/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*
* Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2014 by Delphix. All rights reserved.
*/
/*
* Utility routines for run-time linker. some are duplicated here from libc
* (with different names) to avoid name space collisions.
*/
#include <sys/systeminfo.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/lwp.h>
#include <sys/debug.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <dlfcn.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/auxv.h>
#include <limits.h>
#include <debug.h>
#include <conv.h>
#include "_rtld.h"
#include "_audit.h"
#include "_elf.h"
#include "msg.h"
/*
* Null function used as place where a debugger can set a breakpoint.
*/
void
rtld_db_dlactivity(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Null function used as place where debugger can set a pre .init
* processing breakpoint.
*/
void
rtld_db_preinit(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Null function used as place where debugger can set a post .init
* processing breakpoint.
*/
void
rtld_db_postinit(Lm_list *lml)
{
DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
r_debug.rtd_rdebug.r_state));
}
/*
* Debugger Event Notification
*
* This function centralizes all debugger event notification (ala rtld_db).
*
* There's a simple intent, focused on insuring the primary link-map control
* list (or each link-map list) is consistent, and the indication that objects
* have been added or deleted from this list. Although an RD_ADD and RD_DELETE
* event are posted for each of these, most debuggers don't care, as their
* view is that these events simply convey an "inconsistent" state.
*
* We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
* enter ld.so.1.
*
* Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
* required later (RT_FL_DBNOTIF):
*
* i. the first time we add or delete an object to the primary link-map
* control list.
* ii. the first time we move a secondary link-map control list to the primary
* link-map control list (effectively, this is like adding a group of
* objects to the primary link-map control list).
*
* Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set):
*
* i. each time we leave the runtime linker.
*/
void
rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
{
void (*fptr)(Lm_list *);
switch (event) {
case RD_PREINIT:
fptr = rtld_db_preinit;
break;
case RD_POSTINIT:
fptr = rtld_db_postinit;
break;
case RD_DLACTIVITY:
switch (state) {
case RT_CONSISTENT:
/*
* Do we need to send a notification?
*/
if ((rtld_flags & RT_FL_DBNOTIF) == 0)
return;
rtld_flags &= ~RT_FL_DBNOTIF;
break;
case RT_ADD:
case RT_DELETE:
/*
* If we are already in an inconsistent state, no
* notification is required.
*/
if (rtld_flags & RT_FL_DBNOTIF)
return;
rtld_flags |= RT_FL_DBNOTIF;
break;
};
fptr = rtld_db_dlactivity;
break;
default:
/*
* RD_NONE - do nothing
*/
break;
};
/*
* Set event state and call 'notification' function.
*
* The debugging clients have previously been told about these
* notification functions and have set breakpoints on them if they
* are interested in the notification.
*/
r_debug.rtd_rdebug.r_state = state;
r_debug.rtd_rdebug.r_rdevent = event;
fptr(lml);
r_debug.rtd_rdebug.r_rdevent = RD_NONE;
}
#if defined(__sparc) || defined(__x86)
/*
* Stack Cleanup.
*
* This function is invoked to 'remove' arguments that were passed in on the
* stack. This is most likely if ld.so.1 was invoked directly. In that case
* we want to remove ld.so.1 as well as it's arguments from the argv[] array.
* Which means we then need to slide everything above it on the stack down
* accordingly.
*
* While the stack layout is platform specific - it just so happens that __x86,
* and __sparc platforms share the following initial stack layout.
*
* !_______________________! high addresses
* ! !
* ! Information !
* ! Block !
* ! (size varies) !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Auxiliary !
* ! vector !
* ! 2 word entries !
* ! !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Environment !
* ! pointers !
* ! ... !
* ! (one word each) !
* !_______________________!
* ! 0 word !
* !_______________________!
* ! Argument ! low addresses
* ! pointers !
* ! Argc words !
* !_______________________!
* ! !
* ! Argc !
* !_______________________!
* ! ... !
*
*/
static void
stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
{
int ndx;
long *argc;
char **oargv, **nargv;
char **oenvp, **nenvp;
auxv_t *oauxv, *nauxv;
/*
* Slide ARGV[] and update argc. The argv pointer remains the same,
* however slide the applications arguments over the arguments to
* ld.so.1.
*/
nargv = &argv[0];
oargv = &argv[rmcnt];
for (ndx = 0; oargv[ndx]; ndx++)
nargv[ndx] = oargv[ndx];
nargv[ndx] = oargv[ndx];
argc = (long *)((uintptr_t)argv - sizeof (long *));
*argc -= rmcnt;
/*
* Slide ENVP[], and update the environment array pointer.
*/
ndx++;
nenvp = &nargv[ndx];
oenvp = &oargv[ndx];
*envp = nenvp;
for (ndx = 0; oenvp[ndx]; ndx++)
nenvp[ndx] = oenvp[ndx];
nenvp[ndx] = oenvp[ndx];
/*
* Slide AUXV[], and update the aux vector pointer.
*/
ndx++;
nauxv = (auxv_t *)&nenvp[ndx];
oauxv = (auxv_t *)&oenvp[ndx];
*auxv = nauxv;
for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
nauxv[ndx] = oauxv[ndx];
nauxv[ndx] = oauxv[ndx];
}
#else
/*
* Verify that the above routine is appropriate for any new platforms.
*/
#error unsupported architecture!
#endif
/*
* Compare function for PathNode AVL tree.
*/
static int
pnavl_compare(const void *n1, const void *n2)
{
uint_t hash1, hash2;
const char *st1, *st2;
int rc;
hash1 = ((PathNode *)n1)->pn_hash;
hash2 = ((PathNode *)n2)->pn_hash;
if (hash1 > hash2)
return (1);
if (hash1 < hash2)
return (-1);
st1 = ((PathNode *)n1)->pn_name;
st2 = ((PathNode *)n2)->pn_name;
rc = strcmp(st1, st2);
if (rc > 0)
return (1);
if (rc < 0)
return (-1);
return (0);
}
/*
* Create an AVL tree.
*/
static avl_tree_t *
pnavl_create(size_t size)
{
avl_tree_t *avlt;
if ((avlt = malloc(sizeof (avl_tree_t))) == NULL)
return (NULL);
avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl));
return (avlt);
}
/*
* Determine whether a PathNode is recorded.
*/
int
pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash,
avl_index_t *where)
{
PathNode pn;
/*
* Create the avl tree if required.
*/
if ((*pnavl == NULL) &&
((*pnavl = pnavl_create(sizeof (PathNode))) == NULL))
return (0);
pn.pn_name = name;
if ((pn.pn_hash = hash) == 0)
pn.pn_hash = sgs_str_hash(name);
if (avl_find(*pnavl, &pn, where) == NULL)
return (0);
return (1);
}
/*
* Determine if a pathname has already been recorded on the full path name
* AVL tree. This tree maintains a node for each path name that ld.so.1 has
* successfully loaded. If the path name does not exist in this AVL tree, then
* the next insertion point is deposited in "where". This value can be used by
* fpavl_insert() to expedite the insertion.
*/
Rt_map *
fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where)
{
FullPathNode fpn, *fpnp;
/*
* Create the avl tree if required.
*/
if ((lml->lm_fpavl == NULL) &&
((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL))
return (NULL);
fpn.fpn_node.pn_name = name;
if ((fpn.fpn_node.pn_hash = hash) == 0)
fpn.fpn_node.pn_hash = sgs_str_hash(name);
if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
return (NULL);
return (fpnp->fpn_lmp);
}
/*
* Insert a name into the FullPathNode AVL tree for the link-map list. The
* objects NAME() is the path that would have originally been searched for, and
* is therefore the name to associate with any "where" value. If the object has
* a different PATHNAME(), perhaps because it has resolved to a different file
* (see fullpath()), then this name will be recorded as a separate FullPathNode
* (see load_file()).
*/
int
fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
{
FullPathNode *fpnp;
uint_t hash = sgs_str_hash(name);
if (where == 0) {
/* LINTED */
Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where);
/*
* We better not get a hit now, we do not want duplicates in
* the tree.
*/
ASSERT(_lmp == NULL);
}
/*
* Insert new node in tree.
*/
if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL)
return (0);
fpnp->fpn_node.pn_name = name;
fpnp->fpn_node.pn_hash = hash;
fpnp->fpn_lmp = lmp;
if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
free(fpnp);
return (0);
}
ASSERT(lml->lm_fpavl != NULL);
avl_insert(lml->lm_fpavl, fpnp, where);
return (1);
}
/*
* Remove an object from the FullPathNode AVL tree.
*/
void
fpavl_remove(Rt_map *lmp)
{
FullPathNode *fpnp;
Aliste idx;
for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
avl_remove(LIST(lmp)->lm_fpavl, fpnp);
free(fpnp);
}
free(FPNODE(lmp));
FPNODE(lmp) = NULL;
}
/*
* Insert a path name into the not-found AVL tree.
*
* This tree maintains a node for each path name that ld.so.1 has explicitly
* inspected, but has failed to load during a single ld.so.1 operation. If the
* path name does not exist in this AVL tree, then the next insertion point is
* deposited in "where". This value can be used by nfavl_insert() to expedite
* the insertion.
*/
void
nfavl_insert(const char *name, avl_index_t where)
{
PathNode *pnp;
uint_t hash = sgs_str_hash(name);
if (where == 0) {
/* LINTED */
int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where);
/*
* We better not get a hit now, we do not want duplicates in
* the tree.
*/
ASSERT(in_nfavl == 0);
}
/*
* Insert new node in tree.
*/
if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
pnp->pn_name = name;
pnp->pn_hash = hash;
avl_insert(nfavl, pnp, where);
}
}
/*
* Insert the directory name, of a full path name, into the secure path AVL
* tree.
*
* This tree is used to maintain a list of directories in which the dependencies
* of a secure process have been found. This list provides a fall-back in the
* case that a $ORIGIN expansion is deemed insecure, when the expansion results
* in a path name that has already provided dependencies.
*/
void
spavl_insert(const char *name)
{
char buffer[PATH_MAX], *str;
size_t size;
avl_index_t where;
PathNode *pnp;
uint_t hash;
/*
* Separate the directory name from the path name.
*/
if ((str = strrchr(name, '/')) == name)
size = 1;
else
size = str - name;
(void) strncpy(buffer, name, size);
buffer[size] = '\0';
hash = sgs_str_hash(buffer);
/*
* Determine whether this directory name is already recorded, or if
* not, 'where" will provide the insertion point for the new string.
*/
if (pnavl_recorded(&spavl, buffer, hash, &where))
return;
/*
* Insert new node in tree.
*/
if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
pnp->pn_name = strdup(buffer);
pnp->pn_hash = hash;
avl_insert(spavl, pnp, where);
}
}
/*
* Inspect the generic string AVL tree for the given string. If the string is
* not present, duplicate it, and insert the string in the AVL tree. Return the
* duplicated string to the caller.
*
* These strings are maintained for the life of ld.so.1 and represent path
* names, file names, and search paths. All other AVL trees that maintain
* FullPathNode and not-found path names use the same string pointer
* established for this string.
*/
static avl_tree_t *stravl = NULL;
static char *strbuf = NULL;
static PathNode *pnbuf = NULL;
static size_t strsize = 0, pnsize = 0;
const char *
stravl_insert(const char *name, uint_t hash, size_t nsize, int substr)
{
char str[PATH_MAX];
PathNode *pnp;
avl_index_t where;
/*
* Create the avl tree if required.
*/
if ((stravl == NULL) &&
((stravl = pnavl_create(sizeof (PathNode))) == NULL))
return (NULL);
/*
* Determine the string size if not provided by the caller.
*/
if (nsize == 0)
nsize = strlen(name) + 1;
else if (substr) {
/*
* The string passed to us may be a multiple path string for
* which we only need the first component. Using the provided
* size, strip out the required string.
*/
(void) strncpy(str, name, nsize);
str[nsize - 1] = '\0';
name = str;
}
/*
* Allocate a PathNode buffer if one doesn't exist, or any existing
* buffer has been used up.
*/
if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) {
pnsize = syspagsz;
if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE),
MAP_PRIVATE)) == MAP_FAILED)
return (NULL);
}
/*
* Determine whether this string already exists.
*/
pnbuf->pn_name = name;
if ((pnbuf->pn_hash = hash) == 0)
pnbuf->pn_hash = sgs_str_hash(name);
if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL)
return (pnp->pn_name);
/*
* Allocate a string buffer if one does not exist, or if there is
* insufficient space for the new string in any existing buffer.
*/
if ((strbuf == NULL) || (nsize > strsize)) {
strsize = S_ROUND(nsize, syspagsz);
if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE),
MAP_PRIVATE)) == MAP_FAILED)
return (NULL);
}
(void) memcpy(strbuf, name, nsize);
pnp = pnbuf;
pnp->pn_name = strbuf;
avl_insert(stravl, pnp, where);
strbuf += nsize;
strsize -= nsize;
pnbuf++;
pnsize -= sizeof (PathNode);
return (pnp->pn_name);
}
/*
* Prior to calling an object, either via a .plt or through dlsym(), make sure
* its .init has fired. Through topological sorting, ld.so.1 attempts to fire
* init's in the correct order, however, this order is typically based on needed
* dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
* still occur and result in bindings that were not captured during topological
* sorting. This routine compensates for this lack of binding information, and
* provides for dynamic .init firing.
*/
void
is_dep_init(Rt_map *dlmp, Rt_map *clmp)
{
Rt_map **tobj;
/*
* If the caller is an auditor, and the destination isn't, then don't
* run any .inits (see comments in load_completion()).
*/
if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) &&
((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0))
return;
if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST))
return;
(void) rt_mutex_lock(&dlmp->rt_lock);
while (dlmp->rt_init_thread != rt_thr_self() && (FLAGS(dlmp) &
(FLG_RT_RELOCED | FLG_RT_INITCALL | FLG_RT_INITDONE)) ==
(FLG_RT_RELOCED | FLG_RT_INITCALL)) {
leave(LIST(dlmp), 0);
(void) _lwp_cond_wait(&dlmp->rt_cv, (mutex_t *)&dlmp->rt_lock);
(void) rt_mutex_unlock(&dlmp->rt_lock);
(void) enter(0);
(void) rt_mutex_lock(&dlmp->rt_lock);
}
(void) rt_mutex_unlock(&dlmp->rt_lock);
if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
(FLG_RT_RELOCED | FLG_RT_INITDONE))
return;
if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
tobj[0] = dlmp;
call_init(tobj, DBG_INIT_DYN);
}
}
/*
* Execute .{preinit|init|fini}array sections
*/
void
call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
{
int start, stop, incr, ndx;
uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr));
if (array == NULL)
return;
/*
* initarray & preinitarray are walked from beginning to end - while
* finiarray is walked from end to beginning.
*/
if (shtype == SHT_FINI_ARRAY) {
start = arraycnt - 1;
stop = incr = -1;
} else {
start = 0;
stop = arraycnt;
incr = 1;
}
/*
* Call the .*array[] entries
*/
for (ndx = start; ndx != stop; ndx += incr) {
uint_t rtldflags;
void (*fptr)(void) = (void(*)())array[ndx];
DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
APPLICATION_ENTER(rtldflags);
leave(LIST(lmp), 0);
(*fptr)();
(void) enter(0);
APPLICATION_RETURN(rtldflags);
}
}
/*
* Execute any .init sections. These are passed to us in an lmp array which
* (by default) will have been sorted.
*/
void
call_init(Rt_map **tobj, int flag)
{
Rt_map **_tobj, **_nobj;
static APlist *pending = NULL;
/*
* If we're in the middle of an INITFIRST, this must complete before
* any new init's are fired. In this case add the object list to the
* pending queue and return. We'll pick up the queue after any
* INITFIRST objects have their init's fired.
*/
if (rtld_flags & RT_FL_INITFIRST) {
(void) aplist_append(&pending, tobj, AL_CNT_PENDING);
return;
}
/*
* Traverse the tobj array firing each objects init.
*/
for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
Rt_map *lmp = *_tobj;
void (*iptr)() = INIT(lmp);
if (FLAGS(lmp) & FLG_RT_INITCALL)
continue;
FLAGS(lmp) |= FLG_RT_INITCALL;
lmp->rt_init_thread = rt_thr_self();
/*
* Establish an initfirst state if necessary - no other inits
* will be fired (because of additional relocation bindings)
* when in this state.
*/
if (FLAGS(lmp) & FLG_RT_INITFRST)
rtld_flags |= RT_FL_INITFIRST;
if (INITARRAY(lmp) || iptr)
DBG_CALL(Dbg_util_call_init(lmp, flag));
if (iptr) {
uint_t rtldflags;
APPLICATION_ENTER(rtldflags);
leave(LIST(lmp), 0);
(*iptr)();
(void) enter(0);
APPLICATION_RETURN(rtldflags);
}
call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
SHT_INIT_ARRAY);
if (INITARRAY(lmp) || iptr)
DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
/*
* Set the initdone flag regardless of whether this object
* actually contains an .init section. This flag prevents us
* from processing this section again for an .init and also
* signifies that a .fini must be called should it exist.
* Clear the sort field for use in later .fini processing.
*/
(void) rt_mutex_lock(&lmp->rt_lock);
FLAGS(lmp) |= FLG_RT_INITDONE;
lmp->rt_init_thread = (thread_t)0;
(void) _lwp_cond_broadcast(&lmp->rt_cv);
(void) rt_mutex_unlock(&lmp->rt_lock);
SORTVAL(lmp) = -1;
/*
* If we're firing an INITFIRST object, and other objects must
* be fired which are not INITFIRST, make sure we grab any
* pending objects that might have been delayed as this
* INITFIRST was processed.
*/
if ((rtld_flags & RT_FL_INITFIRST) &&
((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
Aliste idx;
Rt_map **pobj;
rtld_flags &= ~RT_FL_INITFIRST;
for (APLIST_TRAVERSE(pending, idx, pobj)) {
aplist_delete(pending, &idx);
call_init(pobj, DBG_INIT_PEND);
}
}
}
free(tobj);
}
/*
* Call .fini sections for the topologically sorted list of objects. This
* routine is called from remove_hdl() for any objects being torn down as part
* of a dlclose() operation, and from atexit() processing for all the remaining
* objects within the process.
*/
void
call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp)
{
Rt_map **_tobj;
for (_tobj = tobj; *_tobj != NULL; _tobj++) {
Rt_map *lmp = *_tobj;
/*
* Only fire a .fini if the objects corresponding .init has
* completed. We collect all .fini sections of objects that
* had their .init collected, but that doesn't mean that at
* the time of collection, that the .init had completed.
*/
if (FLAGS(lmp) & FLG_RT_INITDONE) {
void (*fptr)(void) = FINI(lmp);
if (FINIARRAY(lmp) || fptr)
DBG_CALL(Dbg_util_call_fini(lmp));
call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
SHT_FINI_ARRAY);
if (fptr) {
uint_t rtldflags;
APPLICATION_ENTER(rtldflags);
leave(lml, 0);
(*fptr)();
(void) enter(0);
APPLICATION_RETURN(rtldflags);
}
}
/*
* Skip main, this is explicitly called last in atexit_fini().
*/
if (FLAGS(lmp) & FLG_RT_ISMAIN)
continue;
/*
* This object has exercised its last instructions (regardless
* of whether it will be unmapped or not). Audit this closure.
*/
if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0)
audit_objclose(lmp, clmp);
}
DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
pltcntu32, pltcntu44, pltcntfull, pltcntfar));
free(tobj);
}
/*
* Function called by atexit(3C). Calls all .fini sections within the objects
* that make up the process. As .fini processing is the last opportunity for
* any new bindings to be established, this is also a convenient location to
* check for unused objects.
*/
void
atexit_fini()
{
Rt_map **tobj, *lmp;
Lm_list *lml;
Aliste idx;
(void) enter(0);
rtld_flags |= RT_FL_ATEXIT;
lml = &lml_main;
lml->lm_flags |= LML_FLG_ATEXIT;
lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
lmp = (Rt_map *)lml->lm_head;
/*
* Reverse topologically sort the main link-map for .fini execution.
*/
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj, NULL);
/*
* Now that all .fini code has been run, see what unreferenced objects
* remain.
*/
unused(lml);
/*
* Traverse any alternative link-map lists, looking for non-auditors.
*/
for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
/*
* Ignore the base-link-map list, which has already been
* processed, the runtime linkers link-map list, which is
* processed last, and any auditors.
*/
if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
(lml->lm_tflags & LML_TFLG_AUD_MASK) ||
((lmp = (Rt_map *)lml->lm_head) == NULL))
continue;
lml->lm_flags |= LML_FLG_ATEXIT;
lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
/*
* Reverse topologically sort the link-map for .fini execution.
*/
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj, NULL);
unused(lml);
}
/*
* Add an explicit close to main and ld.so.1. Although main's .fini is
* collected in call_fini() to provide for FINITARRAY processing, its
* audit_objclose is explicitly skipped. This provides for it to be
* called last, here. This is the reverse of the explicit calls to
* audit_objopen() made in setup().
*/
lml = &lml_main;
lmp = (Rt_map *)lml->lm_head;
if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) {
audit_objclose((Rt_map *)lml_rtld.lm_head, lmp);
audit_objclose(lmp, lmp);
}
/*
* Traverse any alternative link-map lists, looking for non-auditors.
*/
for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
/*
* Ignore the base-link-map list, which has already been
* processed, the runtime linkers link-map list, which is
* processed last, and any non-auditors.
*/
if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) ||
((lmp = (Rt_map *)lml->lm_head) == NULL))
continue;
lml->lm_flags |= LML_FLG_ATEXIT;
lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
/*
* Reverse topologically sort the link-map for .fini execution.
*/
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj, NULL);
unused(lml);
}
/*
* Finally reverse topologically sort the runtime linkers link-map for
* .fini execution.
*/
lml = &lml_rtld;
lml->lm_flags |= LML_FLG_ATEXIT;
lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
lmp = (Rt_map *)lml->lm_head;
if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
(tobj != (Rt_map **)S_ERROR))
call_fini(lml, tobj, NULL);
leave(&lml_main, 0);
}
/*
* This routine is called to complete any runtime linker activity which may have
* resulted in objects being loaded. This is called from all user entry points
* and from any internal dl*() requests.
*/
void
load_completion(Rt_map *nlmp)
{
Rt_map **tobj = NULL;
Lm_list *nlml;
/*
* Establish any .init processing. Note, in a world of lazy loading,
* objects may have been loaded regardless of whether the users request
* was fulfilled (i.e., a dlsym() request may have failed to find a
* symbol but objects might have been loaded during its search). Thus,
* any tsorting starts from the nlmp (new link-maps) pointer and not
* necessarily from the link-map that may have satisfied the request.
*
* Note, the primary link-map has an initialization phase where dynamic
* .init firing is suppressed. This provides for a simple and clean
* handshake with the primary link-maps libc, which is important for
* establishing uberdata. In addition, auditors often obtain handles
* to primary link-map objects as the objects are loaded, so as to
* inspect the link-map for symbols. This inspection is allowed without
* running any code on the primary link-map, as running this code may
* reenter the auditor, who may not yet have finished its own
* initialization.
*/
if (nlmp)
nlml = LIST(nlmp);
if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
(rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
if ((tobj = tsort(nlmp, nlml->lm_init,
RT_SORT_REV)) == (Rt_map **)S_ERROR)
tobj = NULL;
}
/*
* Make sure any alternative link-map retrieves any external interfaces
* and initializes threads.
*/
if (nlmp && (nlml != &lml_main)) {
(void) rt_get_extern(nlml, nlmp);
rt_thr_init(nlml);
}
/*
* Traverse the list of new link-maps and register any dynamic TLS.
* This storage is established for any objects not on the primary
* link-map, and for any objects added to the primary link-map after
* static TLS has been registered.
*/
if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
(rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
Rt_map *lmp;
for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) {
if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
tls_modaddrem(lmp, TM_FLG_MODADD);
}
nlml->lm_tls = 0;
}
/*
* Fire any .init's.
*/
if (tobj)
call_init(tobj, DBG_INIT_SORT);
}
/*
* Append an item to the specified link map control list.
*/
void
lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
{
Lm_cntl *lmc;
int add = 1;
/*
* Indicate that this link-map list has a new object.
*/
(lml->lm_obj)++;
/*
* If we're about to add a new object to the main link-map control
* list, alert the debuggers. Additions of individual objects to the
* main link-map control list occur during initial setup as the
* applications immediate dependencies are loaded. Additional objects
* are loaded on the main link-map control list after they have been
* fully initialized on an alternative link-map control list. See
* lm_move().
*/
if (lmco == ALIST_OFF_DATA)
rd_event(lml, RD_DLACTIVITY, RT_ADD);
/* LINTED */
lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
/*
* A link-map list header points to one of more link-map control lists
* (see include/rtld.h). The initial list, pointed to by lm_cntl, is
* the list of relocated objects. Other lists maintain objects that
* are still being analyzed or relocated. This list provides the core
* link-map list information used by all ld.so.1 routines.
*/
if (lmc->lc_head == NULL) {
/*
* If this is the first link-map for the given control list,
* initialize the list.
*/
lmc->lc_head = lmc->lc_tail = lmp;
add = 0;
} else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
Rt_map *tlmp;
/*
* If this is an interposer then append the link-map following
* any other interposers (these are objects that have been
* previously preloaded, or were identified with -z interpose).
* Interposers can only be inserted on the first link-map
* control list, as once relocation has started, interposition
* from new interposers can't be guaranteed.
*
* NOTE: We do not interpose on the head of a list. This model
* evolved because dynamic executables have already been fully
* relocated within themselves and thus can't be interposed on.
* Nowadays it's possible to have shared objects at the head of
* a list, which conceptually means they could be interposed on.
* But, shared objects can be created via dldump() and may only
* be partially relocated (just relatives), in which case they
* are interposable, but are marked as fixed (ET_EXEC).
*
* Thus we really don't have a clear method of deciding when the
* head of a link-map is interposable. So, to be consistent,
* for now only add interposers after the link-map lists head
* object.
*/
for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp;
tlmp = NEXT_RT_MAP(tlmp)) {
if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
continue;
/*
* Insert the new link-map before this non-interposer,
* and indicate an interposer is found.
*/
NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp;
PREV(lmp) = PREV(tlmp);
NEXT(lmp) = (Link_map *)tlmp;
PREV(tlmp) = (Link_map *)lmp;
lmc->lc_flags |= LMC_FLG_REANALYZE;
add = 0;
break;
}
}
/*
* Fall through to appending the new link map to the tail of the list.
* If we're processing the initial objects of this link-map list, add
* them to the backward compatibility list.
*/
if (add) {
NEXT(lmc->lc_tail) = (Link_map *)lmp;
PREV(lmp) = (Link_map *)lmc->lc_tail;
lmc->lc_tail = lmp;
}
/*
* Having added this link-map to a control list, indicate which control
* list the link-map belongs to. Note, control list information is
* always maintained as an offset, as the Alist can be reallocated.
*/
CNTL(lmp) = lmco;
/*
* Indicate if an interposer is found. Note that the first object on a
* link-map can be explicitly defined as an interposer so that it can
* provide interposition over direct binding requests.
*/
if (FLAGS(lmp) & MSK_RT_INTPOSE)
lml->lm_flags |= LML_FLG_INTRPOSE;
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (lmco == ALIST_OFF_DATA) {
lml->lm_head = lmc->lc_head;
lml->lm_tail = lmc->lc_tail;
}
}
/*
* Delete an item from the specified link map control list.
*/
void
lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp)
{
Lm_cntl *lmc;
/*
* If the control list pointer hasn't been initialized, this object
* never got added to a link-map list.
*/
if (CNTL(lmp) == 0)
return;
/*
* If we're about to delete an object from the main link-map control
* list, alert the debuggers.
*/
if (CNTL(lmp) == ALIST_OFF_DATA)
rd_event(lml, RD_DLACTIVITY, RT_DELETE);
/*
* If we're being audited tell the audit library that we're
* about to go deleting dependencies.
*/
if (clmp && (aud_activity ||
((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY)))
audit_activity(clmp, LA_ACT_DELETE);
/* LINTED */
lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
if (lmc->lc_head == lmp)
lmc->lc_head = NEXT_RT_MAP(lmp);
else
NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp);
if (lmc->lc_tail == lmp)
lmc->lc_tail = PREV_RT_MAP(lmp);
else
PREV(NEXT_RT_MAP(lmp)) = PREV(lmp);
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
lml->lm_head = lmc->lc_head;
lml->lm_tail = lmc->lc_tail;
}
/*
* Indicate we have one less object on this control list.
*/
(lml->lm_obj)--;
}
/*
* Move a link-map control list to another. Objects that are being relocated
* are maintained on secondary control lists. Once their relocation is
* complete, the entire list is appended to the previous control list, as this
* list must have been the trigger for generating the new control list.
*/
void
lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
{
Rt_map *lmp;
/*
* If we're about to add a new family of objects to the main link-map
* control list, alert the debuggers. Additions of object families to
* the main link-map control list occur during lazy loading, filtering
* and dlopen().
*/
if (plmco == ALIST_OFF_DATA)
rd_event(lml, RD_DLACTIVITY, RT_ADD);
DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
/*
* Indicate each new link-map has been moved to the previous link-map
* control list.
*/
for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
CNTL(lmp) = plmco;
/*
* If these objects are being added to the main link-map
* control list, indicate that there are init's available
* for harvesting.
*/
if (plmco == ALIST_OFF_DATA) {
lml->lm_init++;
lml->lm_flags |= LML_FLG_OBJADDED;
}
}
/*
* Move the new link-map control list, to the callers link-map control
* list.
*/
if (plmc->lc_head == NULL) {
plmc->lc_head = nlmc->lc_head;
PREV(nlmc->lc_head) = NULL;
} else {
NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
}
plmc->lc_tail = nlmc->lc_tail;
nlmc->lc_head = nlmc->lc_tail = NULL;
/*
* For backward compatibility with debuggers, the link-map list contains
* pointers to the main control list.
*/
if (plmco == ALIST_OFF_DATA) {
lml->lm_head = plmc->lc_head;
lml->lm_tail = plmc->lc_tail;
}
}
/*
* Create, or assign a link-map control list. Each link-map list contains a
* main control list, which has an Alist offset of ALIST_OFF_DATA (see the
* description in include/rtld.h). During the initial construction of a
* process, objects are added to this main control list. This control list is
* never deleted, unless an alternate link-map list has been requested (say for
* auditors), and the associated objects could not be loaded or relocated.
*
* Once relocation has started, any lazy loadable objects, or filtees, are
* processed on a new, temporary control list. Only when these objects have
* been fully relocated, are they moved to the main link-map control list.
* Once the objects are moved, this temporary control list is deleted (see
* remove_cntl()).
*
* A dlopen() always requires a new temporary link-map control list.
* Typically, a dlopen() occurs on a link-map list that had already started
* relocation, however, auditors can dlopen() objects on the main link-map
* list while under initial construction, before any relocation has begun.
* Hence, dlopen() requests are explicitly flagged.
*/
Aliste
create_cntl(Lm_list *lml, int dlopen)
{
/*
* If the head link-map object has already been relocated, create a
* new, temporary, control list.
*/
if (dlopen || (lml->lm_head == NULL) ||
(FLAGS(lml->lm_head) & FLG_RT_RELOCED)) {
Lm_cntl *lmc;
if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl),
AL_CNT_LMLISTS)) == NULL)
return (NULL);
return ((Aliste)((char *)lmc - (char *)lml->lm_lists));
}
return (ALIST_OFF_DATA);
}
/*
* Environment variables can have a variety of defined permutations, and thus
* the following infrastructure exists to allow this variety and to select the
* required definition.
*
* Environment variables can be defined as 32- or 64-bit specific, and if so
* they will take precedence over any instruction set neutral form. Typically
* this is only useful when the environment value is an informational string.
*
* Environment variables may be obtained from the standard user environment or
* from a configuration file. The latter provides a fallback if no user
* environment setting is found, and can take two forms:
*
* - a replaceable definition - this will be used if no user environment
* setting has been seen, or
*
* - an permanent definition - this will be used no matter what user
* environment setting is seen. In the case of list variables it will be
* appended to any process environment setting seen.
*
* Environment variables can be defined without a value (ie. LD_XXXX=) so as to
* override any replaceable environment variables from a configuration file.
*/
static u_longlong_t rplgen = 0; /* replaceable generic */
/* variables */
static u_longlong_t rplisa = 0; /* replaceable ISA specific */
/* variables */
static u_longlong_t prmgen = 0; /* permanent generic */
/* variables */
static u_longlong_t prmisa = 0; /* permanent ISA specific */
/* variables */
static u_longlong_t cmdgen = 0; /* command line (-e) generic */
/* variables */
static u_longlong_t cmdisa = 0; /* command line (-e) ISA */
/* specific variables */
/*
* Classify an environment variables type.
*/
#define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */
/* the wrong ISA */
#define ENV_TYP_ISA 0x02 /* variable is ISA specific */
#define ENV_TYP_CONFIG 0x04 /* variable obtained from a */
/* config file */
#define ENV_TYP_PERMANT 0x08 /* variable is permanent */
#define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */
#define ENV_TYP_NULL 0x20 /* variable is null */
/*
* Identify all environment variables.
*/
#define ENV_FLG_AUDIT 0x0000000000001ULL
#define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL
#define ENV_FLG_BIND_NOW 0x0000000000004ULL
#define ENV_FLG_BIND_NOT 0x0000000000008ULL
#define ENV_FLG_BINDINGS 0x0000000000010ULL
#define ENV_FLG_CONFGEN 0x0000000000020ULL
#define ENV_FLG_CONFIG 0x0000000000040ULL
#define ENV_FLG_DEBUG 0x0000000000080ULL
#define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL
#define ENV_FLG_DEMANGLE 0x0000000000200ULL
#define ENV_FLG_FLAGS 0x0000000000400ULL
#define ENV_FLG_INIT 0x0000000000800ULL
#define ENV_FLG_LIBPATH 0x0000000001000ULL
#define ENV_FLG_LOADAVAIL 0x0000000002000ULL
#define ENV_FLG_LOADFLTR 0x0000000004000ULL
#define ENV_FLG_NOAUDIT 0x0000000008000ULL
#define ENV_FLG_NOAUXFLTR 0x0000000010000ULL
#define ENV_FLG_NOBAPLT 0x0000000020000ULL
#define ENV_FLG_NOCONFIG 0x0000000040000ULL
#define ENV_FLG_NODIRCONFIG 0x0000000080000ULL
#define ENV_FLG_NODIRECT 0x0000000100000ULL
#define ENV_FLG_NOENVCONFIG 0x0000000200000ULL
#define ENV_FLG_NOLAZY 0x0000000400000ULL
#define ENV_FLG_NOOBJALTER 0x0000000800000ULL
#define ENV_FLG_NOVERSION 0x0000001000000ULL
#define ENV_FLG_PRELOAD 0x0000002000000ULL
#define ENV_FLG_PROFILE 0x0000004000000ULL
#define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL
#define ENV_FLG_SIGNAL 0x0000010000000ULL
#define ENV_FLG_TRACE_OBJS 0x0000020000000ULL
#define ENV_FLG_TRACE_PTHS 0x0000040000000ULL
#define ENV_FLG_UNREF 0x0000080000000ULL
#define ENV_FLG_UNUSED 0x0000100000000ULL
#define ENV_FLG_VERBOSE 0x0000200000000ULL
#define ENV_FLG_WARN 0x0000400000000ULL
#define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL
#define ENV_FLG_BIND_LAZY 0x0001000000000ULL
#define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL
#define ENV_FLG_NOPAREXT 0x0004000000000ULL
#define ENV_FLG_HWCAP 0x0008000000000ULL
#define ENV_FLG_SFCAP 0x0010000000000ULL
#define ENV_FLG_MACHCAP 0x0020000000000ULL
#define ENV_FLG_PLATCAP 0x0040000000000ULL
#define ENV_FLG_CAP_FILES 0x0080000000000ULL
#define ENV_FLG_DEFERRED 0x0100000000000ULL
#define ENV_FLG_NOENVIRON 0x0200000000000ULL
#define SEL_REPLACE 0x0001
#define SEL_PERMANT 0x0002
#define SEL_ACT_RT 0x0100 /* setting rtld_flags */
#define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
#define SEL_ACT_STR 0x0400 /* setting string value */
#define SEL_ACT_LML 0x0800 /* setting lml_flags */
#define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
#define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */
#define SEL_ACT_SPEC_2 0x4000 /* need special handling */
/*
* Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
* and len specifies its length (comparing a strings length before the string
* itself speed things up). s2 points to the token itself which has already
* had any leading white-space removed.
*/
static void
ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
Word *lmtflags, uint_t env_flags, int aout)
{
u_longlong_t variable = 0;
ushort_t select = 0;
const char **str;
Word val = 0;
/*
* Determine whether we're dealing with a replaceable or permanent
* string.
*/
if (env_flags & ENV_TYP_PERMANT) {
/*
* If the string is from a configuration file and defined as
* permanent, assign it as permanent.
*/
select |= SEL_PERMANT;
} else
select |= SEL_REPLACE;
/*
* Parse the variable given.
*
* The LD_AUDIT family.
*/
if (*s1 == 'A') {
if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
/*
* Replaceable and permanent audit objects can exist.
*/
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit;
variable = ENV_FLG_AUDIT;
} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
/*
* A specialized variable for plt_exit() use, not
* documented for general use.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_AUDIT_ARGS;
}
}
/*
* The LD_BIND family.
*/
else if (*s1 == 'B') {
if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_LAZY),
MSG_LD_BIND_LAZY_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_BINDLAZY;
variable = ENV_FLG_BIND_LAZY;
} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_BINDNOW;
variable = ENV_FLG_BIND_NOW;
} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
/*
* Another trick, enabled to help debug AOUT
* applications under BCP, but not documented for
* general use.
*/
select |= SEL_ACT_RT;
val = RT_FL_NOBIND;
variable = ENV_FLG_BIND_NOT;
} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
/*
* This variable is simply for backward compatibility.
* If this and LD_DEBUG are both specified, only one of
* the strings is going to get processed.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_BINDINGS;
}
}
/*
* LD_CAP_FILES and LD_CONFIG family.
*/
else if (*s1 == 'C') {
if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ?
&rpl_cap_files : &prm_cap_files;
variable = ENV_FLG_CAP_FILES;
} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
/*
* This variable is not documented for general use.
* Although originaly designed for internal use with
* crle(1), this variable is in use by the Studio
* auditing tools. Hence, it can't be removed.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_CONFGEN;
} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
/*
* Secure applications must use a default configuration
* file. A setting from a configuration file doesn't
* make sense (given we must be reading a configuration
* file to have gotten this).
*/
if ((rtld_flags & RT_FL_SECURE) ||
(env_flags & ENV_TYP_CONFIG))
return;
select |= SEL_ACT_STR;
str = &config->c_name;
variable = ENV_FLG_CONFIG;
}
}
/*
* The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and
* LD_DEMANGLE.
*/
else if (*s1 == 'D') {
if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug;
variable = ENV_FLG_DEBUG;
} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = &dbg_file;
variable = ENV_FLG_DEBUG_OUTPUT;
} else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_DEFERRED;
variable = ENV_FLG_DEFERRED;
} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_DEMANGLE;
variable = ENV_FLG_DEMANGLE;
}
}
/*
* LD_FLAGS - collect the best variable definition. On completion of
* environment variable processing pass the result to ld_flags_env()
* where they'll be decomposed and passed back to this routine.
*/
else if (*s1 == 'F') {
if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
select |= SEL_ACT_SPEC_1;
str = (select & SEL_REPLACE) ? &rpl_ldflags :
&prm_ldflags;
variable = ENV_FLG_FLAGS;
}
}
/*
* LD_HWCAP.
*/
else if (*s1 == 'H') {
if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ?
&rpl_hwcap : &prm_hwcap;
variable = ENV_FLG_HWCAP;
}
}
/*
* LD_INIT (internal, used by ldd(1)).
*/
else if (*s1 == 'I') {
if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_INIT;
variable = ENV_FLG_INIT;
}
}
/*
* The LD_LIBRARY_PATH and LD_LOAD families.
*/
else if (*s1 == 'L') {
if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
select |= SEL_ACT_SPEC_1;
str = (select & SEL_REPLACE) ? &rpl_libpath :
&prm_libpath;
variable = ENV_FLG_LIBPATH;
} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
/*
* This variable is not documented for general use.
* Although originaly designed for internal use with
* crle(1), this variable is in use by the Studio
* auditing tools. Hence, it can't be removed.
*/
select |= SEL_ACT_LML;
val = LML_FLG_LOADAVAIL;
variable = ENV_FLG_LOADAVAIL;
} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_LOADFLTR;
}
}
/*
* LD_MACHCAP.
*/
else if (*s1 == 'M') {
if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ?
&rpl_machcap : &prm_machcap;
variable = ENV_FLG_MACHCAP;
}
}
/*
* The LD_NO family.
*/
else if (*s1 == 'N') {
if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOAUDIT;
variable = ENV_FLG_NOAUDIT;
} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOAUXFLTR;
variable = ENV_FLG_NOAUXFLTR;
} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOBAPLT;
variable = ENV_FLG_NOBAPLT;
} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOCFG;
variable = ENV_FLG_NOCONFIG;
} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NODIRCONFIG),
MSG_LD_NODIRCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NODIRCFG;
variable = ENV_FLG_NODIRCONFIG;
} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
select |= SEL_ACT_LMLT;
val = LML_TFLG_NODIRECT;
variable = ENV_FLG_NODIRECT;
} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOENVCONFIG),
MSG_LD_NOENVCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOENVCFG;
variable = ENV_FLG_NOENVCONFIG;
} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOFLTCONFIG),
MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
select |= SEL_ACT_RT2;
val = RT_FL2_NOFLTCFG;
variable = ENV_FLG_NOFLTCONFIG;
} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
select |= SEL_ACT_LMLT;
val = LML_TFLG_NOLAZYLD;
variable = ENV_FLG_NOLAZY;
} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOOBJALTER),
MSG_LD_NOOBJALTER_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOOBJALT;
variable = ENV_FLG_NOOBJALTER;
} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
select |= SEL_ACT_RT;
val = RT_FL_NOVERSION;
variable = ENV_FLG_NOVERSION;
} else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOUNRESWEAK),
MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
/*
* LD_NOUNRESWEAK (internal, used by ldd(1)).
*/
select |= SEL_ACT_LML;
val = LML_FLG_TRC_NOUNRESWEAK;
variable = ENV_FLG_NOUNRESWEAK;
} else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_NOPAREXT;
variable = ENV_FLG_NOPAREXT;
} else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) {
/*
* LD_NOENVIRON can only be set with ld.so.1 -e.
*/
select |= SEL_ACT_RT;
val = RT_FL_NOENVIRON;
variable = ENV_FLG_NOENVIRON;
}
}
/*
* LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
*/
else if (*s1 == 'P') {
if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ?
&rpl_platcap : &prm_platcap;
variable = ENV_FLG_PLATCAP;
} else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ? &rpl_preload :
&prm_preload;
variable = ENV_FLG_PRELOAD;
} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
/*
* Only one user library can be profiled at a time.
*/
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_PROFILE;
} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
/*
* Only one user library can be profiled at a time.
*/
select |= SEL_ACT_STR;
str = &profile_out;
variable = ENV_FLG_PROFILE_OUTPUT;
}
}
/*
* LD_SFCAP and LD_SIGNAL.
*/
else if (*s1 == 'S') {
if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) {
select |= SEL_ACT_STR;
str = (select & SEL_REPLACE) ?
&rpl_sfcap : &prm_sfcap;
variable = ENV_FLG_SFCAP;
} else if ((len == MSG_LD_SIGNAL_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
MSG_LD_SIGNAL_SIZE) == 0) &&
((rtld_flags & RT_FL_SECURE) == 0)) {
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_SIGNAL;
}
}
/*
* The LD_TRACE family (internal, used by ldd(1)). This definition is
* the key to enabling all other ldd(1) specific environment variables.
* In case an auditor is called, which in turn might exec(2) a
* subprocess, this variable is disabled, so that any subprocess
* escapes ldd(1) processing.
*/
else if (*s1 == 'T') {
if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
(strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
(((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
char *s0 = (char *)s1;
select |= SEL_ACT_SPEC_2;
variable = ENV_FLG_TRACE_OBJS;
#if defined(__sparc) || defined(__x86)
/*
* The simplest way to "disable" this variable is to
* truncate this string to "LD_'\0'". This string is
* ignored by any ld.so.1 environment processing.
* Use of such interfaces as unsetenv(3c) are overkill,
* and would drag too much libc implementation detail
* into ld.so.1.
*/
*s0 = '\0';
#else
/*
* Verify that the above write is appropriate for any new platforms.
*/
#error unsupported architecture!
#endif
} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_TRACE_PTHS),
MSG_LD_TRACE_PTHS_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_SEARCH;
variable = ENV_FLG_TRACE_PTHS;
}
}
/*
* LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
*/
else if (*s1 == 'U') {
if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_UNREF;
variable = ENV_FLG_UNREF;
} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_UNUSED;
variable = ENV_FLG_UNUSED;
}
}
/*
* LD_VERBOSE (internal, used by ldd(1)).
*/
else if (*s1 == 'V') {
if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_VERBOSE;
variable = ENV_FLG_VERBOSE;
}
}
/*
* LD_WARN (internal, used by ldd(1)).
*/
else if (*s1 == 'W') {
if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
select |= SEL_ACT_LML;
val = LML_FLG_TRC_WARN;
variable = ENV_FLG_WARN;
}
}
if (variable == 0)
return;
/*
* If the variable is already processed with and ISA specific variable,
* no further processing is needed.
*/
if (((select & SEL_REPLACE) && (rplisa & variable)) ||
((select & SEL_PERMANT) && (prmisa & variable)))
return;
/*
* If this variable has already been set via the command line, then
* ignore this variable. The command line, -e, takes precedence.
*/
if (env_flags & ENV_TYP_ISA) {
if (cmdisa & variable)
return;
if (env_flags & ENV_TYP_CMDLINE)
cmdisa |= variable;
} else {
if (cmdgen & variable)
return;
if (env_flags & ENV_TYP_CMDLINE)
cmdgen |= variable;
}
/*
* Mark the appropriate variables.
*/
if (env_flags & ENV_TYP_ISA) {
/*
* This is an ISA setting.
*/
if (select & SEL_REPLACE) {
if (rplisa & variable)
return;
rplisa |= variable;
} else {
prmisa |= variable;
}
} else {
/*
* This is a non-ISA setting.
*/
if (select & SEL_REPLACE) {
if (rplgen & variable)
return;
rplgen |= variable;
} else
prmgen |= variable;
}
/*
* Now perform the setting.
*/
if (select & SEL_ACT_RT) {
if (s2)
rtld_flags |= val;
else
rtld_flags &= ~val;
} else if (select & SEL_ACT_RT2) {
if (s2)
rtld_flags2 |= val;
else
rtld_flags2 &= ~val;
} else if (select & SEL_ACT_STR) {
if (env_flags & ENV_TYP_NULL)
*str = NULL;
else
*str = s2;
} else if (select & SEL_ACT_LML) {
if (s2)
*lmflags |= val;
else
*lmflags &= ~val;
} else if (select & SEL_ACT_LMLT) {
if (s2)
*lmtflags |= val;
else
*lmtflags &= ~val;
} else if (select & SEL_ACT_SPEC_1) {
/*
* variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
*/
if (env_flags & ENV_TYP_NULL)
*str = NULL;
else
*str = s2;
if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
if (s2) {
if (variable == ENV_FLG_FLAGS)
env_info |= ENV_INF_FLAGCFG;
else
env_info |= ENV_INF_PATHCFG;
} else {
if (variable == ENV_FLG_FLAGS)
env_info &= ~ENV_INF_FLAGCFG;
else
env_info &= ~ENV_INF_PATHCFG;
}
}
} else if (select & SEL_ACT_SPEC_2) {
/*
* variables can be: ENV_FLG_
* AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
* SIGNAL, TRACE_OBJS
*/
switch (variable) {
case ENV_FLG_AUDIT_ARGS:
if (s2) {
audit_argcnt = atoi(s2);
audit_argcnt += audit_argcnt % 2;
} else
audit_argcnt = 0;
break;
case ENV_FLG_BINDINGS:
if (s2)
rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
else
rpl_debug = NULL;
break;
case ENV_FLG_CONFGEN:
if (s2) {
rtld_flags |= RT_FL_CONFGEN;
*lmflags |= LML_FLG_IGNRELERR;
} else {
rtld_flags &= ~RT_FL_CONFGEN;
*lmflags &= ~LML_FLG_IGNRELERR;
}
break;
case ENV_FLG_LOADFLTR:
if (s2) {
*lmtflags |= LML_TFLG_LOADFLTR;
if (*s2 == '2')
rtld_flags |= RT_FL_WARNFLTR;
} else {
*lmtflags &= ~LML_TFLG_LOADFLTR;
rtld_flags &= ~RT_FL_WARNFLTR;
}
break;
case ENV_FLG_PROFILE:
profile_name = s2;
if (s2) {
if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
return;
}
/* BEGIN CSTYLED */
if (rtld_flags & RT_FL_SECURE) {
profile_lib =
#if defined(_ELF64)
MSG_ORIG(MSG_PTH_LDPROFSE_64);
#else
MSG_ORIG(MSG_PTH_LDPROFSE);
#endif
} else {
profile_lib =
#if defined(_ELF64)
MSG_ORIG(MSG_PTH_LDPROF_64);
#else
MSG_ORIG(MSG_PTH_LDPROF);
#endif
}
/* END CSTYLED */
} else
profile_lib = NULL;
break;
case ENV_FLG_SIGNAL:
killsig = s2 ? atoi(s2) : SIGKILL;
break;
case ENV_FLG_TRACE_OBJS:
if (s2) {
*lmflags |= LML_FLG_TRC_ENABLE;
if (*s2 == '2')
*lmflags |= LML_FLG_TRC_LDDSTUB;
} else
*lmflags &=
~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB);
break;
}
}
}
/*
* Determine whether we have an architecture specific environment variable.
* If we do, and we're the wrong architecture, it'll just get ignored.
* Otherwise the variable is processed in it's architecture neutral form.
*/
static int
ld_arch_env(const char *s1, size_t *len)
{
size_t _len = *len - 3;
if (s1[_len++] == '_') {
if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
#if defined(_ELF64)
return (ENV_TYP_IGNORE);
#else
*len = *len - 3;
return (ENV_TYP_ISA);
#endif
}
if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
#if defined(_ELF64)
*len = *len - 3;
return (ENV_TYP_ISA);
#else
return (ENV_TYP_IGNORE);
#endif
}
}
return (0);
}
/*
* Process an LD_FLAGS environment variable. The value can be a comma
* separated set of tokens, which are sent (in upper case) into the generic
* LD_XXXX environment variable engine. For example:
*
* LD_FLAGS=bind_now= -> LD_BIND_NOW=
* LD_FLAGS=bind_now -> LD_BIND_NOW=1
* LD_FLAGS=library_path= -> LD_LIBRARY_PATH=
* LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
* LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
* or
* LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
*/
static int
ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
uint_t env_flags, int aout)
{
char *nstr, *sstr, *estr = NULL;
size_t nlen, len;
if (str == NULL)
return (0);
/*
* Create a new string as we're going to transform the token(s) into
* uppercase and separate tokens with nulls.
*/
len = strlen(str);
if ((nstr = malloc(len + 1)) == NULL)
return (1);
(void) strcpy(nstr, str);
for (sstr = nstr; sstr; sstr++, len--) {
int flags = 0;
if ((*sstr != '\0') && (*sstr != ',')) {
if (estr == NULL) {
if (*sstr == '=')
estr = sstr;
else {
/*
* Translate token to uppercase. Don't
* use toupper(3C) as including this
* code doubles the size of ld.so.1.
*/
if ((*sstr >= 'a') && (*sstr <= 'z'))
*sstr = *sstr - ('a' - 'A');
}
}
continue;
}
*sstr = '\0';
/*
* Have we discovered an "=" string.
*/
if (estr) {
nlen = estr - nstr;
/*
* If this is an unqualified "=", then this variable
* is intended to ensure a feature is disabled.
*/
if ((*++estr == '\0') || (*estr == ','))
estr = NULL;
} else {
nlen = sstr - nstr;
/*
* If there is no "=" found, fabricate a boolean
* definition for any unqualified variable. Thus,
* LD_FLAGS=bind_now is represented as BIND_NOW=1.
* The value "1" is sufficient to assert any boolean
* variables. Setting of ENV_TYP_NULL ensures any
* string usage is reset to a NULL string, thus
* LD_FLAGS=library_path is equivalent to
* LIBRARY_PATH='\0'.
*/
flags |= ENV_TYP_NULL;
estr = (char *)MSG_ORIG(MSG_STR_ONE);
}
/*
* Determine whether the environment variable is 32- or 64-bit
* specific. The length, len, will reflect the architecture
* neutral portion of the string.
*/
if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
ld_generic_env(nstr, nlen, estr, lmflags,
lmtflags, (env_flags | flags), aout);
}
if (len == 0)
break;
nstr = sstr + 1;
estr = NULL;
}
return (0);
}
/*
* Variant of getopt(), intended for use when ld.so.1 is invoked directly
* from the command line. The only command line option allowed is -e followed
* by a runtime linker environment variable.
*/
int
rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
Word *lmtflags, int aout)
{
int ndx;
for (ndx = 1; argv[ndx]; ndx++) {
char *str;
if (argv[ndx][0] != '-')
break;
if (argv[ndx][1] == '\0') {
ndx++;
break;
}
if (argv[ndx][1] != 'e')
return (1);
if (argv[ndx][2] == '\0') {
ndx++;
if (argv[ndx] == NULL)
return (1);
str = argv[ndx];
} else
str = &argv[ndx][2];
/*
* If the environment variable starts with LD_, strip the LD_.
* Otherwise, take things as is. Indicate that this variable
* originates from the command line, as these variables take
* precedence over any environment variables, or configuration
* file variables.
*/
if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
(str[3] != '\0'))
str += 3;
if (ld_flags_env(str, lmflags, lmtflags,
ENV_TYP_CMDLINE, aout) == 1)
return (1);
}
/*
* Make sure an object file has been specified.
*/
if (argv[ndx] == NULL)
return (1);
/*
* Having gotten the arguments, clean ourselves off of the stack.
* This results in a process that looks as if it was executed directly
* from the application.
*/
stack_cleanup(argv, envp, auxv, ndx);
return (0);
}
/*
* Process a single LD_XXXX string.
*/
static void
ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
int aout)
{
const char *s2;
size_t len;
int flags;
/*
* In a branded process we must ignore all LD_XXXX variables because
* they are intended for the brand's linker. To affect the native
* linker, use LD_BRAND_XXXX instead.
*/
if (rtld_flags2 & RT_FL2_BRANDED) {
if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
MSG_LD_BRAND_PREFIX_SIZE) != 0)
return;
s1 += MSG_LD_BRAND_PREFIX_SIZE;
}
/*
* Variables with no value (ie. LD_XXXX=) turn a capability off.
*/
if ((s2 = strchr(s1, '=')) == NULL) {
len = strlen(s1);
s2 = NULL;
} else if (*++s2 == '\0') {
len = strlen(s1) - 1;
s2 = NULL;
} else {
len = s2 - s1 - 1;
while (conv_strproc_isspace(*s2))
s2++;
}
/*
* Determine whether the environment variable is 32-bit or 64-bit
* specific. The length, len, will reflect the architecture neutral
* portion of the string.
*/
if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
return;
env_flags |= flags;
ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
}
/*
* Internal getenv routine. Called immediately after ld.so.1 initializes
* itself to process any locale specific environment variables, and collect
* any LD_XXXX variables for later processing.
*/
#define LOC_LANG 1
#define LOC_MESG 2
#define LOC_ALL 3
int
readenv_user(const char **envp, APlist **ealpp)
{
char *locale;
const char *s1;
int loc = 0;
for (s1 = *envp; s1; envp++, s1 = *envp) {
const char *s2;
if (*s1++ != 'L')
continue;
/*
* See if we have any locale environment settings. These
* environment variables have a precedence, LC_ALL is higher
* than LC_MESSAGES which is higher than LANG.
*/
s2 = s1;
if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
if (strncmp(s2, MSG_ORIG(MSG_LC_ALL),
MSG_LC_ALL_SIZE) == 0) {
s2 += MSG_LC_ALL_SIZE;
if ((*s2 != '\0') && (loc < LOC_ALL)) {
glcs[CI_LCMESSAGES].lc_un.lc_ptr =
(char *)s2;
loc = LOC_ALL;
}
} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
MSG_LC_MESSAGES_SIZE) == 0) {
s2 += MSG_LC_MESSAGES_SIZE;
if ((*s2 != '\0') && (loc < LOC_MESG)) {
glcs[CI_LCMESSAGES].lc_un.lc_ptr =
(char *)s2;
loc = LOC_MESG;
}
}
continue;
}
s2 = s1;
if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
(*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
loc = LOC_LANG;
continue;
}
/*
* Pick off any LD_XXXX environment variables.
*/
if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL)
return (1);
}
}
/*
* If we have a locale setting make sure it's worth processing further.
* C and POSIX locales don't need any processing. In addition, to
* ensure no one escapes the /usr/lib/locale hierarchy, don't allow
* the locale to contain a segment that leads upward in the file system
* hierarchy (i.e. no '..' segments). Given that we'll be confined to
* the /usr/lib/locale hierarchy, there is no need to extensively
* validate the mode or ownership of any message file (as libc's
* generic handling of message files does), or be concerned with
* symbolic links that might otherwise send us elsewhere. Duplicate
* the string so that new locale setting can generically cleanup any
* previous locales.
*/
if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) {
if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
(strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
(strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL;
else
glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
}
return (0);
}
/*
* Process any LD_XXXX environment variables collected by readenv_user().
*/
int
procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout)
{
Aliste idx;
const char *s1;
for (APLIST_TRAVERSE(ealp, idx, s1))
ld_str_env(s1, lmflags, lmtflags, 0, aout);
/*
* Having collected the best representation of any LD_FLAGS, process
* these strings.
*/
if (rpl_ldflags) {
if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
return (1);
rpl_ldflags = NULL;
}
/*
* Don't allow environment controlled auditing when tracing or if
* explicitly disabled. Trigger all tracing modes from
* LML_FLG_TRC_ENABLE.
*/
if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
rpl_audit = profile_lib = profile_name = NULL;
if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
*lmflags &= ~LML_MSK_TRC;
/*
* If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
*/
if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
(RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
rtld_flags2 &= ~RT_FL2_BINDLAZY;
/*
* When using ldd(1) -r or -d against an executable, assert -p.
*/
if ((*lmflags &
(LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
*lmflags |= LML_FLG_TRC_NOPAREXT;
return (0);
}
/*
* Configuration environment processing. Called after the a.out has been
* processed (as the a.out can specify its own configuration file).
*/
int
readenv_config(Rtc_env * envtbl, Addr addr, int aout)
{
Word *lmflags = &(lml_main.lm_flags);
Word *lmtflags = &(lml_main.lm_tflags);
if (envtbl == NULL)
return (0);
while (envtbl->env_str) {
uint_t env_flags = ENV_TYP_CONFIG;
const char *s1 = (const char *)(envtbl->env_str + addr);
if (envtbl->env_flags & RTC_ENV_PERMANT)
env_flags |= ENV_TYP_PERMANT;
if ((*s1++ == 'L') && (*s1++ == 'D') &&
(*s1++ == '_') && (*s1 != '\0'))
ld_str_env(s1, lmflags, lmtflags, env_flags, 0);
envtbl++;
}
/*
* Having collected the best representation of any LD_FLAGS, process
* these strings.
*/
if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
return (1);
if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
aout) == 1)
return (1);
/*
* Don't allow environment controlled auditing when tracing or if
* explicitly disabled. Trigger all tracing modes from
* LML_FLG_TRC_ENABLE.
*/
if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
prm_audit = profile_lib = profile_name = NULL;
if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
*lmflags &= ~LML_MSK_TRC;
return (0);
}
int
dowrite(Prfbuf * prf)
{
/*
* We do not have a valid file descriptor, so we are unable
* to flush the buffer.
*/
if (prf->pr_fd == -1)
return (0);
(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
prf->pr_cur = prf->pr_buf;
return (1);
}
/*
* Simplified printing. The following conversion specifications are supported:
*
* % [#] [-] [min field width] [. precision] s|d|x|c
*
*
* dorprf takes the output buffer in the form of Prfbuf which permits
* the verification of the output buffer size and the concatenation
* of data to an already existing output buffer. The Prfbuf
* structure contains the following:
*
* pr_buf pointer to the beginning of the output buffer.
* pr_cur pointer to the next available byte in the output buffer. By
* setting pr_cur ahead of pr_buf you can append to an already
* existing buffer.
* pr_len the size of the output buffer. By setting pr_len to '0' you
* disable protection from overflows in the output buffer.
* pr_fd a pointer to the file-descriptor the buffer will eventually be
* output to. If pr_fd is set to '-1' then it's assumed there is
* no output buffer, and doprf() will return with an error to
* indicate an output buffer overflow. If pr_fd is > -1 then when
* the output buffer is filled it will be flushed to pr_fd and will
* then be available for additional data.
*/
#define FLG_UT_MINUS 0x0001 /* - */
#define FLG_UT_SHARP 0x0002 /* # */
#define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
/*
* This macro is for use from within doprf only. It is to be used for checking
* the output buffer size and placing characters into the buffer.
*/
#define PUTC(c) \
{ \
char tmpc; \
\
tmpc = (c); \
if (bufsiz && (bp >= bufend)) { \
prf->pr_cur = bp; \
if (dowrite(prf) == 0) \
return (0); \
bp = prf->pr_cur; \
} \
*bp++ = tmpc; \
}
/*
* Define a local buffer size for building a numeric value - large enough to
* hold a 64-bit value.
*/
#define NUM_SIZE 22
size_t
doprf(const char *format, va_list args, Prfbuf *prf)
{
char c;
char *bp = prf->pr_cur;
char *bufend = prf->pr_buf + prf->pr_len;
size_t bufsiz = prf->pr_len;
while ((c = *format++) != '\0') {
if (c != '%') {
PUTC(c);
} else {
int base = 0, flag = 0, width = 0, prec = 0;
size_t _i;
int _c, _n;
char *_s;
int ls = 0;
again:
c = *format++;
switch (c) {
case '-':
flag |= FLG_UT_MINUS;
goto again;
case '#':
flag |= FLG_UT_SHARP;
goto again;
case '.':
flag |= FLG_UT_DOTSEEN;
goto again;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (flag & FLG_UT_DOTSEEN)
prec = (prec * 10) + c - '0';
else
width = (width * 10) + c - '0';
goto again;
case 'x':
case 'X':
base = 16;
break;
case 'd':
case 'D':
case 'u':
base = 10;
flag &= ~FLG_UT_SHARP;
break;
case 'l':
base = 10;
ls++; /* number of l's (long or long long) */
if ((*format == 'l') ||
(*format == 'd') || (*format == 'D') ||
(*format == 'x') || (*format == 'X') ||
(*format == 'o') || (*format == 'O') ||
(*format == 'u') || (*format == 'U'))
goto again;
break;
case 'o':
case 'O':
base = 8;
break;
case 'c':
_c = va_arg(args, int);
for (_i = 24; _i > 0; _i -= 8) {
if ((c = ((_c >> _i) & 0x7f)) != 0) {
PUTC(c);
}
}
if ((c = ((_c >> _i) & 0x7f)) != 0) {
PUTC(c);
}
break;
case 's':
_s = va_arg(args, char *);
_i = strlen(_s);
/* LINTED */
_n = (int)(width - _i);
if (!prec)
/* LINTED */
prec = (int)_i;
if (width && !(flag & FLG_UT_MINUS)) {
while (_n-- > 0)
PUTC(' ');
}
while (((c = *_s++) != 0) && prec--) {
PUTC(c);
}
if (width && (flag & FLG_UT_MINUS)) {
while (_n-- > 0)
PUTC(' ');
}
break;
case '%':
PUTC('%');
break;
default:
break;
}
/*
* Numeric processing
*/
if (base) {
char local[NUM_SIZE];
size_t ssize = 0, psize = 0;
const char *string =
MSG_ORIG(MSG_STR_HEXNUM);
const char *prefix =
MSG_ORIG(MSG_STR_EMPTY);
u_longlong_t num;
switch (ls) {
case 0: /* int */
num = (u_longlong_t)
va_arg(args, uint_t);
break;
case 1: /* long */
num = (u_longlong_t)
va_arg(args, ulong_t);
break;
case 2: /* long long */
num = va_arg(args, u_longlong_t);
break;
}
if (flag & FLG_UT_SHARP) {
if (base == 16) {
prefix = MSG_ORIG(MSG_STR_HEX);
psize = 2;
} else {
prefix = MSG_ORIG(MSG_STR_ZERO);
psize = 1;
}
}
if ((base == 10) && (long)num < 0) {
prefix = MSG_ORIG(MSG_STR_NEGATE);
psize = MSG_STR_NEGATE_SIZE;
num = (u_longlong_t)(-(longlong_t)num);
}
/*
* Convert the numeric value into a local
* string (stored in reverse order).
*/
_s = local;
do {
*_s++ = string[num % base];
num /= base;
ssize++;
} while (num);
ASSERT(ssize < sizeof (local));
/*
* Provide any precision or width padding.
*/
if (prec) {
/* LINTED */
_n = (int)(prec - ssize);
while ((_n-- > 0) &&
(ssize < sizeof (local))) {
*_s++ = '0';
ssize++;
}
}
if (width && !(flag & FLG_UT_MINUS)) {
/* LINTED */
_n = (int)(width - ssize - psize);
while (_n-- > 0) {
PUTC(' ');
}
}
/*
* Print any prefix and the numeric string
*/
while (*prefix)
PUTC(*prefix++);
do {
PUTC(*--_s);
} while (_s > local);
/*
* Provide any width padding.
*/
if (width && (flag & FLG_UT_MINUS)) {
/* LINTED */
_n = (int)(width - ssize - psize);
while (_n-- > 0)
PUTC(' ');
}
}
}
}
PUTC('\0');
prf->pr_cur = bp;
return (1);
}
static int
doprintf(const char *format, va_list args, Prfbuf *prf)
{
char *ocur = prf->pr_cur;
if (doprf(format, args, prf) == 0)
return (0);
/* LINTED */
return ((int)(prf->pr_cur - ocur));
}
/* VARARGS2 */
int
sprintf(char *buf, const char *format, ...)
{
va_list args;
int len;
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buf;
prf.pr_len = 0;
prf.pr_fd = -1;
len = doprintf(format, args, &prf);
va_end(args);
/*
* sprintf() return value excludes the terminating null byte.
*/
return (len - 1);
}
/* VARARGS3 */
int
snprintf(char *buf, size_t n, const char *format, ...)
{
va_list args;
int len;
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buf;
prf.pr_len = n;
prf.pr_fd = -1;
len = doprintf(format, args, &prf);
va_end(args);
return (len);
}
/* VARARGS2 */
int
bufprint(Prfbuf *prf, const char *format, ...)
{
va_list args;
int len;
va_start(args, format);
len = doprintf(format, args, prf);
va_end(args);
return (len);
}
/*PRINTFLIKE1*/
int
printf(const char *format, ...)
{
va_list args;
char buffer[ERRSIZE];
Prfbuf prf;
va_start(args, format);
prf.pr_buf = prf.pr_cur = buffer;
prf.pr_len = ERRSIZE;
prf.pr_fd = 1;
(void) doprf(format, args, &prf);
va_end(args);
/*
* Trim trailing '\0' form buffer
*/
prf.pr_cur--;
return (dowrite(&prf));
}
static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL;
/*
* All error messages go through eprintf(). During process initialization,
* these messages are directed to the standard error, however once control has
* been passed to the applications code these messages are stored in an internal
* buffer for use with dlerror(). Note, fatal error conditions that may occur
* while running the application will still cause a standard error message, see
* rtldexit() in this file for details.
* The RT_FL_APPLIC flag serves to indicate the transition between process
* initialization and when the applications code is running.
*/
void
veprintf(Lm_list *lml, Error error, const char *format, va_list args)
{
int overflow = 0;
static int lock = 0;
Prfbuf prf;
if (lock || (nextptr == (errbuf + ERRSIZE)))
return;
/*
* Note: this lock is here to prevent the same thread from recursively
* entering itself during a eprintf. ie: during eprintf malloc() fails
* and we try and call eprintf ... and then malloc() fails ....
*/
lock = 1;
/*
* If we have completed startup initialization, all error messages
* must be saved. These are reported through dlerror(). If we're
* still in the initialization stage, output the error directly and
* add a newline.
*/
prf.pr_buf = prf.pr_cur = nextptr;
prf.pr_len = ERRSIZE - (nextptr - errbuf);
if ((rtld_flags & RT_FL_APPLIC) == 0)
prf.pr_fd = 2;
else
prf.pr_fd = -1;
if (error > ERR_NONE) {
if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
error = ERR_WARNING;
switch (error) {
case ERR_WARNING_NF:
if (err_strs[ERR_WARNING_NF] == NULL)
err_strs[ERR_WARNING_NF] =
MSG_INTL(MSG_ERR_WARNING);
break;
case ERR_WARNING:
if (err_strs[ERR_WARNING] == NULL)
err_strs[ERR_WARNING] =
MSG_INTL(MSG_ERR_WARNING);
break;
case ERR_GUIDANCE:
if (err_strs[ERR_GUIDANCE] == NULL)
err_strs[ERR_GUIDANCE] =
MSG_INTL(MSG_ERR_GUIDANCE);
break;
case ERR_FATAL:
if (err_strs[ERR_FATAL] == NULL)
err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
break;
case ERR_ELF:
if (err_strs[ERR_ELF] == NULL)
err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
break;
}
if (procname) {
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
rtldname, procname, err_strs[error]) == 0)
overflow = 1;
} else {
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
rtldname, err_strs[error]) == 0)
overflow = 1;
}
if (overflow == 0) {
/*
* Remove the terminating '\0'.
*/
prf.pr_cur--;
}
}
if ((overflow == 0) && doprf(format, args, &prf) == 0)
overflow = 1;
/*
* If this is an ELF error, it will have been generated by a support
* object that has a dependency on libelf. ld.so.1 doesn't generate any
* ELF error messages as it doesn't interact with libelf. Determine the
* ELF error string.
*/
if ((overflow == 0) && (error == ERR_ELF)) {
static int (*elfeno)() = 0;
static const char *(*elfemg)();
const char *emsg;
Rt_map *dlmp, *lmp = lml_rtld.lm_head;
if (NEXT(lmp) && (elfeno == 0)) {
if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
MSG_ORIG(MSG_SYM_ELFERRMSG),
lmp, &dlmp)) == NULL) ||
((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL))
elfeno = 0;
}
/*
* Lookup the message; equivalent to elf_errmsg(elf_errno()).
*/
if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) {
prf.pr_cur--;
if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
emsg) == 0)
overflow = 1;
}
}
/*
* Push out any message that's been built. Note, in the case of an
* overflow condition, this message may be incomplete, in which case
* make sure any partial string is null terminated.
*/
if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
*(prf.pr_cur - 1) = '\n';
(void) dowrite(&prf);
}
if (overflow)
*(prf.pr_cur - 1) = '\0';
DBG_CALL(Dbg_util_str(lml, nextptr));
/*
* Determine if there was insufficient space left in the buffer to
* complete the message. If so, we'll have printed out as much as had
* been processed if we're not yet executing the application.
* Otherwise, there will be some debugging diagnostic indicating
* as much of the error message as possible. Write out a final buffer
* overflow diagnostic - unlocalized, so we don't chance more errors.
*/
if (overflow) {
char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
if ((rtld_flags & RT_FL_SILENCERR) == 0) {
lasterr = str;
if ((rtld_flags & RT_FL_APPLIC) == 0) {
(void) write(2, str, strlen(str));
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
}
}
DBG_CALL(Dbg_util_str(lml, str));
lock = 0;
nextptr = errbuf + ERRSIZE;
return;
}
/*
* If the application has started, then error messages are being saved
* for retrieval by dlerror(), or possible flushing from rtldexit() in
* the case of a fatal error. In this case, establish the next error
* pointer. If we haven't started the application, the whole message
* buffer can be reused.
*/
if ((rtld_flags & RT_FL_SILENCERR) == 0) {
lasterr = nextptr;
/*
* Note, should we encounter an error such as ENOMEM, there may
* be a number of the same error messages (ie. an operation
* fails with ENOMEM, and then the attempts to construct the
* error message itself, which incurs additional ENOMEM errors).
* Compare any previous error message with the one we've just
* created to prevent any duplication clutter.
*/
if ((rtld_flags & RT_FL_APPLIC) &&
((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) {
prevptr = nextptr;
nextptr = prf.pr_cur;
*nextptr = '\0';
}
}
lock = 0;
}
/*PRINTFLIKE3*/
void
eprintf(Lm_list *lml, Error error, const char *format, ...)
{
va_list args;
va_start(args, format);
veprintf(lml, error, format, args);
va_end(args);
}
/*
* Provide assfail() for ASSERT() statements. See <sys/debug.h> for further
* details.
*/
int
assfail(const char *a, const char *f, int l)
{
(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
(void) _lwp_kill(_lwp_self(), SIGABRT);
return (0);
}
void
assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b,
const char *f, int l)
{
(void) printf("assertion failed: %s (0x%llx %s 0x%llx), "
"file: %s, line: %d\n", msg, (unsigned long long)a, op,
(unsigned long long)b, f, l);
(void) _lwp_kill(_lwp_self(), SIGABRT);
}
/*
* Exit. If we arrive here with a non zero status it's because of a fatal
* error condition (most commonly a relocation error). If the application has
* already had control, then the actual fatal error message will have been
* recorded in the dlerror() message buffer. Print the message before really
* exiting.
*/
void
rtldexit(Lm_list * lml, int status)
{
if (status) {
if (rtld_flags & RT_FL_APPLIC) {
/*
* If the error buffer has been used, write out all
* pending messages - lasterr is simply a pointer to
* the last message in this buffer. However, if the
* buffer couldn't be created at all, lasterr points
* to a constant error message string.
*/
if (*errbuf) {
char *errptr = errbuf;
char *errend = errbuf + ERRSIZE;
while ((errptr < errend) && *errptr) {
size_t size = strlen(errptr);
(void) write(2, errptr, size);
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
errptr += (size + 1);
}
}
if (lasterr && ((lasterr < errbuf) ||
(lasterr > (errbuf + ERRSIZE)))) {
(void) write(2, lasterr, strlen(lasterr));
(void) write(2, MSG_ORIG(MSG_STR_NL),
MSG_STR_NL_SIZE);
}
}
leave(lml, 0);
(void) _lwp_kill(_lwp_self(), killsig);
}
_exit(status);
}
/*
* Map anonymous memory via MAP_ANON (added in Solaris 8).
*/
void *
dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
{
caddr_t va;
if ((va = (caddr_t)mmap(addr, len, prot,
(flags | MAP_ANON), -1, 0)) == MAP_FAILED) {
int err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
strerror(err));
return (MAP_FAILED);
}
return (va);
}
static int nu_fd = FD_UNAVAIL;
void *
nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
{
caddr_t va;
int err;
if (nu_fd == FD_UNAVAIL) {
if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
O_RDONLY)) == FD_UNAVAIL) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
return (MAP_FAILED);
}
}
if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
MAP_FAILED) {
err = errno;
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
}
return (va);
}
/*
* Generic entry point from user code - simply grabs a lock, and bumps the
* entrance count.
*/
int
enter(int flags)
{
if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) {
if (!thr_flg_nolock)
(void) rt_mutex_lock(&rtldlock);
if (rtld_flags & RT_FL_OPERATION) {
ld_entry_cnt++;
/*
* Reset the diagnostic time information for each new
* "operation". Thus timing diagnostics are relative
* to entering ld.so.1.
*/
if (DBG_ISTIME() &&
(gettimeofday(&DBG_TOTALTIME, NULL) == 0)) {
DBG_DELTATIME = DBG_TOTALTIME;
DBG_ONRESET();
}
}
return (1);
}
return (0);
}
/*
* Determine whether a search path has been used.
*/
static void
is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj)
{
Pdesc *pdp;
Aliste idx;
for (ALIST_TRAVERSE(alp, idx, pdp)) {
const char *fmt, *name;
if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED))
continue;
/*
* If this pathname originated from an expanded token, use the
* original for any diagnostic output.
*/
if ((name = pdp->pd_oname) == NULL)
name = pdp->pd_pname;
if (unref == 0) {
if ((*nl)++ == 0)
DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags,
(pdp->pd_flags & PD_FLG_DUPLICAT), obj));
continue;
}
if (pdp->pd_flags & LA_SER_LIBPATH) {
if (pdp->pd_flags & LA_SER_CONFIG) {
if (pdp->pd_flags & PD_FLG_DUPLICAT)
fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
else
fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
} else {
if (pdp->pd_flags & PD_FLG_DUPLICAT)
fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
else
fmt = MSG_INTL(MSG_USD_LDLIBPATH);
}
} else if (pdp->pd_flags & LA_SER_RUNPATH) {
fmt = MSG_INTL(MSG_USD_RUNPATH);
} else
continue;
if ((*nl)++ == 0)
(void) printf(MSG_ORIG(MSG_STR_NL));
(void) printf(fmt, name, obj);
}
}
/*
* Generate diagnostics as to whether an object has been used. A symbolic
* reference that gets bound to an object marks it as used. Dependencies that
* are unused when RTLD_NOW is in effect should be removed from future builds
* of an object. Dependencies that are unused without RTLD_NOW in effect are
* candidates for lazy-loading.
*
* Unreferenced objects identify objects that are defined as dependencies but
* are unreferenced by the caller. These unreferenced objects may however be
* referenced by other objects within the process, and therefore don't qualify
* as completely unused. They are still an unnecessary overhead.
*
* Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
* debugging.
*/
void
unused(Lm_list *lml)
{
Rt_map *lmp;
int nl = 0;
Word unref, unuse;
/*
* If we're not tracing unused references or dependencies, or debugging
* there's nothing to do.
*/
unref = lml->lm_flags & LML_FLG_TRC_UNREF;
unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
return;
/*
* Detect unused global search paths.
*/
if (rpl_libdirs)
is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
if (prm_libdirs)
is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
nl = 0;
lmp = lml->lm_head;
if (RLIST(lmp))
is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
/*
* Traverse the link-maps looking for unreferenced or unused
* dependencies. Ignore the first object on a link-map list, as this
* is always used.
*/
nl = 0;
for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) {
/*
* Determine if this object contains any runpaths that have
* not been used.
*/
if (RLIST(lmp))
is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
/*
* If tracing unreferenced objects, or under debugging,
* determine whether any of this objects callers haven't
* referenced it.
*/
if (unref || DBG_ENABLED) {
Bnd_desc *bdp;
Aliste idx;
for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
Rt_map *clmp;
if (bdp->b_flags & BND_REFER)
continue;
clmp = bdp->b_caller;
if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
continue;
/* BEGIN CSTYLED */
if (nl++ == 0) {
if (unref)
(void) printf(MSG_ORIG(MSG_STR_NL));
else
DBG_CALL(Dbg_util_nl(lml,
DBG_NL_STD));
}
if (unref)
(void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
NAME(lmp), NAME(clmp));
else
DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
/* END CSTYLED */
}
}
/*
* If tracing unused objects simply display those objects that
* haven't been referenced by anyone.
*/
if (FLAGS1(lmp) & FL1_RT_USED)
continue;
if (nl++ == 0) {
if (unref || unuse)
(void) printf(MSG_ORIG(MSG_STR_NL));
else
DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
}
if (CYCGROUP(lmp)) {
if (unref || unuse)
(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
NAME(lmp), CYCGROUP(lmp));
else
DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
CYCGROUP(lmp)));
} else {
if (unref || unuse)
(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
NAME(lmp));
else
DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
}
}
DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
}
/*
* Generic cleanup routine called prior to returning control to the user.
* Ensures that any ld.so.1 specific file descriptors or temporary mapping are
* released, and any locks dropped.
*/
void
leave(Lm_list *lml, int flags)
{
/*
* Alert the debuggers that the link-maps are consistent.
*/
rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
/*
* Alert any auditors that the link-maps are consistent.
*/
if (lml->lm_flags & LML_FLG_ACTAUDIT) {
audit_activity(lml->lm_head, LA_ACT_CONSISTENT);
lml->lm_flags &= ~LML_FLG_ACTAUDIT;
}
if (nu_fd != FD_UNAVAIL) {
(void) close(nu_fd);
nu_fd = FD_UNAVAIL;
}
/*
* Reinitialize error message pointer, and any overflow indication.
*/
nextptr = errbuf;
prevptr = NULL;
/*
* Defragment any freed memory.
*/
if (aplist_nitems(free_alp))
defrag();
/*
* Don't drop our lock if we are running on our link-map list as
* there's little point in doing so since we are single-threaded.
*
* LML_FLG_HOLDLOCK is set for:
* - The ld.so.1's link-map list.
* - The auditor's link-map if the environment is pre-UPM.
*/
if (lml->lm_flags & LML_FLG_HOLDLOCK)
return;
if (rt_bind_clear(0) & THR_FLG_RTLD) {
if (!thr_flg_nolock)
(void) rt_mutex_unlock(&rtldlock);
(void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags);
}
}
int
callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
{
APlist *calp, *dalp;
Aliste idx1, idx2;
Grp_hdl *ghp1, *ghp2;
/*
* An object can always find symbols within itself.
*/
if (clmp == dlmp)
return (1);
/*
* The search for a singleton must look in every loaded object.
*/
if (slflags & LKUP_SINGLETON)
return (1);
/*
* Don't allow an object to bind to an object that is being deleted
* unless the binder is also being deleted.
*/
if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
((FLAGS(clmp) & FLG_RT_DELETE) == 0))
return (0);
/*
* An object with world access can always bind to an object with global
* visibility.
*/
if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) &&
(MODE(dlmp) & RTLD_GLOBAL))
return (1);
/*
* An object with local access can only bind to an object that is a
* member of the same group.
*/
if (((MODE(clmp) & RTLD_GROUP) == 0) ||
((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
return (0);
/*
* Traverse the list of groups the caller is a part of.
*/
for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
/*
* If we're testing for the ability of two objects to bind to
* each other regardless of a specific group, ignore that group.
*/
if (ghp && (ghp1 == ghp))
continue;
/*
* Traverse the list of groups the destination is a part of.
*/
for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
Grp_desc *gdp;
Aliste idx3;
if (ghp1 != ghp2)
continue;
/*
* Make sure the relationship between the destination
* and the caller provide symbols for relocation.
* Parents are maintained as callers, but unless the
* destination object was opened with RTLD_PARENT, the
* parent doesn't provide symbols for the destination
* to relocate against.
*/
for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
if (dlmp != gdp->gd_depend)
continue;
if (gdp->gd_flags & GPD_RELOC)
return (1);
}
}
}
return (0);
}
/*
* Initialize the environ symbol. Traditionally this is carried out by the crt
* code prior to jumping to main. However, init sections get fired before this
* variable is initialized, so ld.so.1 sets this directly from the AUX vector
* information. In addition, a process may have multiple link-maps (ld.so.1's
* debugging and preloading objects), and link auditing, and each may need an
* environ variable set.
*
* This routine is called after a relocation() pass, and thus provides for:
*
* - setting environ on the main link-map after the initial application and
* its dependencies have been established. Typically environ lives in the
* application (provided by its crt), but in older applications it might
* be in libc. Who knows what's expected of applications not built on
* Solaris.
*
* - after loading a new shared object. We can add shared objects to various
* link-maps, and any link-map dependencies requiring getopt() require
* their own environ. In addition, lazy loading might bring in the
* supplier of environ (libc used to be a lazy loading candidate) after
* the link-map has been established and other objects are present.
*
* This routine handles all these scenarios, without adding unnecessary overhead
* to ld.so.1.
*/
void
set_environ(Lm_list *lml)
{
Slookup sl;
Sresult sr;
uint_t binfo;
/*
* Initialize the symbol lookup, and symbol result, data structures.
*/
SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON));
if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) {
Rt_map *dlmp = sr.sr_dmap;
lml->lm_environ = (char ***)sr.sr_sym->st_value;
if (!(FLAGS(dlmp) & FLG_RT_FIXED))
lml->lm_environ =
(char ***)((uintptr_t)lml->lm_environ +
(uintptr_t)ADDR(dlmp));
*(lml->lm_environ) = (char **)environ;
lml->lm_flags |= LML_FLG_ENVIRON;
}
}
/*
* Determine whether we have a secure executable. Uid and gid information
* can be passed to us via the aux vector, however if these values are -1
* then use the appropriate system call to obtain them.
*
* - If the user is the root they can do anything
*
* - If the real and effective uid's don't match, or the real and
* effective gid's don't match then this is determined to be a `secure'
* application.
*
* This function is called prior to any dependency processing (see _setup.c).
* Any secure setting will remain in effect for the life of the process.
*/
void
security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
{
if (auxflags != -1) {
if ((auxflags & AF_SUN_SETUGID) != 0)
rtld_flags |= RT_FL_SECURE;
return;
}
if (uid == (uid_t)-1)
uid = getuid();
if (uid) {
if (euid == (uid_t)-1)
euid = geteuid();
if (uid != euid)
rtld_flags |= RT_FL_SECURE;
else {
if (gid == (gid_t)-1)
gid = getgid();
if (egid == (gid_t)-1)
egid = getegid();
if (gid != egid)
rtld_flags |= RT_FL_SECURE;
}
}
}
/*
* Determine whether ld.so.1 itself is owned by root and has its mode setuid.
*/
int
is_rtld_setuid()
{
rtld_stat_t status;
const char *name;
if (rtld_flags2 & RT_FL2_SETUID)
return (1);
if (interp && interp->i_name)
name = interp->i_name;
else
name = NAME(lml_rtld.lm_head);
if (((rtld_stat(name, &status) == 0) &&
(status.st_uid == 0) && (status.st_mode & S_ISUID))) {
rtld_flags2 |= RT_FL2_SETUID;
return (1);
}
return (0);
}
/*
* Determine that systems platform name. Normally, this name is provided from
* the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a
* fall back.
*/
void
platform_name(Syscapset *scapset)
{
char info[SYS_NMLN];
size_t size;
if ((scapset->sc_platsz = size =
sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1)
return;
if ((scapset->sc_plat = malloc(size)) == NULL) {
scapset->sc_platsz = (size_t)-1;
return;
}
(void) strcpy(scapset->sc_plat, info);
}
/*
* Determine that systems machine name. Normally, this name is provided from
* the AT_SUN_MACHINE aux vector from the kernel. This routine provides a
* fall back.
*/
void
machine_name(Syscapset *scapset)
{
char info[SYS_NMLN];
size_t size;
if ((scapset->sc_machsz = size =
sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1)
return;
if ((scapset->sc_mach = malloc(size)) == NULL) {
scapset->sc_machsz = (size_t)-1;
return;
}
(void) strcpy(scapset->sc_mach, info);
}
/*
* _REENTRANT code gets errno redefined to a function so provide for return
* of the thread errno if applicable. This has no meaning in ld.so.1 which
* is basically singled threaded. Provide the interface for our dependencies.
*/
#undef errno
int *
___errno()
{
extern int errno;
return (&errno);
}
/*
* Determine whether a symbol name should be demangled.
*/
const char *
demangle(const char *name)
{
if (rtld_flags & RT_FL_DEMANGLE)
return (conv_demangle_name(name));
else
return (name);
}
#ifndef _LP64
/*
* Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
* underneath while preserving the object size limits of a non-largefile
* enabled 32-bit process. The purpose of this is to prevent large inode
* values from causing stat() to fail.
*/
inline static int
rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf)
{
extern int errno;
/*
* Although we used a 64-bit capable stat(), the 32-bit rtld
* can only handle objects < 2GB in size. If this object is
* too big, turn the success into an overflow error.
*/
if ((lbuf->st_size & 0xffffffff80000000) != 0) {
errno = EOVERFLOW;
return (-1);
}
/*
* Transfer the information needed by rtld into a rtld_stat_t
* structure that preserves the non-largile types for everything
* except inode.
*/
buf->st_dev = lbuf->st_dev;
buf->st_ino = lbuf->st_ino;
buf->st_mode = lbuf->st_mode;
buf->st_uid = lbuf->st_uid;
buf->st_size = (off_t)lbuf->st_size;
buf->st_mtim = lbuf->st_mtim;
#ifdef sparc
buf->st_blksize = lbuf->st_blksize;
#endif
return (r);
}
int
rtld_stat(const char *restrict path, rtld_stat_t *restrict buf)
{
struct stat64 lbuf;
int r;
r = stat64(path, &lbuf);
if (r != -1)
r = rtld_stat_process(r, &lbuf, buf);
return (r);
}
int
rtld_fstat(int fildes, rtld_stat_t *restrict buf)
{
struct stat64 lbuf;
int r;
r = fstat64(fildes, &lbuf);
if (r != -1)
r = rtld_stat_process(r, &lbuf, buf);
return (r);
}
#endif