTR;
if (*s2 == '2')
rtld_flags |= RT_FL_WARNFLTR;
} else {
*lmtflags &= ~LML_TFLG_LOADFLTR;
rtld_flags &= ~RT_FL_WARNFLTR;
}
} else if (variable == ENV_FLG_PROFILE) {
profile_name = s2;
if (s2) {
if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
return;
}
if (rtld_flags & RT_FL_SECURE) {
profile_lib =
#if defined(_ELF64)
MSG_ORIG(MSG_PTH_LDPROFSE_64);
#else
MSG_ORIG(MSG_PTH_LDPROFSE);
#endif
} else {
profile_lib =
#if defined(_ELF64)
MSG_ORIG(MSG_PTH_LDPROF_64);
#else
MSG_ORIG(MSG_PTH_LDPROF);
#endif
}
} else
profile_lib = 0;
} else if (variable == ENV_FLG_SIGNAL) {
killsig = s2 ? atoi(s2) : SIGKILL;
} else if (variable == ENV_FLG_TRACE_OBJS) {
if (s2) {
*lmflags |= LML_FLG_TRC_ENABLE;
if (*s2 == '2')
*lmflags |= LML_FLG_TRC_LDDSTUB;
} else
*lmflags &=
~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB);
}
}
}
/*
* Determine whether we have an architecture specific environment variable.
* If we do, and we're the wrong architecture, it'll just get ignored.
* Otherwise the variable is processed in it's architecture neutral form.
*/
static int
ld_arch_env(const char *s1, size_t *len)
{
size_t _len = *len - 3;
if (s1[_len++] == '_') {
if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
#if defined(_ELF64)
return (ENV_TYP_IGNORE);
#else
*len = *len - 3;
return (ENV_TYP_ISA);
#endif
}
if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
#if defined(_ELF64)
*len = *len - 3;
return (ENV_TYP_ISA);
#else
return (ENV_TYP_IGNORE);
#endif
}
}
return (0);
}
/*
* Process an LD_FLAGS environment variable. The value can be a comma
* separated set of tokens, which are sent (in upper case) into the generic
* LD_XXXX environment variable engine. For example:
*
* LD_FLAGS=bind_now -> LD_BIND_NOW=1
* LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
* LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
* or
* LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
*/
static int
ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
uint_t env_flags, int aout)
{
char *nstr, *sstr, *estr = 0;
size_t nlen, len;
if (str == 0)
return (0);
/*
* Create a new string as we're going to transform the token(s) into
* uppercase and separate tokens with nulls.
*/
len = strlen(str);
if ((nstr = malloc(len + 1)) == 0)
return (1);
(void) strcpy(nstr, str);
for (sstr = nstr; sstr; sstr++, len--) {
int flags;
if ((*sstr != '\0') && (*sstr != ',')) {
if (estr == 0) {
if (*sstr == '=')
estr = sstr;
else {
/*
* Translate token to uppercase. Don't
* use toupper(3C) as including this
* code doubles the size of ld.so.1.
*/
if ((*sstr >= 'a') && (*sstr <= 'z'))
*sstr = *sstr - ('a' - 'A');
}
}
continue;
}
*sstr = '\0';
if (estr) {
nlen = estr - nstr;
if ((*++estr == '\0') || (*estr == ','))
estr = 0;
} else
nlen = sstr - nstr;
/*
* Fabricate a boolean definition for any unqualified variable.
* Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null).
* The value is sufficient to assert any boolean variables, plus
* the term "(null)" is specifically chosen in case someone
* mistakenly supplies something like LD_FLAGS=library_path.
*/
if (estr == 0)
estr = (char *)MSG_INTL(MSG_STR_NULL);
/*
* Determine whether the environment variable is 32- or 64-bit
* specific. The length, len, will reflect the architecture
* neutral portion of the string.
*/
if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
ld_generic_env(nstr, nlen, estr, lmflags,
lmtflags, (env_flags | flags), aout);
}
if (len == 0)
return (0);
nstr = sstr + 1;
estr = 0;
}
return (0);
}
/*
* Process a single environment string. Only strings starting with `LD_' are
* reserved for our use. By convention, all strings should be of the form
* `LD_XXXX=', if the string is followed by a non-null value the appropriate
* functionality is enabled. Also pick off applicable locale variables.
*/
#define LOC_LANG 1
#define LOC_MESG 2
#define LOC_ALL 3
static void
ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
int aout)
{
const char *s2;
static size_t loc = 0;
if (*s1++ != 'L')
return;
/*
* See if we have any locale environment settings. These environment
* variables have a precedence, LC_ALL is higher than LC_MESSAGES which
* is higher than LANG.
*/
s2 = s1;
if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) {
s2 += MSG_LC_ALL_SIZE;
if ((*s2 != '\0') && (loc < LOC_ALL)) {
locale = s2;
loc = LOC_ALL;
}
} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
MSG_LC_MESSAGES_SIZE) == 0) {
s2 += MSG_LC_MESSAGES_SIZE;
if ((*s2 != '\0') && (loc < LOC_MESG)) {
locale = s2;
loc = LOC_MESG;
}
}
return;
}
s2 = s1;
if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
(*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
locale = s2;
loc = LOC_LANG;
return;
}
/*
* Pick off any LD_XXXX environment variables.
*/
if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
size_t len;
int flags;
/*
* Environment variables with no value (ie. LD_XXXX=) typically
* have no impact, however if environment variables are defined
* within a configuration file, these null user settings can be
* used to disable any configuration replaceable definitions.
*/
if ((s2 = strchr(s1, '=')) == 0) {
len = strlen(s1);
s2 = 0;
} else if (*++s2 == '\0') {
len = strlen(s1) - 1;
s2 = 0;
} else {
len = s2 - s1 - 1;
while (isspace(*s2))
s2++;
}
/*
* Determine whether the environment variable is 32- or 64-bit
* specific. The length, len, will reflect the architecture
* neutral portion of the string.
*/
if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
return;
env_flags |= flags;
ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
}
}
/*
* Internal getenv routine. Called immediately after ld.so.1 initializes
* itself.
*/
int
readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout)
{
if (envp == (const char **)0)
return (0);
while (*envp != (const char *)0)
ld_str_env(*envp++, lmflags, lmtflags, 0, aout);
/*
* Having collected the best representation of any LD_FLAGS, process
* these strings.
*/
if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
return (1);
/*
* Don't allow environment controlled auditing when tracing or if
* explicitly disabled. Trigger all tracing modes from
* LML_FLG_TRC_ENABLE.
*/
if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
rpl_audit = profile_lib = profile_name = 0;
if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
*lmflags &= ~LML_MSK_TRC;
/*
* If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
*/
if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
(RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
rtld_flags2 &= ~RT_FL2_BINDLAZY;
/*
* If we have a locale setting make sure its worth processing further.
* Duplicate the string so that new locale setting can generically
* cleanup any previous locales.
*/
if (locale) {
if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
(strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0))
locale = 0;
else
locale = strdup(locale);
}
return (0);
}
/*
* Configuration environment processing. Called after the a.out has been
* processed (as the a.out can specify its own configuration file).
*/
int
readenv_config(Rtc_env * envtbl, Addr addr, int aout)
{
Word * lmflags = &(lml_main.lm_flags);
Word * lmtflags = &(lml_main.lm_tflags);
if (envtbl == (Rtc_env *)0)
return (0);
while (envtbl->env_str) {
uint_t env_flags = ENV_TYP_CONFIG;
if (envtbl->env_flags & RTC_ENV_PERMANT)
env_flags |= ENV_TYP_PERMANT;
ld_str_env((const char *)(envtbl->env_str + addr),
lmflags, lmtflags, env_flags, 0);
envtbl++;
}
/*
* Having collected the best representation of any LD_FLAGS, process
* these strings.
*/
if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
return (1);
if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
aout) == 1)
return (1);
/*
* Don't allow environment controlled auditing when tracing or if
* explicitly disabled. Trigger all tracing modes from
* LML_FLG_TRC_ENABLE.
*/
if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
prm_audit = profile_lib = profile_name = 0;
if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
*lmflags &= ~LML_MSK_TRC;
return (0);
}
int
dowrite(Prfbuf * prf)
{
/*
* We do not have a valid file descriptor, so we are unable
* to flush the buffer.
*/
if (prf->pr_fd == -1)
return (0);
(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
prf->pr_cur = prf->pr_buf;
return (1);
}
/*
* Simplified printing. The following conversion specifications are supported:
*
* % [#] [-] [min field width] [. precision] s|d|x|c
*
*
* dorprf takes the output buffer in the form of Prfbuf which permits
* the verification of the output buffer size and the concatenation
* of data to an already existing output buffer. The Prfbuf
* structure contains the following:
*
* pr_buf pointer to the beginning of the output buffer.
* pr_cur pointer to the next available byte in the output buffer. By
* setting pr_cur ahead of pr_buf you can append to an already
* existing buffer.
* pr_len the size of the output buffer. By setting pr_len to '0' you
* disable protection from overflows in the output buffer.
* pr_fd a pointer to the file-descriptor the buffer will eventually be
* output to. If pr_fd is set to '-1' then it's assumed there is
* no output buffer and doprf() will return with an error if the
* output buffer is overflowed. If pr_fd is > -1 then when the
* output buffer is filled it will be flushed to pr_fd and then
* the available for additional data.
*/
#define FLG_UT_MINUS 0x0001 /* - */
#define FLG_UT_SHARP 0x0002 /* # */
#define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
/*
* This macro is for use from within doprf only. it's to be used
* for checking the output buffer size and placing characters into
* the buffer.
*/
#define PUTC(c) \
{ \
register char tmpc; \
\
tmpc = (c); \
if ((bufsiz) && ((bp + 1) >= bufend)) { \
prf->pr_cur = bp; \
if (dowrite(prf) == 0) \
return (0); \
bp = prf->pr_cur; \
} \
*bp++ = tmpc; \
}
size_t
doprf(const char *format, va_list args, Prfbuf *prf)
{
char c;
char *bp = prf->pr_cur;
char *bufend = prf->pr_buf + prf->pr_len;
size_t bufsiz = prf->pr_len;
while ((c = *format++) != '\0') {
if (c != '%') {
PUTC(c);
} else {
int base = 0, flag = 0, width = 0, prec = 0;
size_t _i;
int _c, _n;
char *_s;
int ls = 0;
again:
c = *format++;
switch (c) {
case '-':
flag |= FLG_UT_MINUS;
goto again;
case '#':
flag |= FLG_UT_SHARP;
goto again;
case '.':
flag |= FLG_UT_DOTSEEN;
goto again;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (flag & FLG_UT_DOTSEEN)
prec = (prec * 10) + c - '0';
else
width = (width * 10) + c - '0';
goto again;
case 'x':
case 'X':
base = 16;
break;
case 'd':
case 'D':
case 'u':
base = 10;
flag &= ~FLG_UT_SHARP;
break;
case 'l':
base = 10;
ls++; /* number of l's (long or long long) */
if ((*format == 'l') ||
(*format == 'd') || (*format == 'D') ||
(*format == 'x') || (*format == 'X') ||
(*format == 'o') || (*format == 'O'))
goto again;
break;
case 'o':
case 'O':
base = 8;
break;
case 'c':
_c = va_arg(args, int);
for (_i = 24; _i > 0; _i -= 8) {
if ((c = ((_c >> _i) & 0x7f)) != 0) {
PUTC(c);
}
}
if ((c = ((_c >> _i) & 0x7f)) != 0) {
PUTC(c);
}
break;
case 's':
_s = va_arg(args, char *);
_i = strlen(_s);
/* LINTED */
_n = (int)(width - _i);
if (!prec)
/* LINTED */
prec = (int)_i;
if (width && !(flag & FLG_UT_MINUS)) {
while (_n-- > 0)
PUTC(' ');
}
while (((c = *_s++) != 0) && prec--) {
PUTC(c);
}
if (width && (flag & FLG_UT_MINUS)) {
while (_n-- > 0)
PUTC(' ');
}
break;
case '%':
PUTC('%');
break;
default:
break;
}
/*
* Numeric processing
*/
if (base) {
char local[20];
const char *string =
MSG_ORIG(MSG_STR_HEXNUM);
size_t ssize = 0, psize = 0;
const char *prefix =
MSG_ORIG(MSG_STR_EMPTY);
u_longlong_t num;
switch (ls) {
case 0: /* int */
num = (u_longlong_t)
va_arg(args, uint_t);
break;
case 1: /* long */
num = (u_longlong_t)
va_arg(args, ulong_t);
break;
case 2: /* long long */
num = va_arg(args, u_longlong_t);
break;
}
if (flag & FLG_UT_SHARP) {
if (base == 16) {
prefix = MSG_ORIG(MSG_STR_HEX);
psize = 2;
} else {
prefix = MSG_ORIG(MSG_STR_ZERO);
psize = 1;
}
}
if ((base == 10) && (long)num < 0) {
prefix = MSG_ORIG(MSG_STR_NEGATE);
psize = MSG_STR_NEGATE_SIZE;
num = (u_longlong_t)(-(longlong_t)num);
}
/*
* Convert the numeric value into a local
* string (stored in reverse order).
*/
_s = local;
do {
*_s++ = string[num % base];
num /= base;
ssize++;
} while (num);
/*
* Provide any precision or width padding.
*/
if (prec) {
/* LINTED */
_n = (int)(prec - ssize);
while (_n-- > 0) {
*_s++ = '0';
ssize++;
}
}
if (width && !(flag & FLG_UT_MINUS)) {
/* LINTED */
_n = (int)(width - ssize - psize);
while (_n-- > 0) {
PUTC(' ');
}
}
/*
* Print any prefix and the numeric string
*/
while (*prefix)
PUTC(*prefix++);
do {
PUTC(*--_s);
} while (_s > local);
/*
* Provide any width padding.
*/
if (width && (flag & FLG_UT_MINUS)) {
/* LINTED */
_n = (int)(width - ssize - psize);
while (_n-- > 0)
PUTC(' ');
}
}
}
}
PUTC('\0');
prf->pr_cur = bp;
return (1);
}
static int
doprintf(const char *format, va_list args, Prfbuf *prf)
{
char *ocur = prf->pr_cur;
if (doprf(format, args, prf) == 0)
return (0);
/* LINTED */
return ((int)(prf->pr_cur - ocur));
}
/* VARARGS2 */
int
sprintf(char *buf, const char *format, ...)
{
va_list args;
int len;
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buf;
prf.pr_len = 0;
prf.pr_fd = -1;
len = doprintf(format, args, &prf);
va_end(args);
/*
* sprintf() return value excludes the terminating null byte.
*/
return (len - 1);
}
/* VARARGS3 */
int
snprintf(char *buf, size_t n, const char *format, ...)
{
va_list args;
int len;
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buf;
prf.pr_len = n;
prf.pr_fd = -1;
len = doprintf(format, args, &prf);
va_end(args);
return (len);
}
/* VARARGS2 */
int
bufprint(Prfbuf *prf, const char *format, ...)
{
va_list args;
int len;
va_start(args, format);
len = doprintf(format, args, prf);
va_end(args);
return (len);
}
/*PRINTFLIKE1*/
int
printf(const char *format, ...)
{
va_list args;
char buffer[ERRSIZE];
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buffer;
prf.pr_len = ERRSIZE;
prf.pr_fd = 1;
(void) doprf(format, args, &prf);
va_end(args);
/*
* Trim trailing '\0' form buffer
*/
prf.pr_cur--;
return (dowrite(&prf));
}
static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0;
/*PRINTFLIKE3*/
void
eprintf(Lm_list *lml, Error error, const char *format, ...)
{
va_list args;
int overflow = 0;
static int lock = 0;
Prfbuf prf;
if (lock || (nextptr == (errbuf + ERRSIZE)))
return;
/*
* Note: this lock is here to prevent the same thread from recursively
* entering itself during a eprintf. ie: during eprintf malloc() fails
* and we try and call eprintf ... and then malloc() fails ....
*/
lock = 1;
/*
* If we have completed startup initialization, all error messages
* must be saved. These are reported through dlerror(). If we're
* still in the initialization stage, output the error directly and
* add a newline.
*/
va_start(args, format);
prf.pr_buf = prf.pr_cur = nextptr;
prf.pr_len = ERRSIZE - (nextptr - errbuf);
if (!(rtld_flags & RT_FL_APPLIC))
prf.pr_fd = 2;
else
prf.pr_fd = -1;
if (error > ERR_NONE) {
if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
error = ERR_WARNING;
if (error == ERR_WARNING) {
if (err_strs[ERR_WARNING] == 0)
err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING);
} else if (error == ERR_FATAL) {
if (err_strs[ERR_FATAL] == 0)
err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
} else if (error == ERR_ELF) {
if (err_strs[ERR_ELF] == 0)
err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
}
if (procname) {
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
rtldname, procname, err_strs[error]) == 0)
overflow = 1;
} else {
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
rtldname, err_strs[error]) == 0)
overflow = 1;
}
if (overflow == 0) {
/*
* Remove the terminating '\0'.
*/
prf.pr_cur--;
}
}
if ((overflow == 0) && doprf(format, args, &prf) == 0)
overflow = 1;
/*
* If this is an ELF error, it will have been generated by a support
* object that has a dependency on libelf. ld.so.1 doesn't generate any
* ELF error messages as it doesn't interact with libelf. Determine the
* ELF error string.
*/
if ((overflow == 0) && (error == ERR_ELF)) {
static int (*elfeno)() = 0;
static const char *(*elfemg)();
const char *emsg;
Rt_map *dlmp, *lmp = lml_rtld.lm_head;
if (NEXT(lmp) && (elfeno == 0)) {
if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) ||
((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0))
elfeno = 0;
}
/*
* Lookup the message; equivalent to elf_errmsg(elf_errno()).
*/
if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) {
prf.pr_cur--;
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
emsg) == 0)
overflow = 1;
}
}
/*
* Push out any message that's been built. Note, in the case of an
* overflow condition, this message may be incomplete, in which case
* make sure any partial string is null terminated.
*/
if (overflow)
*(prf.pr_cur) = '\0';
if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
*(prf.pr_cur - 1) = '\n';
(void) dowrite(&prf);
}
DBG_CALL(Dbg_util_str(lml, nextptr));
va_end(args);
/*
* Determine if there was insufficient space left in the buffer to
* complete the message. If so, we'll have printed out as much as had
* been processed if we're not yet executing the application.
* Otherwise, there will be some debugging diagnostic indicating
* as much of the error message as possible. Write out a final buffer
* overflow diagnostic - unlocalized, so we don't chance more errors.
*/
if (overflow) {
char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
if ((rtld_flags & RT_FL_SILENCERR) == 0) {
lasterr = str;
if ((rtld_flags & RT_FL_APPLIC) == 0) {
(void) write(2, str, strlen(str));
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
}
}
DBG_CALL(Dbg_util_str(lml, str));
lock = 0;
nextptr = errbuf + ERRSIZE;
return;
}
/*
* If the application has started, then error messages are being saved
* for retrieval by dlerror(), or possible flushing from rtldexit() in
* the case of a fatal error. In this case, establish the next error
* pointer. If we haven't started the application, the whole message
* buffer can be reused.
*/
if ((rtld_flags & RT_FL_SILENCERR) == 0) {
lasterr = nextptr;
/*
* Note, should we encounter an error such as ENOMEM, there may
* be a number of the same error messages (ie. an operation
* fails with ENOMEM, and then the attempts to construct the
* error message itself, which incurs additional ENOMEM errors).
* Compare any previous error message with the one we've just
* created to prevent any duplication clutter.
*/
if ((rtld_flags & RT_FL_APPLIC) &&
((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) {
prevptr = nextptr;
nextptr = prf.pr_cur;
*nextptr = '\0';
}
}
lock = 0;
}
#if DEBUG
/*
* Provide assfail() for ASSERT() statements,
* see <sys/debug.h> for further details.
*/
int
assfail(const char *a, const char *f, int l)
{
(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
(void) _lwp_kill(_lwp_self(), SIGABRT);
return (0);
}
#endif
/*
* Exit. If we arrive here with a non zero status it's because of a fatal
* error condition (most commonly a relocation error). If the application has
* already had control, then the actual fatal error message will have been
* recorded in the dlerror() message buffer. Print the message before really
* exiting.
*/
void
rtldexit(Lm_list * lml, int status)
{
if (status) {
if (rtld_flags & RT_FL_APPLIC) {
/*
* If the error buffer has been used, write out all
* pending messages - lasterr is simply a pointer to
* the last message in this buffer. However, if the
* buffer couldn't be created at all, lasterr points
* to a constant error message string.
*/
if (*errbuf) {
char *errptr = errbuf;
char *errend = errbuf + ERRSIZE;
while ((errptr < errend) && *errptr) {
size_t size = strlen(errptr);
(void) write(2, errptr, size);
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
errptr += (size + 1);
}
}
if (lasterr && ((lasterr < errbuf) ||
(lasterr > (errbuf + ERRSIZE)))) {
(void) write(2, lasterr, strlen(lasterr));
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
}
}
leave(lml);
(void) _lwp_kill(_lwp_self(), killsig);
}
_exit(status);
}
/*
* Routines to co-ordinate the opening of /dev/zero and /proc.
* dz_fd is exported for possible use by libld.so, and to insure it gets
* closed on leaving ld.so.1.
*/
int dz_fd = FD_UNAVAIL;
void
dz_init(int fd)
{
dz_fd = fd;
}
/*
* mmap() a page from MAP_ANON
*
* Note: MAP_ANON is only on Solaris8++, we use this routine to
* not only mmap(MAP_ANON) but to also probe if it is available
* on the current OS.
*/
Am_ret
anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags)
{
#if defined(MAP_ANON)
static int noanon = 0;
caddr_t va;
if (noanon == 0) {
if ((va = (caddr_t)mmap(*addr, len, prot,
(flags | MAP_ANON), -1, 0)) != MAP_FAILED) {
*addr = va;
return (AM_OK);
}
if ((errno != EBADF) && (errno != EINVAL)) {
int err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
return (AM_ERROR);
} else
noanon = 1;
}
#endif
return (AM_NOSUP);
}
/*
* Map anonymous memory from /dev/zero, or via MAP_ANON.
*
* (MAP_ANON only appears on Solaris 8, so we need fall-back
* behavior for older systems.)
*/
caddr_t
dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
{
caddr_t va;
int err;
Am_ret amret;
amret = anon_map(lml, &addr, len, prot, flags);
if (amret == AM_OK)
return (addr);
if (amret == AM_ERROR)
return (MAP_FAILED);
/* amret == AM_NOSUP -> fallback to a devzero mmaping */
if (dz_fd == FD_UNAVAIL) {
if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO),
O_RDONLY)) == FD_UNAVAIL) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
return (MAP_FAILED);
}
}
if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
}
return (va);
}
static int pr_fd = FD_UNAVAIL;
int
pr_open(Lm_list *lml)
{
char proc[16];
if (pr_fd == FD_UNAVAIL) {
(void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC),
(int)getpid());
if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) {
int err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc,
strerror(err));
}
}
return (pr_fd);
}
static int nu_fd = FD_UNAVAIL;
caddr_t
nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
{
caddr_t va;
int err;
if (nu_fd == FD_UNAVAIL) {
if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
O_RDONLY)) == FD_UNAVAIL) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
return (MAP_FAILED);
}
}
if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
MAP_FAILED) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
}
return (va);
}
/*
* Generic entry point from user code - simply grabs a lock.
*/
int
enter(void)
{
if (rt_bind_guard(THR_FLG_RTLD)) {
(void) rt_mutex_lock(&rtldlock);
return (1);
}
return (0);
}
/*
* Generate diagnostics as to whether an object has been used. A symbolic
* reference that gets bound to an object marks it as used. Dependencies that
* are unused when RTLD_NOW is in effect should be removed from future builds
* of an object. Dependencies that are unused without RTLD_NOW in effect are
* candidates for lazy-loading.
* Unreferenced objects identify objects that are defined as dependencies but
* are unreferenced by the caller (they may however be referenced by other
* objects within the process, and therefore don't qualify as completely unused.
*/
void
unused(Lm_list *lml)
{
Rt_map *lmp;
int nl = 0;
Word tracing;
/*
* If we're not tracing unused references or dependencies, or debugging
* there's nothing to do.
*/
tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED);
if ((tracing == 0) && (DBG_ENABLED == 0))
return;
/*
* Traverse the link-maps looking for unreferenced or unused
* dependencies. Ignore the first object on a link-map list, as this
* is effectively always used.
*/
for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp;
lmp = (Rt_map *)NEXT(lmp)) {
/*
* If tracing unreferenced objects, or under debugging,
* determine whether any of this objects callers haven't
* referenced it.
*/
if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
Bnd_desc ** bdpp;
Aliste off;
for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
Bnd_desc * bdp = *bdpp;
Rt_map * clmp;
if (bdp->b_flags & BND_REFER)
continue;
clmp = bdp->b_caller;
if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
continue;
if (nl++ == 0) {
if (tracing & LML_FLG_TRC_UNREF)
(void) printf(MSG_ORIG(MSG_STR_NL));
else
DBG_CALL(Dbg_util_nl(lml,
DBG_NL_STD));
}
if (tracing & LML_FLG_TRC_UNREF)
(void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
NAME(lmp), NAME(clmp));
else
DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
}
}
/*
* If tracing unused objects simply display those objects that
* haven't been referenced by anyone.
*/
if (FLAGS1(lmp) & FL1_RT_USED)
continue;
if (nl++ == 0) {
if (tracing)
(void) printf(MSG_ORIG(MSG_STR_NL));
else
DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
}
if (CYCGROUP(lmp)) {
if (tracing)
(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
NAME(lmp), CYCGROUP(lmp));
else
DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
CYCGROUP(lmp)));
} else {
if (tracing)
(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
NAME(lmp));
else
DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
}
}
DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
}
/*
* Initialization routine for the Fmap structure. If the fmap structure is
* already in use, any mapping is released. The structure is then initialized
* in preparation for further use.
*/
void
fmap_setup()
{
#if defined(MAP_ALIGN)
/*
* If MAP_ALIGN is set, the fm_addr has been seeded with an alignment
* value. Otherwise, if fm_addr is non-null it indicates a mapping that
* should now be freed.
*/
if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0))
(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
/*
* Providing we haven't determined that this system doesn't support
* MAP_ALIGN, initialize the mapping address with the default segment
* alignment.
*/
if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
fmap->fm_maddr = (char *)M_SEGM_ALIGN;
fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN;
} else {
fmap->fm_maddr = 0;
fmap->fm_mflags = MAP_PRIVATE;
}
#else
if (fmap->fm_maddr)
(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
fmap->fm_maddr = 0;
fmap->fm_mflags = MAP_PRIVATE;
#endif
fmap->fm_msize = syspagsz;
fmap->fm_hwptr = 0;
}
/*
* Generic cleanup routine called prior to returning control to the user.
* Insures that any ld.so.1 specific file descriptors or temporary mapping are
* released, and any locks dropped.
*/
void
leave(Lm_list * lml)
{
/*
* Alert the debuggers that the link-maps are consistent.
*/
if (lml)
rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
if (dz_fd != FD_UNAVAIL) {
(void) close(dz_fd);
dz_fd = FD_UNAVAIL;
}
if (pr_fd != FD_UNAVAIL) {
(void) close(pr_fd);
pr_fd = FD_UNAVAIL;
}
if (nu_fd != FD_UNAVAIL) {
(void) close(nu_fd);
nu_fd = FD_UNAVAIL;
}
fmap_setup();
/*
* Reinitialize error message pointer, and any overflow indication.
*/
nextptr = errbuf;
prevptr = 0;
/*
* Don't drop our lock if we are running on our link-map list as
* there's little point in doing so since we are single-threaded.
*
* LML_FLG_HOLDLOCK is set for:
* *) The ld.so.1's link-map list.
* *) The auditor's link-map if the environment is
* libc/libthread un-unified.
*/
if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK))
return;
if (rt_bind_clear(0) & THR_FLG_RTLD) {
(void) rt_mutex_unlock(&rtldlock);
(void) rt_bind_clear(THR_FLG_RTLD);
}
}
int
callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp)
{
Alist * calp, * dalp;
Aliste cnt1, cnt2;
Grp_hdl ** ghpp1, ** ghpp2;
/*
* An object can always find symbols within itself.
*/
if (clmp == dlmp)
return (1);
/*
* Don't allow an object to bind to an object that is being deleted
* unless the binder is also being deleted.
*/
if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
((FLAGS(clmp) & FLG_RT_DELETE) == 0))
return (0);
/*
* An object with world access can always bind to an object with global
* visibility.
*/
if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL))
return (1);
/*
* An object with local access can only bind to an object that is a
* member of the same group.
*/
if (((MODE(clmp) & RTLD_GROUP) == 0) ||
((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0))
return (0);
/*
* Traverse the list of groups the caller is a part of.
*/
for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) {
/*
* If we're testing for the ability of two objects to bind to
* each other regardless of a specific group, ignore that group.
*/
if (ghp && (*ghpp1 == ghp))
continue;
/*
* Traverse the list of groups the destination is a part of.
*/
for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) {
if (*ghpp1 == *ghpp2)
return (1);
}
}
return (0);
}
/*
* Initialize the environ symbol. Traditionally this is carried out by the crt
* code prior to jumping to main. However, init sections get fired before this
* variable is initialized, so ld.so.1 sets this directly from the AUX vector
* information. In addition, a process may have multiple link-maps (ld.so.1's
* debugging and preloading objects), and link auditing, and each may need an
* environ variable set.
*
* This routine is called after a relocation() pass, and thus provides for:
*
* o setting environ on the main link-map after the initial application and
* its dependencies have been established. Typically environ lives in the
* application (provided by its crt), but in older applications it might
* be in libc. Who knows what's expected of applications not built on
* Solaris.
*
* o after loading a new shared object. We can add shared objects to various
* link-maps, and any link-map dependencies requiring getopt() require
* their own environ. In addition, lazy loading might bring in the
* supplier of environ (libc used to be a lazy loading candidate) after
* the link-map has been established and other objects are present.
*
* This routine handles all these scenarios, without adding unnecessary overhead
* to ld.so.1.
*/
void
set_environ(Lm_list *lml)
{
Rt_map * dlmp;
Sym * sym;
Slookup sl;
uint_t binfo;
sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON);
sl.sl_cmap = lml->lm_head;
sl.sl_imap = lml->lm_head;
sl.sl_hash = 0;
sl.sl_rsymndx = 0;
sl.sl_flags = LKUP_WEAK;
if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) {
lml->lm_environ = (char ***)sym->st_value;
if (!(FLAGS(dlmp) & FLG_RT_FIXED))
lml->lm_environ =
(char ***)((uintptr_t)lml->lm_environ +
(uintptr_t)ADDR(dlmp));
*(lml->lm_environ) = (char **)environ;
lml->lm_flags |= LML_FLG_ENVIRON;
}
}
/*
* Determine whether we have a secure executable. Uid and gid information
* can be passed to us via the aux vector, however if these values are -1
* then use the appropriate system call to obtain them.
*
* o If the user is the root they can do anything
*
* o If the real and effective uid's don't match, or the real and
* effective gid's don't match then this is determined to be a `secure'
* application.
*
* This function is called prior to any dependency processing (see _setup.c).
* Any secure setting will remain in effect for the life of the process.
*/
void
security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
{
#ifdef AT_SUN_AUXFLAGS
if (auxflags != -1) {
if ((auxflags & AF_SUN_SETUGID) != 0)
rtld_flags |= RT_FL_SECURE;
return;
}
#endif
if (uid == -1)
uid = getuid();
if (uid) {
if (euid == -1)
euid = geteuid();
if (uid != euid)
rtld_flags |= RT_FL_SECURE;
else {
if (gid == -1)
gid = getgid();
if (egid == -1)
egid = getegid();
if (gid != egid)
rtld_flags |= RT_FL_SECURE;
}
}
}
/*
* _REENTRANT code gets errno redefined to a function so provide for return
* of the thread errno if applicable. This has no meaning in ld.so.1 which
* is basically singled threaded. Provide the interface for our dependencies.
*/
#undef errno
#pragma weak _private___errno = ___errno
int *
___errno()
{
extern int errno;
return (&errno);
}
/*
* The interface with the c library which is supplied through libdl.so.1.
* A non-null argument allows a function pointer array to be passed to us which
* is used to re-initialize the linker libc table.
*/
void
_ld_libc(void * ptr)
{
get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr);
}
/*
* Determine whether a symbol name should be demangled.
*/
const char *
demangle(const char *name)
{
if (rtld_flags & RT_FL_DEMANGLE)
return (conv_demangle_name(name));
else
return (name);
}