/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*
* Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
*/
/*
* Processing of relocatable objects and shared objects.
*/
#define ELF_TARGET_AMD64
#define ELF_TARGET_SPARC
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <link.h>
#include <limits.h>
#include <sys/stat.h>
#include <sys/systeminfo.h>
#include <debug.h>
#include <msg.h>
#include <_libld.h>
/*
* Decide if we can link against this input file.
*/
static int
ifl_verify(Ehdr *ehdr, Ofl_desc *ofl, Rej_desc *rej)
{
/*
* Check the validity of the elf header information for compatibility
* with this machine and our own internal elf library.
*/
if ((ehdr->e_machine != ld_targ.t_m.m_mach) &&
((ehdr->e_machine != ld_targ.t_m.m_machplus) &&
((ehdr->e_flags & ld_targ.t_m.m_flagsplus) == 0))) {
rej->rej_type = SGS_REJ_MACH;
rej->rej_info = (uint_t)ehdr->e_machine;
return (0);
}
if (ehdr->e_ident[EI_DATA] != ld_targ.t_m.m_data) {
rej->rej_type = SGS_REJ_DATA;
rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
return (0);
}
if (ehdr->e_version > ofl->ofl_dehdr->e_version) {
rej->rej_type = SGS_REJ_VERSION;
rej->rej_info = (uint_t)ehdr->e_version;
return (0);
}
return (1);
}
/*
* Check sanity of file header and allocate an infile descriptor
* for the file being processed.
*/
static Ifl_desc *
ifl_setup(const char *name, Ehdr *ehdr, Elf *elf, Word flags, Ofl_desc *ofl,
Rej_desc *rej)
{
Ifl_desc *ifl;
Rej_desc _rej = { 0 };
if (ifl_verify(ehdr, ofl, &_rej) == 0) {
_rej.rej_name = name;
DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
ld_targ.t_m.m_mach));
if (rej->rej_type == 0) {
*rej = _rej;
rej->rej_name = strdup(_rej.rej_name);
}
return (0);
}
if ((ifl = libld_calloc(1, sizeof (Ifl_desc))) == NULL)
return ((Ifl_desc *)S_ERROR);
ifl->ifl_name = name;
ifl->ifl_ehdr = ehdr;
ifl->ifl_elf = elf;
ifl->ifl_flags = flags;
/*
* Is this file using 'extended Section Indexes'. If so, use the
* e_shnum & e_shstrndx which can be found at:
*
* e_shnum == Shdr[0].sh_size
* e_shstrndx == Shdr[0].sh_link
*/
if ((ehdr->e_shnum == 0) && (ehdr->e_shoff != 0)) {
Elf_Scn *scn;
Shdr *shdr0;
if ((scn = elf_getscn(elf, 0)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSCN),
name);
return ((Ifl_desc *)S_ERROR);
}
if ((shdr0 = elf_getshdr(scn)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
name);
return ((Ifl_desc *)S_ERROR);
}
ifl->ifl_shnum = (Word)shdr0->sh_size;
if (ehdr->e_shstrndx == SHN_XINDEX)
ifl->ifl_shstrndx = shdr0->sh_link;
else
ifl->ifl_shstrndx = ehdr->e_shstrndx;
} else {
ifl->ifl_shnum = ehdr->e_shnum;
ifl->ifl_shstrndx = ehdr->e_shstrndx;
}
if ((ifl->ifl_isdesc = libld_calloc(ifl->ifl_shnum,
sizeof (Is_desc *))) == NULL)
return ((Ifl_desc *)S_ERROR);
/*
* Record this new input file on the shared object or relocatable
* object input file list.
*/
if (ifl->ifl_ehdr->e_type == ET_DYN) {
if (aplist_append(&ofl->ofl_sos, ifl, AL_CNT_OFL_LIBS) == NULL)
return ((Ifl_desc *)S_ERROR);
} else {
if (aplist_append(&ofl->ofl_objs, ifl, AL_CNT_OFL_OBJS) == NULL)
return ((Ifl_desc *)S_ERROR);
}
return (ifl);
}
/*
* Process a generic section. The appropriate section information is added
* to the files input descriptor list.
*/
static uintptr_t
process_section(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
Is_desc *isp;
/*
* Create a new input section descriptor. If this is a NOBITS
* section elf_getdata() will still create a data buffer (the buffer
* will be null and the size will reflect the actual memory size).
*/
if ((isp = libld_calloc(sizeof (Is_desc), 1)) == NULL)
return (S_ERROR);
isp->is_shdr = shdr;
isp->is_file = ifl;
isp->is_name = name;
isp->is_scnndx = ndx;
isp->is_flags = FLG_IS_EXTERNAL;
isp->is_keyident = ident;
if ((isp->is_indata = elf_getdata(scn, NULL)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETDATA),
ifl->ifl_name);
return (0);
}
if ((shdr->sh_flags & SHF_EXCLUDE) &&
((ofl->ofl_flags & FLG_OF_RELOBJ) == 0)) {
isp->is_flags |= FLG_IS_DISCARD;
}
/*
* Add the new input section to the files input section list and
* flag whether the section needs placing in an output section. This
* placement is deferred until all input section processing has been
* completed, as SHT_GROUP sections can provide information that will
* affect how other sections within the file should be placed.
*/
ifl->ifl_isdesc[ndx] = isp;
if (ident) {
if (shdr->sh_flags & ALL_SHF_ORDER) {
isp->is_flags |= FLG_IS_ORDERED;
ifl->ifl_flags |= FLG_IF_ORDERED;
}
isp->is_flags |= FLG_IS_PLACE;
}
return (1);
}
/*
* Determine the software capabilities of the object being built from the
* capabilities of the input relocatable objects. One software capability
* is presently recognized, and represented with the following (sys/elf.h):
*
* SF1_SUNW_FPKNWN use/non-use of frame pointer is known, and
* SF1_SUNW_FPUSED the frame pointer is in use.
*
* The resolution of the present fame pointer state, and the capabilities
* provided by a new input relocatable object are:
*
* new input relocatable object
*
* present | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | <unknown>
* state | SF1_SUNW_FPUSED | |
* ---------------------------------------------------------------------------
* SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN
* SF1_SUNW_FPUSED | SF1_SUNW_FPUSED | | SF1_SUNW_FPUSED
* ---------------------------------------------------------------------------
* SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN
* | | |
* ---------------------------------------------------------------------------
* <unknown> | SF1_SUNW_FPKNWN | SF1_SUNW_FPKNWN | <unknown>
* | SF1_SUNW_FPUSED | |
*/
static void
sf1_cap(Ofl_desc *ofl, Xword val, Ifl_desc *ifl, Is_desc *cisp)
{
#define FP_FLAGS (SF1_SUNW_FPKNWN | SF1_SUNW_FPUSED)
Xword badval;
/*
* If a mapfile has established definitions to override any object
* capabilities, ignore any new object capabilities.
*/
if (ofl->ofl_flags1 & FLG_OF1_OVSFCAP1) {
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_IGNORED,
CA_SUNW_SF_1, val, ld_targ.t_m.m_mach));
return;
}
#if !defined(_ELF64)
if (ifl && (ifl->ifl_ehdr->e_type == ET_REL)) {
/*
* The SF1_SUNW_ADDR32 is only meaningful when building a 64-bit
* object. Warn the user, and remove the setting, if we're
* building a 32-bit object.
*/
if (val & SF1_SUNW_ADDR32) {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_INADDR32SF1), ifl->ifl_name,
EC_WORD(cisp->is_scnndx), cisp->is_name);
val &= ~SF1_SUNW_ADDR32;
}
}
#endif
/*
* If this object doesn't specify any capabilities, ignore it, and
* leave the state as is.
*/
if (val == 0)
return;
/*
* Make sure we only accept known software capabilities. Note, that
* an F1_SUNW_FPUSED by itself is viewed as bad practice.
*/
if ((badval = (val & ~SF1_SUNW_MASK)) != 0) {
ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_BADSF1),
ifl->ifl_name, EC_WORD(cisp->is_scnndx), cisp->is_name,
EC_XWORD(badval));
val &= SF1_SUNW_MASK;
}
if ((val & FP_FLAGS) == SF1_SUNW_FPUSED) {
ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_BADSF1),
ifl->ifl_name, EC_WORD(cisp->is_scnndx), cisp->is_name,
EC_XWORD(val));
return;
}
/*
* If the input file is not a relocatable object, then we're only here
* to warn the user of any questionable capabilities.
*/
if (ifl->ifl_ehdr->e_type != ET_REL) {
#if defined(_ELF64)
/*
* If we're building a 64-bit executable, and we come across a
* dependency that requires a restricted address space, then
* that dependencies requirement can only be satisfied if the
* executable triggers the restricted address space. This is a
* warning rather than a fatal error, as the possibility exists
* that an appropriate dependency will be provided at runtime.
* The runtime linker will refuse to use this dependency.
*/
if ((val & SF1_SUNW_ADDR32) && (ofl->ofl_flags & FLG_OF_EXEC) &&
((ofl->ofl_ocapset.oc_sf_1.cm_val &
SF1_SUNW_ADDR32) == 0)) {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_EXADDR32SF1), ifl->ifl_name,
EC_WORD(cisp->is_scnndx), cisp->is_name);
}
#endif
return;
}
if (DBG_ENABLED) {
Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_CURRENT, CA_SUNW_SF_1,
ofl->ofl_ocapset.oc_sf_1.cm_val, ld_targ.t_m.m_mach);
Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_NEW, CA_SUNW_SF_1,
val, ld_targ.t_m.m_mach);
}
/*
* Determine the resolution of the present frame pointer and the
* new input relocatable objects frame pointer.
*/
if ((ofl->ofl_ocapset.oc_sf_1.cm_val & FP_FLAGS) == FP_FLAGS) {
/*
* If the new relocatable object isn't using a frame pointer,
* reduce the present state to unused.
*/
if ((val & FP_FLAGS) != FP_FLAGS)
ofl->ofl_ocapset.oc_sf_1.cm_val &= ~SF1_SUNW_FPUSED;
/*
* Having processed the frame pointer bits, remove them from
* the value so they don't get OR'd in below.
*/
val &= ~FP_FLAGS;
} else if ((ofl->ofl_ocapset.oc_sf_1.cm_val & SF1_SUNW_FPKNWN) == 0) {
/*
* If the present frame pointer state is unknown, mask it out
* and allow the values from the new relocatable object
* to overwrite them.
*/
ofl->ofl_ocapset.oc_sf_1.cm_val &= ~FP_FLAGS;
} else {
/* Do not take the frame pointer flags from the object */
val &= ~FP_FLAGS;
}
ofl->ofl_ocapset.oc_sf_1.cm_val |= val;
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_RESOLVED,
CA_SUNW_SF_1, ofl->ofl_ocapset.oc_sf_1.cm_val, ld_targ.t_m.m_mach));
#undef FP_FLAGS
}
/*
* Determine the hardware capabilities of the object being built from the
* capabilities of the input relocatable objects. There's really little to
* do here, other than to offer diagnostics, hardware capabilities are simply
* additive.
*/
static void
hw_cap(Ofl_desc *ofl, Xword tag, Xword val)
{
elfcap_mask_t *hwcap;
ofl_flag_t flags1;
if (tag == CA_SUNW_HW_1) {
hwcap = &ofl->ofl_ocapset.oc_hw_1.cm_val;
flags1 = FLG_OF1_OVHWCAP1;
} else {
hwcap = &ofl->ofl_ocapset.oc_hw_2.cm_val;
flags1 = FLG_OF1_OVHWCAP2;
}
/*
* If a mapfile has established definitions to override any object
* capabilities, ignore any new object capabilities.
*/
if (ofl->ofl_flags1 & flags1) {
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_IGNORED,
tag, val, ld_targ.t_m.m_mach));
return;
}
/*
* If this object doesn't specify any capabilities, ignore it, and
* leave the state as is.
*/
if (val == 0)
return;
if (DBG_ENABLED) {
Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_CURRENT, CA_SUNW_HW_1,
ofl->ofl_ocapset.oc_hw_1.cm_val, ld_targ.t_m.m_mach);
Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_NEW, CA_SUNW_HW_1,
val, ld_targ.t_m.m_mach);
}
*hwcap |= val;
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml, DBG_STATE_RESOLVED, tag,
*hwcap, ld_targ.t_m.m_mach));
}
/*
* Promote a machine capability or platform capability to the output file.
* Multiple instances of these names can be defined.
*/
static void
str_cap(Ofl_desc *ofl, char *pstr, ofl_flag_t flags, Xword tag, Caplist *list)
{
Capstr *capstr;
Aliste idx;
Boolean found = FALSE;
/*
* If a mapfile has established definitions to override this capability,
* ignore any new capability.
*/
if (ofl->ofl_flags1 & flags) {
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml, DBG_STATE_IGNORED,
tag, pstr));
return;
}
for (ALIST_TRAVERSE(list->cl_val, idx, capstr)) {
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_CURRENT, tag, capstr->cs_str));
if (strcmp(capstr->cs_str, pstr) == 0)
found = TRUE;
}
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml, DBG_STATE_NEW, tag, pstr));
if (found == FALSE) {
if ((capstr = alist_append(&list->cl_val, NULL,
sizeof (Capstr), AL_CNT_CAP_NAMES)) == NULL) {
ofl->ofl_flags |= FLG_OF_FATAL;
return;
}
capstr->cs_str = pstr;
}
if (DBG_ENABLED) {
for (ALIST_TRAVERSE(list->cl_val, idx, capstr)) {
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_RESOLVED, tag, capstr->cs_str));
}
}
}
/*
* Promote a capability identifier to the output file. A capability group can
* only have one identifier, and thus only the first identifier seen from any
* input relocatable objects is retained. An explicit user defined identifier,
* rather than an an identifier fabricated by ld(1) with -z symbcap processing,
* takes precedence. Note, a user may have defined an identifier via a mapfile,
* in which case the mapfile identifier is retained.
*/
static void
id_cap(Ofl_desc *ofl, char *pstr, oc_flag_t flags)
{
Objcapset *ocapset = &ofl->ofl_ocapset;
if (ocapset->oc_id.cs_str) {
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml, DBG_STATE_CURRENT,
CA_SUNW_ID, ocapset->oc_id.cs_str));
if ((ocapset->oc_flags & FLG_OCS_USRDEFID) ||
((flags & FLG_OCS_USRDEFID) == 0)) {
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_IGNORED, CA_SUNW_ID, pstr));
return;
}
}
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml, DBG_STATE_NEW,
CA_SUNW_ID, pstr));
ocapset->oc_id.cs_str = pstr;
ocapset->oc_flags |= flags;
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml, DBG_STATE_RESOLVED,
CA_SUNW_ID, pstr));
}
/*
* Promote a capabilities group to the object capabilities. This catches a
* corner case. An object capabilities file can be converted to symbol
* capabilities with -z symbolcap. However, if the user has indicated that all
* the symbols should be demoted, we'd be left with a symbol capabilities file,
* with no associated symbols. Catch this case by promoting the symbol
* capabilities back to object capabilities.
*/
void
ld_cap_move_symtoobj(Ofl_desc *ofl)
{
Cap_group *cgp;
Aliste idx1;
for (APLIST_TRAVERSE(ofl->ofl_capgroups, idx1, cgp)) {
Objcapset *scapset = &cgp->cg_set;
Capstr *capstr;
Aliste idx2;
if (scapset->oc_id.cs_str) {
if (scapset->oc_flags & FLG_OCS_USRDEFID)
id_cap(ofl, scapset->oc_id.cs_str,
scapset->oc_flags);
}
if (scapset->oc_plat.cl_val) {
for (ALIST_TRAVERSE(scapset->oc_plat.cl_val, idx2,
capstr)) {
str_cap(ofl, capstr->cs_str, FLG_OF1_OVPLATCAP,
CA_SUNW_PLAT, &ofl->ofl_ocapset.oc_plat);
}
}
if (scapset->oc_mach.cl_val) {
for (ALIST_TRAVERSE(scapset->oc_mach.cl_val, idx2,
capstr)) {
str_cap(ofl, capstr->cs_str, FLG_OF1_OVMACHCAP,
CA_SUNW_MACH, &ofl->ofl_ocapset.oc_mach);
}
}
if (scapset->oc_hw_2.cm_val)
hw_cap(ofl, CA_SUNW_HW_2, scapset->oc_hw_2.cm_val);
if (scapset->oc_hw_1.cm_val)
hw_cap(ofl, CA_SUNW_HW_1, scapset->oc_hw_1.cm_val);
if (scapset->oc_sf_1.cm_val)
sf1_cap(ofl, scapset->oc_sf_1.cm_val, NULL, NULL);
}
}
/*
* Determine whether a capabilities group already exists that describes this
* new capabilities group.
*
* Note, a capability group identifier, CA_SUNW_ID, isn't used as part of the
* comparison. This attribute simply assigns a diagnostic name to the group,
* and in the case of multiple identifiers, the first will be taken.
*/
static Cap_group *
get_cap_group(Objcapset *ocapset, Word cnum, Ofl_desc *ofl, Is_desc *isp)
{
Aliste idx;
Cap_group *cgp;
Word ccnum = cnum;
/*
* If the new capabilities contains a CA_SUNW_ID, drop the count of the
* number of comparable items.
*/
if (ocapset->oc_id.cs_str)
ccnum--;
/*
* Traverse the existing symbols capabilities groups.
*/
for (APLIST_TRAVERSE(ofl->ofl_capgroups, idx, cgp)) {
Word onum = cgp->cg_num;
Alist *calp, *oalp;
if (cgp->cg_set.oc_id.cs_str)
onum--;
if (onum != ccnum)
continue;
if (cgp->cg_set.oc_hw_1.cm_val != ocapset->oc_hw_1.cm_val)
continue;
if (cgp->cg_set.oc_sf_1.cm_val != ocapset->oc_sf_1.cm_val)
continue;
if (cgp->cg_set.oc_hw_2.cm_val != ocapset->oc_hw_2.cm_val)
continue;
calp = cgp->cg_set.oc_plat.cl_val;
oalp = ocapset->oc_plat.cl_val;
if ((calp == NULL) && oalp)
continue;
if (calp && ((oalp == NULL) || cap_names_match(calp, oalp)))
continue;
calp = cgp->cg_set.oc_mach.cl_val;
oalp = ocapset->oc_mach.cl_val;
if ((calp == NULL) && oalp)
continue;
if (calp && ((oalp == NULL) || cap_names_match(calp, oalp)))
continue;
/*
* If a matching group is found, then this new group has
* already been supplied by a previous file, and hence the
* existing group can be used. Record this new input section,
* from which we can also derive the input file name, on the
* existing groups input sections.
*/
if (aplist_append(&(cgp->cg_secs), isp,
AL_CNT_CAP_SECS) == NULL)
return (NULL);
return (cgp);
}
/*
* If a capabilities group is not found, create a new one.
*/
if (((cgp = libld_calloc(sizeof (Cap_group), 1)) == NULL) ||
(aplist_append(&(ofl->ofl_capgroups), cgp,
AL_CNT_CAP_DESCS) == NULL))
return (NULL);
/*
* If we're converting object capabilities to symbol capabilities and
* no CA_SUNW_ID is defined, fabricate one. This identifier is appended
* to all symbol names that are converted into capabilities symbols,
* see ld_sym_process().
*/
if ((isp->is_file->ifl_flags & FLG_IF_OTOSCAP) &&
(ocapset->oc_id.cs_str == NULL)) {
size_t len;
/*
* Create an identifier using the group number together with a
* default template. We allocate a buffer large enough for any
* possible number of items (way more than we need).
*/
len = MSG_STR_CAPGROUPID_SIZE + CONV_INV_BUFSIZE;
if ((ocapset->oc_id.cs_str = libld_malloc(len)) == NULL)
return (NULL);
(void) snprintf(ocapset->oc_id.cs_str, len,
MSG_ORIG(MSG_STR_CAPGROUPID),
aplist_nitems(ofl->ofl_capgroups));
cnum++;
}
cgp->cg_set = *ocapset;
cgp->cg_num = cnum;
/*
* Null the callers alist's as they've effectively been transferred
* to this new Cap_group.
*/
ocapset->oc_plat.cl_val = ocapset->oc_mach.cl_val = NULL;
/*
* Keep track of which input section, and hence input file, established
* this group.
*/
if (aplist_append(&(cgp->cg_secs), isp, AL_CNT_CAP_SECS) == NULL)
return (NULL);
/*
* Keep track of the number of symbol capabilities entries that will be
* required in the output file. Each group requires a terminating
* CA_SUNW_NULL.
*/
ofl->ofl_capsymcnt += (cnum + 1);
return (cgp);
}
/*
* Capture symbol capability family information. This data structure is focal
* in maintaining all symbol capability relationships, and provides for the
* eventual creation of a capabilities information section, and possibly a
* capabilities chain section.
*
* Capabilities families are lead by a CAPINFO_SUNW_GLOB symbol. This symbol
* provides the visible global symbol that is referenced by all external
* callers. This symbol may have aliases. For example, a weak/global symbol
* pair, such as memcpy()/_memcpy() may lead the same capabilities family.
* Each family contains one or more local symbol members. These members provide
* the capabilities specific functions, and are associated to a capabilities
* group. For example, the capability members memcpy%sun4u and memcpy%sun4v
* might be associated with the memcpy() capability family.
*
* This routine is called when a relocatable object that provides object
* capabilities is transformed into a symbol capabilities object, using the
* -z symbolcap option.
*
* This routine is also called to collect the SUNW_capinfo section information
* of a relocatable object that contains symbol capability definitions.
*/
uintptr_t
ld_cap_add_family(Ofl_desc *ofl, Sym_desc *lsdp, Sym_desc *csdp, Cap_group *cgp,
APlist **csyms)
{
Cap_avlnode qcav, *cav;
avl_tree_t *avlt;
avl_index_t where = 0;
Cap_sym *mcsp;
Aliste idx;
/*
* Make sure the capability families have an initialized AVL tree.
*/
if ((avlt = ofl->ofl_capfamilies) == NULL) {
if ((avlt = libld_calloc(sizeof (avl_tree_t), 1)) == NULL)
return (S_ERROR);
avl_create(avlt, &ld_sym_avl_comp, sizeof (Cap_avlnode),
SGSOFFSETOF(Cap_avlnode, cn_symavlnode.sav_node));
ofl->ofl_capfamilies = avlt;
/*
* When creating a dynamic object, capability family members
* are maintained in a .SUNW_capchain, the first entry of
* which is the version number of the chain.
*/
ofl->ofl_capchaincnt = 1;
}
/*
* Determine whether a family already exists, and if not, create one
* using the lead family symbol.
*/
qcav.cn_symavlnode.sav_hash = (Word)elf_hash(lsdp->sd_name);
qcav.cn_symavlnode.sav_name = lsdp->sd_name;
if ((cav = avl_find(avlt, &qcav, &where)) == NULL) {
if ((cav = libld_calloc(sizeof (Cap_avlnode), 1)) == NULL)
return (S_ERROR);
cav->cn_symavlnode.sav_hash = qcav.cn_symavlnode.sav_hash;
cav->cn_symavlnode.sav_name = qcav.cn_symavlnode.sav_name;
cav->cn_symavlnode.sav_sdp = lsdp;
avl_insert(avlt, cav, where);
/*
* When creating a dynamic object, capability family members
* are maintained in a .SUNW_capchain, each family starts with
* this lead symbol, and is terminated with a 0 element.
*/
ofl->ofl_capchaincnt += 2;
}
/*
* If no group information is provided then this request is to add a
* lead capability symbol, or lead symbol alias. If this is the lead
* symbol there's nothing more to do. Otherwise save the alias.
*/
if (cgp == NULL) {
if ((lsdp != csdp) && (aplist_append(&cav->cn_aliases, csdp,
AL_CNT_CAP_ALIASES) == NULL))
return (S_ERROR);
return (0);
}
/*
* Determine whether a member of the same group as this new member is
* already defined within this family. If so, we have a multiply
* defined symbol.
*/
for (APLIST_TRAVERSE(cav->cn_members, idx, mcsp)) {
Sym_desc *msdp;
if (cgp != mcsp->cs_group)
continue;
/*
* Diagnose that a multiple symbol definition exists.
*/
msdp = mcsp->cs_sdp;
ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_CAP_MULDEF),
demangle(lsdp->sd_name));
ld_eprintf(ofl, ERR_NONE, MSG_INTL(MSG_CAP_MULDEFSYMS),
msdp->sd_file->ifl_name, msdp->sd_name,
csdp->sd_file->ifl_name, csdp->sd_name);
}
/*
* Add this capabilities symbol member to the family.
*/
if (((mcsp = libld_malloc(sizeof (Cap_sym))) == NULL) ||
(aplist_append(&cav->cn_members, mcsp, AL_CNT_CAP_MEMS) == NULL))
return (S_ERROR);
mcsp->cs_sdp = csdp;
mcsp->cs_group = cgp;
/*
* When creating a dynamic object, capability family members are
* maintained in a .SUNW_capchain. Account for this family member.
*/
ofl->ofl_capchaincnt++;
/*
* If this input file is undergoing object capabilities to symbol
* capabilities conversion, then this member is a new local symbol
* that has been generated from an original global symbol. Keep track
* of this symbol so that the output file symbol table can be populated
* with these new symbol entries.
*/
if (csyms && (aplist_append(csyms, mcsp, AL_CNT_CAP_SYMS) == NULL))
return (S_ERROR);
return (0);
}
/*
* Process a SHT_SUNW_cap capabilities section.
*/
static uintptr_t
process_cap(Ofl_desc *ofl, Ifl_desc *ifl, Is_desc *cisp)
{
Objcapset ocapset = { 0 };
Cap_desc *cdp;
Cap *data, *cdata;
char *strs;
Word ndx, cnum;
int objcapndx, descapndx, symcapndx;
int nulls, capstrs = 0;
/*
* Determine the capabilities data and size.
*/
cdata = (Cap *)cisp->is_indata->d_buf;
cnum = (Word)(cisp->is_shdr->sh_size / cisp->is_shdr->sh_entsize);
if ((cdata == NULL) || (cnum == 0))
return (0);
DBG_CALL(Dbg_cap_sec_title(ofl->ofl_lml, ifl->ifl_name));
/*
* Traverse the section to determine what capabilities groups are
* available.
*
* A capabilities section can contain one or more, CA_SUNW_NULL
* terminated groups.
*
* - The first group defines the object capabilities.
* - Additional groups define symbol capabilities.
* - Since the initial group is always reserved for object
* capabilities, any object with symbol capabilities must also
* have an object capabilities group. If the object has no object
* capabilities, an empty object group is defined, consisting of a
* CA_SUNW_NULL element in index [0].
* - If any capabilities require references to a named string, then
* the section header sh_info points to the associated string
* table.
* - If an object contains symbol capability groups, then the
* section header sh_link points to the associated capinfo table.
*/
objcapndx = 0;
descapndx = symcapndx = -1;
nulls = 0;
for (ndx = 0, data = cdata; ndx < cnum; ndx++, data++) {
switch (data->c_tag) {
case CA_SUNW_NULL:
/*
* If this is the first CA_SUNW_NULL entry, and no
* capabilities group has been found, then this object
* does not define any object capabilities.
*/
if (nulls++ == 0) {
if (ndx == 0)
objcapndx = -1;
} else if ((symcapndx == -1) && (descapndx != -1))
symcapndx = descapndx;
break;
case CA_SUNW_PLAT:
case CA_SUNW_MACH:
case CA_SUNW_ID:
capstrs++;
/* FALLTHROUGH */
case CA_SUNW_HW_1:
case CA_SUNW_SF_1:
case CA_SUNW_HW_2:
/*
* If this is the start of a new group, save it.
*/
if (descapndx == -1)
descapndx = ndx;
break;
default:
ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_UNKCAP),
ifl->ifl_name, EC_WORD(cisp->is_scnndx),
cisp->is_name, data->c_tag);
}
}
/*
* If a string capabilities entry has been found, the capabilities
* section must reference the associated string table.
*/
if (capstrs) {
Word info = cisp->is_shdr->sh_info;
if ((info == 0) || (info > ifl->ifl_shnum)) {
ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_INVSHINFO),
ifl->ifl_name, EC_WORD(cisp->is_scnndx),
cisp->is_name, EC_XWORD(info));
return (S_ERROR);
}
strs = (char *)ifl->ifl_isdesc[info]->is_indata->d_buf;
}
/*
* The processing of capabilities groups is as follows:
*
* - if a relocatable object provides only object capabilities, and
* the -z symbolcap option is in effect, then the object
* capabilities are transformed into symbol capabilities and the
* symbol capabilities are carried over to the output file.
* - in all other cases, any capabilities present in an input
* relocatable object are carried from the input object to the
* output without any transformation or conversion.
*
* Capture any object capabilities that are to be carried over to the
* output file.
*/
if ((objcapndx == 0) &&
((symcapndx != -1) || ((ofl->ofl_flags & FLG_OF_OTOSCAP) == 0))) {
for (ndx = 0, data = cdata; ndx < cnum; ndx++, data++) {
/*
* Object capabilities end at the first null.
*/
if (data->c_tag == CA_SUNW_NULL)
break;
/*
* Only the object software capabilities that are
* defined in a relocatable object become part of the
* object software capabilities in the output file.
* However, check the validity of any object software
* capabilities of any dependencies.
*/
if (data->c_tag == CA_SUNW_SF_1) {
sf1_cap(ofl, data->c_un.c_val, ifl, cisp);
continue;
}
/*
* The remaining capability types must come from a
* relocatable object in order to contribute to the
* output.
*/
if (ifl->ifl_ehdr->e_type != ET_REL)
continue;
switch (data->c_tag) {
case CA_SUNW_HW_1:
case CA_SUNW_HW_2:
hw_cap(ofl, data->c_tag, data->c_un.c_val);
break;
case CA_SUNW_PLAT:
str_cap(ofl, strs + data->c_un.c_ptr,
FLG_OF1_OVPLATCAP, CA_SUNW_PLAT,
&ofl->ofl_ocapset.oc_plat);
break;
case CA_SUNW_MACH:
str_cap(ofl, strs + data->c_un.c_ptr,
FLG_OF1_OVMACHCAP, CA_SUNW_MACH,
&ofl->ofl_ocapset.oc_mach);
break;
case CA_SUNW_ID:
id_cap(ofl, strs + data->c_un.c_ptr,
FLG_OCS_USRDEFID);
break;
default:
assert(0); /* Unknown capability type */
}
}
/*
* If there are no symbol capabilities, or this objects
* capabilities aren't being transformed into a symbol
* capabilities, then we're done.
*/
if ((symcapndx == -1) &&
((ofl->ofl_flags & FLG_OF_OTOSCAP) == 0))
return (1);
}
/*
* If these capabilities don't originate from a relocatable object
* there's no further processing required.
*/
if (ifl->ifl_ehdr->e_type != ET_REL)
return (1);
/*
* If this object only defines an object capabilities group, and the
* -z symbolcap option is in effect, then all global function symbols
* and initialized global data symbols are renamed and assigned to the
* transformed symbol capabilities group.
*/
if ((objcapndx == 0) &&
(symcapndx == -1) && (ofl->ofl_flags & FLG_OF_OTOSCAP))
ifl->ifl_flags |= FLG_IF_OTOSCAP;
/*
* Allocate a capabilities descriptor to collect the capabilities data
* for this input file. Allocate a mirror of the raw capabilities data
* that points to the individual symbol capabilities groups. An APlist
* is used, although it will be sparsely populated, as the list provides
* a convenient mechanism for traversal later.
*/
if (((cdp = libld_calloc(sizeof (Cap_desc), 1)) == NULL) ||
(aplist_append(&(cdp->ca_groups), NULL, cnum) == NULL))
return (S_ERROR);
/*
* Clear the allocated APlist data array, and assign the number of
* items as the total number of array items.
*/
(void) memset(&cdp->ca_groups->apl_data[0], 0,
(cnum * sizeof (void *)));
cdp->ca_groups->apl_nitems = cnum;
ifl->ifl_caps = cdp;
/*
* Traverse the capabilities data, unpacking the data into a
* capabilities set. Process each capabilities set as a unique group.
*/
descapndx = -1;
nulls = 0;
for (ndx = 0, data = cdata; ndx < cnum; ndx++, data++) {
Capstr *capstr;
switch (data->c_tag) {
case CA_SUNW_NULL:
nulls++;
/*
* Process the capabilities group that this null entry
* terminates. The capabilities group that is returned
* will either point to this file's data, or to a
* matching capabilities group that has already been
* processed.
*
* Note, if this object defines object capabilities,
* the first group descriptor points to these object
* capabilities. It is only necessary to save this
* descriptor when object capabilities are being
* transformed into symbol capabilities (-z symbolcap).
*/
if (descapndx != -1) {
if ((nulls > 1) ||
(ifl->ifl_flags & FLG_IF_OTOSCAP)) {
APlist *alp = cdp->ca_groups;
if ((alp->apl_data[descapndx] =
get_cap_group(&ocapset,
(ndx - descapndx), ofl,
cisp)) == NULL)
return (S_ERROR);
}
/*
* Clean up the capabilities data in preparation
* for processing additional groups. If the
* collected capabilities strings were used to
* establish a new output group, they will have
* been saved in get_cap_group(). If these
* descriptors still exist, then an existing
* descriptor has been used to associate with
* this file, and these string descriptors can
* be freed.
*/
ocapset.oc_hw_1.cm_val =
ocapset.oc_sf_1.cm_val =
ocapset.oc_hw_2.cm_val = 0;
if (ocapset.oc_plat.cl_val) {
free((void *)ocapset.oc_plat.cl_val);
ocapset.oc_plat.cl_val = NULL;
}
if (ocapset.oc_mach.cl_val) {
free((void *)ocapset.oc_mach.cl_val);
ocapset.oc_mach.cl_val = NULL;
}
descapndx = -1;
}
continue;
case CA_SUNW_HW_1:
ocapset.oc_hw_1.cm_val = data->c_un.c_val;
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_HW_1,
ocapset.oc_hw_1.cm_val, ld_targ.t_m.m_mach));
break;
case CA_SUNW_SF_1:
ocapset.oc_sf_1.cm_val = data->c_un.c_val;
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_SF_1,
ocapset.oc_sf_1.cm_val, ld_targ.t_m.m_mach));
break;
case CA_SUNW_HW_2:
ocapset.oc_hw_2.cm_val = data->c_un.c_val;
DBG_CALL(Dbg_cap_val_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_HW_2,
ocapset.oc_hw_2.cm_val, ld_targ.t_m.m_mach));
break;
case CA_SUNW_PLAT:
if ((capstr = alist_append(&ocapset.oc_plat.cl_val,
NULL, sizeof (Capstr), AL_CNT_CAP_NAMES)) == NULL)
return (S_ERROR);
capstr->cs_str = strs + data->c_un.c_ptr;
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_PLAT, capstr->cs_str));
break;
case CA_SUNW_MACH:
if ((capstr = alist_append(&ocapset.oc_mach.cl_val,
NULL, sizeof (Capstr), AL_CNT_CAP_NAMES)) == NULL)
return (S_ERROR);
capstr->cs_str = strs + data->c_un.c_ptr;
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_MACH, capstr->cs_str));
break;
case CA_SUNW_ID:
ocapset.oc_id.cs_str = strs + data->c_un.c_ptr;
DBG_CALL(Dbg_cap_ptr_entry(ofl->ofl_lml,
DBG_STATE_ORIGINAL, CA_SUNW_ID,
ocapset.oc_id.cs_str));
break;
}
/*
* Save the start of this new group.
*/
if (descapndx == -1)
descapndx = ndx;
}
return (1);
}
/*
* Capture any symbol capabilities symbols. An object file that contains symbol
* capabilities has an associated .SUNW_capinfo section. This section
* identifies which symbols are associated to which capabilities, together with
* their associated lead symbol. Each of these symbol pairs are recorded for
* processing later.
*/
static uintptr_t
process_capinfo(Ofl_desc *ofl, Ifl_desc *ifl, Is_desc *isp)
{
Cap_desc *cdp = ifl->ifl_caps;
Capinfo *capinfo = isp->is_indata->d_buf;
Shdr *shdr = isp->is_shdr;
Word cndx, capinfonum;
capinfonum = (Word)(shdr->sh_size / shdr->sh_entsize);
if ((cdp == NULL) || (capinfo == NULL) || (capinfonum == 0))
return (0);
for (cndx = 1, capinfo++; cndx < capinfonum; cndx++, capinfo++) {
Sym_desc *sdp, *lsdp;
Word lndx;
uchar_t gndx;
if ((gndx = (uchar_t)ELF_C_GROUP(*capinfo)) == 0)
continue;
lndx = (Word)ELF_C_SYM(*capinfo);
/*
* Catch any anomalies. A capabilities symbol should be valid,
* and the capabilities lead symbol should also be global.
* Note, ld(1) -z symbolcap would create local capabilities
* symbols, but we don't enforce this so as to give the
* compilation environment a little more freedom.
*/
if ((sdp = ifl->ifl_oldndx[cndx]) == NULL) {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_CAPINFO_INVALSYM), ifl->ifl_name,
EC_WORD(isp->is_scnndx), isp->is_name, cndx,
MSG_INTL(MSG_STR_UNKNOWN));
continue;
}
if ((lndx == 0) || (lndx >= ifl->ifl_symscnt) ||
((lsdp = ifl->ifl_oldndx[lndx]) == NULL) ||
(ELF_ST_BIND(lsdp->sd_sym->st_info) != STB_GLOBAL)) {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_CAPINFO_INVALLEAD), ifl->ifl_name,
EC_WORD(isp->is_scnndx), isp->is_name, cndx, lsdp ?
demangle(lsdp->sd_name) : MSG_INTL(MSG_STR_UNKNOWN),
lndx);
continue;
}
/*
* Indicate that this is a capabilities symbol.
*/
sdp->sd_flags |= FLG_SY_CAP;
/*
* Save any global capability symbols. Global capability
* symbols are identified with a CAPINFO_SUNW_GLOB group id.
* The lead symbol for this global capability symbol is either
* the symbol itself, or an alias.
*/
if (gndx == CAPINFO_SUNW_GLOB) {
if (ld_cap_add_family(ofl, lsdp, sdp,
NULL, NULL) == S_ERROR)
return (S_ERROR);
continue;
}
/*
* Track the number of non-global capabilities symbols, as these
* are used to size any symbol tables. If we're generating a
* dynamic object, this symbol will be added to the dynamic
* symbol table, therefore ensure there is space in the dynamic
* string table.
*/
ofl->ofl_caploclcnt++;
if (((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) &&
(st_insert(ofl->ofl_dynstrtab, sdp->sd_name) == -1))
return (S_ERROR);
/*
* As we're tracking this local symbol as a capabilities symbol,
* reduce the local symbol count to compensate.
*/
ofl->ofl_locscnt--;
/*
* Determine whether the associated lead symbol indicates
* NODYNSORT. If so, remove this local entry from the
* SUNW_dynsort section too. NODYNSORT tagging can only be
* obtained from a mapfile symbol definition, and thus any
* global definition that has this tagging has already been
* instantiated and this instance resolved to it.
*/
if (lsdp->sd_flags & FLG_SY_NODYNSORT) {
Sym *lsym = lsdp->sd_sym;
uchar_t ltype = ELF_ST_TYPE(lsym->st_info);
DYNSORT_COUNT(lsdp, lsym, ltype, --);
lsdp->sd_flags |= FLG_SY_NODYNSORT;
}
/*
* Track this family member, together with its associated group.
*/
if (ld_cap_add_family(ofl, lsdp, sdp,
cdp->ca_groups->apl_data[gndx], NULL) == S_ERROR)
return (S_ERROR);
}
return (0);
}
/*
* Simply process the section so that we have pointers to the data for use
* in later routines, however don't add the section to the output section
* list as we will be creating our own replacement sections later (ie.
* symtab and relocation).
*/
static uintptr_t
/* ARGSUSED5 */
process_input(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
return (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl));
}
/*
* Keep a running count of relocation entries from input relocatable objects for
* sizing relocation buckets later. If we're building an executable, save any
* relocations from shared objects to determine if any copy relocation symbol
* has a displacement relocation against it.
*/
static uintptr_t
/* ARGSUSED5 */
process_reloc(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
if (process_section(name, ifl,
shdr, scn, ndx, ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
if (ifl->ifl_ehdr->e_type == ET_REL) {
if (shdr->sh_entsize && (shdr->sh_entsize <= shdr->sh_size))
/* LINTED */
ofl->ofl_relocincnt +=
(Word)(shdr->sh_size / shdr->sh_entsize);
} else if (ofl->ofl_flags & FLG_OF_EXEC) {
if (aplist_append(&ifl->ifl_relsect, ifl->ifl_isdesc[ndx],
AL_CNT_IFL_RELSECS) == NULL)
return (S_ERROR);
}
return (1);
}
/*
* Process a string table section. A valid section contains an initial and
* final null byte.
*/
static uintptr_t
process_strtab(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
char *data;
size_t size;
Is_desc *isp;
uintptr_t error;
/*
* Never include .stab.excl sections in any output file.
* If the -s flag has been specified strip any .stab sections.
*/
if (((ofl->ofl_flags & FLG_OF_STRIP) && ident &&
(strncmp(name, MSG_ORIG(MSG_SCN_STAB), MSG_SCN_STAB_SIZE) == 0)) ||
(strcmp(name, MSG_ORIG(MSG_SCN_STABEXCL)) == 0) && ident)
return (1);
/*
* If we got here to process a .shstrtab or .dynstr table, `ident' will
* be null. Otherwise make sure we don't have a .strtab section as this
* should not be added to the output section list either.
*/
if ((ident != ld_targ.t_id.id_null) &&
(strcmp(name, MSG_ORIG(MSG_SCN_STRTAB)) == 0))
ident = ld_targ.t_id.id_null;
error = process_section(name, ifl, shdr, scn, ndx, ident, ofl);
if ((error == 0) || (error == S_ERROR))
return (error);
/*
* String tables should start and end with a NULL byte. Note, it has
* been known for the assembler to create empty string tables, so check
* the size before attempting to verify the data itself.
*/
isp = ifl->ifl_isdesc[ndx];
size = isp->is_indata->d_size;
if (size) {
data = isp->is_indata->d_buf;
if (data[0] != '\0' || data[size - 1] != '\0')
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_MALSTR), ifl->ifl_name,
EC_WORD(isp->is_scnndx), name);
} else
isp->is_indata->d_buf = (void *)MSG_ORIG(MSG_STR_EMPTY);
ifl->ifl_flags |= FLG_IF_HSTRTAB;
return (1);
}
/*
* Invalid sections produce a warning and are skipped.
*/
static uintptr_t
/* ARGSUSED3 */
invalid_section(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
Conv_inv_buf_t inv_buf;
ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_INVALSEC),
ifl->ifl_name, EC_WORD(ndx), name,
conv_sec_type(ifl->ifl_ehdr->e_ident[EI_OSABI],
ifl->ifl_ehdr->e_machine, shdr->sh_type, 0, &inv_buf));
return (1);
}
/*
* Compare an input section name to a given string, taking the ELF '%'
* section naming convention into account. If an input section name
* contains a '%' character, the '%' and all following characters are
* ignored in the comparison.
*
* entry:
* is_name - Name of input section
* match_name - Name to compare to
* match_len - strlen(match_name)
*
* exit:
* Returns True (1) if the names match, and False (0) otherwise.
*/
inline static int
is_name_cmp(const char *is_name, const char *match_name, size_t match_len)
{
/*
* If the start of is_name is not a match for name,
* the match fails.
*/
if (strncmp(is_name, match_name, match_len) != 0)
return (0);
/*
* The prefix matched. The next character must be either '%', or
* NULL, in order for a match to be true.
*/
is_name += match_len;
return ((*is_name == '\0') || (*is_name == '%'));
}
/*
* Helper routine for process_progbits() to process allocable sections.
*
* entry:
* name, ifl, shdr, ndx, ident, ofl - As passed to process_progbits().
* is_stab_index - TRUE if section is .index.
* is_flags - Additional flags to be added to the input section.
*
* exit:
* The allocable section has been processed. *ident and *is_flags
* are updated as necessary to reflect the changes. Returns TRUE
* for success, FALSE for failure.
*/
/*ARGSUSED*/
inline static Boolean
process_progbits_alloc(const char *name, Ifl_desc *ifl, Shdr *shdr,
Word ndx, int *ident, Ofl_desc *ofl, Boolean is_stab_index,
Word *is_flags)
{
Boolean done = FALSE;
if (name[0] == '.') {
switch (name[1]) {
case 'e':
if (!is_name_cmp(name, MSG_ORIG(MSG_SCN_EHFRAME),
MSG_SCN_EHFRAME_SIZE))
break;
*ident = ld_targ.t_id.id_unwind;
*is_flags |= FLG_IS_EHFRAME;
done = TRUE;
/*
* Historically, the section containing the logic to
* unwind stack frames -- the .eh_frame section -- was
* of type SHT_PROGBITS. Apparently the most
* aesthetically galling aspect of this was not the
* .eh_frame section's dubious purpose or its filthy
* implementation, but rather its section type; with the
* introduction of the AMD64 ABI, a new section header
* type (SHT_AMD64_UNWIND) was introduced for (and
* dedicated to) this section. When both the Sun
* compilers and the GNU compilers had been modified to
* generate this new section type, the linker became
* much more pedantic about .eh_frame: it refused to
* link an AMD64 object that contained a .eh_frame with
* the legacy SHT_PROGBITS. That this was too fussy is
* evidenced by searching the net for the error message
* that it generated ("section type is SHT_PROGBITS:
* expected SHT_AMD64_UNWIND"), which reveals a myriad
* of problems, including legacy objects, hand-coded
* assembly and otherwise cross-platform objects
* created on other platforms (the GNU toolchain was
* only modified to create the new section type on
* Solaris and derivatives). We therefore always accept
* a .eh_frame of SHT_PROGBITS -- regardless of
* m_sht_unwind.
*/
break;
case 'g':
if (is_name_cmp(name, MSG_ORIG(MSG_SCN_GOT),
MSG_SCN_GOT_SIZE)) {
*ident = ld_targ.t_id.id_null;
done = TRUE;
break;
}
if ((ld_targ.t_m.m_sht_unwind == SHT_PROGBITS) &&
is_name_cmp(name, MSG_ORIG(MSG_SCN_GCC_X_TBL),
MSG_SCN_GCC_X_TBL_SIZE)) {
*ident = ld_targ.t_id.id_unwind;
done = TRUE;
break;
}
break;
case 'p':
if (is_name_cmp(name, MSG_ORIG(MSG_SCN_PLT),
MSG_SCN_PLT_SIZE)) {
*ident = ld_targ.t_id.id_null;
done = TRUE;
}
break;
}
}
if (!done) {
if (is_stab_index) {
/*
* This is a work-around for x86 compilers that have
* set SHF_ALLOC for the .stab.index section.
*
* Because of this, make sure that the .stab.index
* does not end up as the last section in the text
* segment. Older linkers can produce segmentation
* violations when they strip (ld -s) against a
* shared object whose last section in the text
* segment is a .stab.
*/
*ident = ld_targ.t_id.id_interp;
} else {
*ident = ld_targ.t_id.id_data;
}
}
return (TRUE);
}
/*
* Process a progbits section.
*/
static uintptr_t
process_progbits(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
Boolean is_stab_index = FALSE;
Word is_flags = 0;
uintptr_t r;
/*
* Never include .stab.excl sections in any output file.
* If the -s flag has been specified strip any .stab sections.
*/
if (ident && (strncmp(name, MSG_ORIG(MSG_SCN_STAB),
MSG_SCN_STAB_SIZE) == 0)) {
if ((ofl->ofl_flags & FLG_OF_STRIP) ||
(strcmp((name + MSG_SCN_STAB_SIZE),
MSG_ORIG(MSG_SCN_EXCL)) == 0))
return (1);
if (strcmp((name + MSG_SCN_STAB_SIZE),
MSG_ORIG(MSG_SCN_INDEX)) == 0)
is_stab_index = TRUE;
}
if ((ofl->ofl_flags & FLG_OF_STRIP) && ident) {
if ((strncmp(name, MSG_ORIG(MSG_SCN_DEBUG),
MSG_SCN_DEBUG_SIZE) == 0) ||
(strcmp(name, MSG_ORIG(MSG_SCN_LINE)) == 0))
return (1);
}
/*
* Update the ident to reflect the type of section we've got.
*
* If there is any .plt or .got section to generate we'll be creating
* our own version, so don't allow any input sections of these types to
* be added to the output section list (why a relocatable object would
* have a .plt or .got is a mystery, but stranger things have occurred).
*
* If there are any unwind sections, and this is a platform that uses
* SHT_PROGBITS for unwind sections, then set their ident to reflect
* that.
*/
if (ident) {
if (shdr->sh_flags & SHF_TLS) {
ident = ld_targ.t_id.id_tls;
} else if ((shdr->sh_flags & ~ALL_SHF_IGNORE) ==
(SHF_ALLOC | SHF_EXECINSTR)) {
ident = ld_targ.t_id.id_text;
} else if (shdr->sh_flags & SHF_ALLOC) {
if (process_progbits_alloc(name, ifl, shdr, ndx,
&ident, ofl, is_stab_index, &is_flags) == FALSE)
return (S_ERROR);
} else {
ident = ld_targ.t_id.id_note;
}
}
r = process_section(name, ifl, shdr, scn, ndx, ident, ofl);
/*
* On success, process_section() creates an input section descriptor.
* Now that it exists, we can add any pending input section flags.
*/
if ((is_flags != 0) && (r == 1))
ifl->ifl_isdesc[ndx]->is_flags |= is_flags;
return (r);
}
/*
* Handles the SHT_SUNW_{DEBUG,DEBUGSTR) sections.
*/
static uintptr_t
process_debug(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
/*
* Debug information is discarded when the 'ld -s' flag is invoked.
*/
if (ofl->ofl_flags & FLG_OF_STRIP) {
return (1);
}
return (process_progbits(name, ifl, shdr, scn, ndx, ident, ofl));
}
/*
* Process a nobits section.
*/
static uintptr_t
process_nobits(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
if (ident) {
if (shdr->sh_flags & SHF_TLS)
ident = ld_targ.t_id.id_tlsbss;
#if defined(_ELF64)
else if ((shdr->sh_flags & SHF_AMD64_LARGE) &&
(ld_targ.t_m.m_mach == EM_AMD64))
ident = ld_targ.t_id.id_lbss;
#endif
else
ident = ld_targ.t_id.id_bss;
}
return (process_section(name, ifl, shdr, scn, ndx, ident, ofl));
}
/*
* Process a SHT_*_ARRAY section.
*/
static uintptr_t
process_array(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
uintptr_t error;
if (ident)
ident = ld_targ.t_id.id_array;
error = process_section(name, ifl, shdr, scn, ndx, ident, ofl);
if ((error == 0) || (error == S_ERROR))
return (error);
return (1);
}
static uintptr_t
/* ARGSUSED1 */
array_process(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
{
Os_desc *osp;
Shdr *shdr;
if ((isc == NULL) || ((osp = isc->is_osdesc) == NULL))
return (0);
shdr = isc->is_shdr;
if ((shdr->sh_type == SHT_FINI_ARRAY) &&
(ofl->ofl_osfiniarray == NULL))
ofl->ofl_osfiniarray = osp;
else if ((shdr->sh_type == SHT_INIT_ARRAY) &&
(ofl->ofl_osinitarray == NULL))
ofl->ofl_osinitarray = osp;
else if ((shdr->sh_type == SHT_PREINIT_ARRAY) &&
(ofl->ofl_ospreinitarray == NULL))
ofl->ofl_ospreinitarray = osp;
return (1);
}
/*
* Process a SHT_SYMTAB_SHNDX section.
*/
static uintptr_t
process_sym_shndx(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
if (process_input(name, ifl, shdr, scn, ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
/*
* Have we already seen the related SYMTAB - if so verify it now.
*/
if (shdr->sh_link < ndx) {
Is_desc *isp = ifl->ifl_isdesc[shdr->sh_link];
if ((isp == NULL) || ((isp->is_shdr->sh_type != SHT_SYMTAB) &&
(isp->is_shdr->sh_type != SHT_DYNSYM))) {
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_FIL_INVSHLINK), ifl->ifl_name,
EC_WORD(ndx), name, EC_XWORD(shdr->sh_link));
return (S_ERROR);
}
isp->is_symshndx = ifl->ifl_isdesc[ndx];
}
return (1);
}
/*
* Final processing for SHT_SYMTAB_SHNDX section.
*/
static uintptr_t
/* ARGSUSED2 */
sym_shndx_process(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
{
if (isc->is_shdr->sh_link > isc->is_scnndx) {
Is_desc *isp = ifl->ifl_isdesc[isc->is_shdr->sh_link];
if ((isp == NULL) || ((isp->is_shdr->sh_type != SHT_SYMTAB) &&
(isp->is_shdr->sh_type != SHT_DYNSYM))) {
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_FIL_INVSHLINK), isc->is_file->ifl_name,
EC_WORD(isc->is_scnndx), isc->is_name,
EC_XWORD(isc->is_shdr->sh_link));
return (S_ERROR);
}
isp->is_symshndx = isc;
}
return (1);
}
/*
* Process .dynamic section from a relocatable object.
*
* Note: That the .dynamic section is only considered interesting when
* dlopen()ing a relocatable object (thus FLG_OF1_RELDYN can only get
* set when libld is called from ld.so.1).
*/
/*ARGSUSED*/
static uintptr_t
process_rel_dynamic(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
Dyn *dyn;
Elf_Scn *strscn;
Elf_Data *dp;
char *str;
/*
* Process .dynamic sections from relocatable objects ?
*/
if ((ofl->ofl_flags1 & FLG_OF1_RELDYN) == 0)
return (1);
/*
* Find the string section associated with the .dynamic section.
*/
if ((strscn = elf_getscn(ifl->ifl_elf, shdr->sh_link)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSCN),
ifl->ifl_name);
return (0);
}
dp = elf_getdata(strscn, NULL);
str = (char *)dp->d_buf;
/*
* And get the .dynamic data
*/
dp = elf_getdata(scn, NULL);
for (dyn = (Dyn *)dp->d_buf; dyn->d_tag != DT_NULL; dyn++) {
Ifl_desc *difl;
switch (dyn->d_tag) {
case DT_NEEDED:
case DT_USED:
if (((difl = libld_calloc(1,
sizeof (Ifl_desc))) == NULL) ||
(aplist_append(&ofl->ofl_sos, difl,
AL_CNT_OFL_LIBS) == NULL))
return (S_ERROR);
difl->ifl_name = MSG_ORIG(MSG_STR_DYNAMIC);
difl->ifl_soname = str + (size_t)dyn->d_un.d_val;
difl->ifl_flags = FLG_IF_NEEDSTR;
break;
case DT_RPATH:
case DT_RUNPATH:
if ((ofl->ofl_rpath = add_string(ofl->ofl_rpath,
(str + (size_t)dyn->d_un.d_val))) ==
(const char *)S_ERROR)
return (S_ERROR);
break;
case DT_VERSYM:
/*
* The Solaris ld does not put DT_VERSYM in the
* dynamic section. If the object has DT_VERSYM,
* then it must have been produced by the GNU ld,
* and is using the GNU style of versioning.
*/
ifl->ifl_flags |= FLG_IF_GNUVER;
break;
}
}
return (1);
}
/*
* Expand implicit references. Dependencies can be specified in terms of the
* $ORIGIN, $MACHINE, $PLATFORM, $OSREL and $OSNAME tokens, either from their
* needed name, or via a runpath. In addition runpaths may also specify the
* $ISALIST token.
*
* Probably the most common reference to explicit dependencies (via -L) will be
* sufficient to find any associated implicit dependencies, but just in case we
* expand any occurrence of these known tokens here.
*
* Note, if any errors occur we simply return the original name.
*
* This code is remarkably similar to expand() in rtld/common/paths.c.
*/
static char *machine = NULL;
static size_t machine_sz = 0;
static char *platform = NULL;
static size_t platform_sz = 0;
static Isa_desc *isa = NULL;
static Uts_desc *uts = NULL;
static char *
expand(const char *parent, const char *name, char **next)
{
char _name[PATH_MAX], *nptr, *_next;
const char *optr;
size_t nrem = PATH_MAX - 1;
int expanded = 0, _expanded, isaflag = 0;
optr = name;
nptr = _name;
while (*optr) {
if (nrem == 0)
return ((char *)name);
if (*optr != '$') {
*nptr++ = *optr++, nrem--;
continue;
}
_expanded = 0;
if (strncmp(optr, MSG_ORIG(MSG_STR_ORIGIN),
MSG_STR_ORIGIN_SIZE) == 0) {
char *eptr;
/*
* For $ORIGIN, expansion is really just a concatenation
* of the parents directory name. For example, an
* explicit dependency foo/bar/lib1.so with a dependency
* on $ORIGIN/lib2.so would be expanded to
* foo/bar/lib2.so.
*/
if ((eptr = strrchr(parent, '/')) == NULL) {
*nptr++ = '.';
nrem--;
} else {
size_t len = eptr - parent;
if (len >= nrem)
return ((char *)name);
(void) strncpy(nptr, parent, len);
nptr = nptr + len;
nrem -= len;
}
optr += MSG_STR_ORIGIN_SIZE;
expanded = _expanded = 1;
} else if (strncmp(optr, MSG_ORIG(MSG_STR_MACHINE),
MSG_STR_MACHINE_SIZE) == 0) {
/*
* Establish the machine from sysconf - like uname -i.
*/
if ((machine == NULL) && (machine_sz == 0)) {
char info[SYS_NMLN];
long size;
size = sysinfo(SI_MACHINE, info, SYS_NMLN);
if ((size != -1) &&
(machine = libld_malloc((size_t)size))) {
(void) strcpy(machine, info);
machine_sz = (size_t)size - 1;
} else
machine_sz = 1;
}
if (machine) {
if (machine_sz >= nrem)
return ((char *)name);
(void) strncpy(nptr, machine, machine_sz);
nptr = nptr + machine_sz;
nrem -= machine_sz;
optr += MSG_STR_MACHINE_SIZE;
expanded = _expanded = 1;
}
} else if (strncmp(optr, MSG_ORIG(MSG_STR_PLATFORM),
MSG_STR_PLATFORM_SIZE) == 0) {
/*
* Establish the platform from sysconf - like uname -i.
*/
if ((platform == NULL) && (platform_sz == 0)) {
char info[SYS_NMLN];
long size;
size = sysinfo(SI_PLATFORM, info, SYS_NMLN);
if ((size != -1) &&
(platform = libld_malloc((size_t)size))) {
(void) strcpy(platform, info);
platform_sz = (size_t)size - 1;
} else
platform_sz = 1;
}
if (platform) {
if (platform_sz >= nrem)
return ((char *)name);
(void) strncpy(nptr, platform, platform_sz);
nptr = nptr + platform_sz;
nrem -= platform_sz;
optr += MSG_STR_PLATFORM_SIZE;
expanded = _expanded = 1;
}
} else if (strncmp(optr, MSG_ORIG(MSG_STR_OSNAME),
MSG_STR_OSNAME_SIZE) == 0) {
/*
* Establish the os name - like uname -s.
*/
if (uts == NULL)
uts = conv_uts();
if (uts && uts->uts_osnamesz) {
if (uts->uts_osnamesz >= nrem)
return ((char *)name);
(void) strncpy(nptr, uts->uts_osname,
uts->uts_osnamesz);
nptr = nptr + uts->uts_osnamesz;
nrem -= uts->uts_osnamesz;
optr += MSG_STR_OSNAME_SIZE;
expanded = _expanded = 1;
}
} else if (strncmp(optr, MSG_ORIG(MSG_STR_OSREL),
MSG_STR_OSREL_SIZE) == 0) {
/*
* Establish the os release - like uname -r.
*/
if (uts == NULL)
uts = conv_uts();
if (uts && uts->uts_osrelsz) {
if (uts->uts_osrelsz >= nrem)
return ((char *)name);
(void) strncpy(nptr, uts->uts_osrel,
uts->uts_osrelsz);
nptr = nptr + uts->uts_osrelsz;
nrem -= uts->uts_osrelsz;
optr += MSG_STR_OSREL_SIZE;
expanded = _expanded = 1;
}
} else if ((strncmp(optr, MSG_ORIG(MSG_STR_ISALIST),
MSG_STR_ISALIST_SIZE) == 0) && next && (isaflag++ == 0)) {
/*
* Establish instruction sets from sysconf. Note that
* this is only meaningful from runpaths.
*/
if (isa == NULL)
isa = conv_isalist();
if (isa && isa->isa_listsz &&
(nrem > isa->isa_opt->isa_namesz)) {
size_t mlen, tlen, hlen = optr - name;
size_t no;
char *lptr;
Isa_opt *opt = isa->isa_opt;
(void) strncpy(nptr, opt->isa_name,
opt->isa_namesz);
nptr = nptr + opt->isa_namesz;
nrem -= opt->isa_namesz;
optr += MSG_STR_ISALIST_SIZE;
expanded = _expanded = 1;
tlen = strlen(optr);
/*
* As ISALIST expands to a number of elements,
* establish a new list to return to the caller.
* This will contain the present path being
* processed redefined for each isalist option,
* plus the original remaining list entries.
*/
mlen = ((hlen + tlen) * (isa->isa_optno - 1)) +
isa->isa_listsz - opt->isa_namesz;
if (*next)
mlen += strlen(*next);
if ((_next = lptr = libld_malloc(mlen)) == NULL)
return (0);
for (no = 1, opt++; no < isa->isa_optno;
no++, opt++) {
(void) strncpy(lptr, name, hlen);
lptr = lptr + hlen;
(void) strncpy(lptr, opt->isa_name,
opt->isa_namesz);
lptr = lptr + opt->isa_namesz;
(void) strncpy(lptr, optr, tlen);
lptr = lptr + tlen;
*lptr++ = ':';
}
if (*next)
(void) strcpy(lptr, *next);
else
*--lptr = '\0';
}
}
/*
* If no expansion occurred skip the $ and continue.
*/
if (_expanded == 0)
*nptr++ = *optr++, nrem--;
}
/*
* If any ISALIST processing has occurred not only do we return the
* expanded node we're presently working on, but we must also update the
* remaining list so that it is effectively prepended with this node
* expanded to all remaining isalist options. Note that we can only
* handle one ISALIST per node. For more than one ISALIST to be
* processed we'd need a better algorithm than above to replace the
* newly generated list. Whether we want to encourage the number of
* pathname permutations this would provide is another question. So, for
* now if more than one ISALIST is encountered we return the original
* node untouched.
*/
if (isaflag) {
if (isaflag == 1)
*next = _next;
else
return ((char *)name);
}
*nptr = '\0';
if (expanded) {
if ((nptr = libld_malloc(strlen(_name) + 1)) == NULL)
return ((char *)name);
(void) strcpy(nptr, _name);
return (nptr);
}
return ((char *)name);
}
/*
* The Solaris ld does not put DT_VERSYM in the dynamic section, but the
* GNU ld does, and it is used by the runtime linker to implement their
* versioning scheme. Use this fact to determine if the sharable object
* was produced by the GNU ld rather than the Solaris one, and to set
* FLG_IF_GNUVER if so. This needs to be done before the symbols are
* processed, since the answer determines whether we interpret the
* symbols versions according to Solaris or GNU rules.
*/
/*ARGSUSED*/
static uintptr_t
process_dynamic_isgnu(const char *name, Ifl_desc *ifl, Shdr *shdr,
Elf_Scn *scn, Word ndx, int ident, Ofl_desc *ofl)
{
Dyn *dyn;
Elf_Data *dp;
uintptr_t error;
error = process_section(name, ifl, shdr, scn, ndx, ident, ofl);
if ((error == 0) || (error == S_ERROR))
return (error);
/* Get the .dynamic data */
dp = elf_getdata(scn, NULL);
for (dyn = (Dyn *)dp->d_buf; dyn->d_tag != DT_NULL; dyn++) {
if (dyn->d_tag == DT_VERSYM) {
ifl->ifl_flags |= FLG_IF_GNUVER;
break;
}
}
return (1);
}
/*
* Process a dynamic section. If we are processing an explicit shared object
* then we need to determine if it has a recorded SONAME, if so, this name will
* be recorded in the output file being generated as the NEEDED entry rather
* than the shared objects filename itself.
* If the mode of the link-edit indicates that no undefined symbols should
* remain, then we also need to build up a list of any additional shared object
* dependencies this object may have. In this case save any NEEDED entries
* together with any associated run-path specifications. This information is
* recorded on the `ofl_soneed' list and will be analyzed after all explicit
* file processing has been completed (refer finish_libs()).
*/
static uintptr_t
process_dynamic(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
{
Dyn *data, *dyn;
char *str, *rpath = NULL;
const char *soname, *needed;
Boolean no_undef;
data = (Dyn *)isc->is_indata->d_buf;
str = (char *)ifl->ifl_isdesc[isc->is_shdr->sh_link]->is_indata->d_buf;
/* Determine if we need to examine the runpaths and NEEDED entries */
no_undef = (ofl->ofl_flags & (FLG_OF_NOUNDEF | FLG_OF_SYMBOLIC)) ||
OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS);
/*
* First loop through the dynamic section looking for a run path.
*/
if (no_undef) {
for (dyn = data; dyn->d_tag != DT_NULL; dyn++) {
if ((dyn->d_tag != DT_RPATH) &&
(dyn->d_tag != DT_RUNPATH))
continue;
if ((rpath = str + (size_t)dyn->d_un.d_val) == NULL)
continue;
break;
}
}
/*
* Now look for any needed dependencies (which may use the rpath)
* or a new SONAME.
*/
for (dyn = data; dyn->d_tag != DT_NULL; dyn++) {
if (dyn->d_tag == DT_SONAME) {
if ((soname = str + (size_t)dyn->d_un.d_val) == NULL)
continue;
/*
* Update the input file structure with this new name.
*/
ifl->ifl_soname = soname;
} else if ((dyn->d_tag == DT_NEEDED) ||
(dyn->d_tag == DT_USED)) {
Sdf_desc *sdf;
if (!no_undef)
continue;
if ((needed = str + (size_t)dyn->d_un.d_val) == NULL)
continue;
/*
* Determine if this needed entry is already recorded on
* the shared object needed list, if not create a new
* definition for later processing (see finish_libs()).
*/
needed = expand(ifl->ifl_name, needed, NULL);
if ((sdf = sdf_find(needed, ofl->ofl_soneed)) == NULL) {
if ((sdf = sdf_add(needed,
&ofl->ofl_soneed)) == (Sdf_desc *)S_ERROR)
return (S_ERROR);
sdf->sdf_rfile = ifl->ifl_name;
}
/*
* Record the runpath (Note that we take the first
* runpath which is exactly what ld.so.1 would do during
* its dependency processing).
*/
if (rpath && (sdf->sdf_rpath == NULL))
sdf->sdf_rpath = rpath;
} else if (dyn->d_tag == DT_FLAGS_1) {
if (dyn->d_un.d_val & (DF_1_INITFIRST | DF_1_INTERPOSE))
ifl->ifl_flags &= ~FLG_IF_LAZYLD;
if (dyn->d_un.d_val & DF_1_DISPRELPND)
ifl->ifl_flags |= FLG_IF_DISPPEND;
if (dyn->d_un.d_val & DF_1_DISPRELDNE)
ifl->ifl_flags |= FLG_IF_DISPDONE;
if (dyn->d_un.d_val & DF_1_NODIRECT)
ifl->ifl_flags |= FLG_IF_NODIRECT;
/*
* If we are building an executable, and this
* dependency is tagged as an interposer, then
* assume that it is required even if symbol
* resolution uncovers no evident use.
*
* If we are building a shared object, then an
* interposer dependency has no special meaning, and we
* treat it as a regular dependency. By definition, all
* interposers must be visible to the runtime linker
* at initialization time, and cannot be added later.
*/
if ((dyn->d_un.d_val & DF_1_INTERPOSE) &&
(ofl->ofl_flags & FLG_OF_EXEC))
ifl->ifl_flags |= FLG_IF_DEPREQD;
} else if ((dyn->d_tag == DT_AUDIT) &&
(ifl->ifl_flags & FLG_IF_NEEDED)) {
/*
* Record audit string as DT_DEPAUDIT.
*/
if ((ofl->ofl_depaudit = add_string(ofl->ofl_depaudit,
(str + (size_t)dyn->d_un.d_val))) ==
(const char *)S_ERROR)
return (S_ERROR);
} else if (dyn->d_tag == DT_SUNW_RTLDINF) {
/*
* If this dependency has the DT_SUNW_RTLDINF .dynamic
* entry, then ensure no specialized dependency
* processing is in effect. This tag identifies libc,
* which provides critical startup information (TLS
* routines, threads initialization, etc.) that must
* be exercised as part of process initialization.
*/
ifl->ifl_flags &= ~MSK_IF_POSFLAG1;
/*
* libc is not subject to the usual guidance checks
* for lazy loading. It cannot be lazy loaded, libld
* ignores the request, and rtld would ignore the
* setting if it were present.
*/
ifl->ifl_flags |= FLG_IF_RTLDINF;
}
}
/*
* Perform some SONAME sanity checks.
*/
if (ifl->ifl_flags & FLG_IF_NEEDED) {
Ifl_desc *sifl;
Aliste idx;
/*
* Determine if anyone else will cause the same SONAME to be
* used (this is either caused by two different files having the
* same SONAME, or by one file SONAME actually matching another
* file basename (if no SONAME is specified within a shared
* library its basename will be used)). Probably rare, but some
* idiot will do it.
*/
for (APLIST_TRAVERSE(ofl->ofl_sos, idx, sifl)) {
if ((strcmp(ifl->ifl_soname, sifl->ifl_soname) == 0) &&
(ifl != sifl)) {
const char *hint, *iflb, *siflb;
/*
* Determine the basename of each file. Perhaps
* there are multiple copies of the same file
* being brought in using different -L search
* paths, and if so give an extra hint in the
* error message.
*/
iflb = strrchr(ifl->ifl_name, '/');
if (iflb == NULL)
iflb = ifl->ifl_name;
else
iflb++;
siflb = strrchr(sifl->ifl_name, '/');
if (siflb == NULL)
siflb = sifl->ifl_name;
else
siflb++;
if (strcmp(iflb, siflb) == 0)
hint = MSG_INTL(MSG_REC_CNFLTHINT);
else
hint = MSG_ORIG(MSG_STR_EMPTY);
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_REC_OBJCNFLT), sifl->ifl_name,
ifl->ifl_name, sifl->ifl_soname, hint);
return (0);
}
}
/*
* If the SONAME is the same as the name the user wishes to
* record when building a dynamic library (refer -h option),
* we also have a name clash.
*/
if (ofl->ofl_soname &&
(strcmp(ofl->ofl_soname, ifl->ifl_soname) == 0)) {
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_REC_OPTCNFLT), ifl->ifl_name,
MSG_INTL(MSG_MARG_SONAME), ifl->ifl_soname);
return (0);
}
}
return (1);
}
/*
* Process a progbits section from a relocatable object (ET_REL).
* This is used on non-amd64 objects to recognize .eh_frame sections.
*/
/*ARGSUSED1*/
static uintptr_t
process_progbits_final(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
{
if (isc->is_osdesc && (isc->is_flags & FLG_IS_EHFRAME) &&
(ld_unwind_register(isc->is_osdesc, ofl) == S_ERROR))
return (S_ERROR);
return (1);
}
/*
* Process a group section.
*/
static uintptr_t
process_group(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, int ident, Ofl_desc *ofl)
{
uintptr_t error;
error = process_section(name, ifl, shdr, scn, ndx, ident, ofl);
if ((error == 0) || (error == S_ERROR))
return (error);
/*
* Indicate that this input file has groups to process. Groups are
* processed after all input sections have been processed.
*/
ifl->ifl_flags |= FLG_IF_GROUPS;
return (1);
}
/*
* Process a relocation entry. At this point all input sections from this
* input file have been assigned an input section descriptor which is saved
* in the `ifl_isdesc' array.
*/
static uintptr_t
rel_process(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
{
Word rndx;
Is_desc *risc;
Os_desc *osp;
Shdr *shdr = isc->is_shdr;
Conv_inv_buf_t inv_buf;
/*
* Make sure this is a valid relocation we can handle.
*/
if (shdr->sh_type != ld_targ.t_m.m_rel_sht_type) {
ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_INVALSEC),
ifl->ifl_name, EC_WORD(isc->is_scnndx), isc->is_name,
conv_sec_type(ifl->ifl_ehdr->e_ident[EI_OSABI],
ifl->ifl_ehdr->e_machine, shdr->sh_type, 0, &inv_buf));
return (0);
}
/*
* From the relocation section header information determine which
* section needs the actual relocation. Determine which output section
* this input section has been assigned to and add to its relocation
* list. Note that the relocation section may be null if it is not
* required (ie. .debug, .stabs, etc).
*/
rndx = shdr->sh_info;
if (rndx >= ifl->ifl_shnum) {
/*
* Broken input file.
*/
ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_INVSHINFO),
ifl->ifl_name, EC_WORD(isc->is_scnndx), isc->is_name,
EC_XWORD(rndx));
return (0);
}
if (rndx == 0) {
if (aplist_append(&ofl->ofl_extrarels, isc,
AL_CNT_OFL_RELS) == NULL)
return (S_ERROR);
} else if ((risc = ifl->ifl_isdesc[rndx]) != NULL) {
/*
* Discard relocations if they are against a section
* which has been discarded.
*/
if (risc->is_flags & FLG_IS_DISCARD)
return (1);
if ((osp = risc->is_osdesc) == NULL) {
if (risc->is_shdr->sh_type == SHT_SUNW_move) {
/*
* This section is processed later in
* process_movereloc().
*/
if (aplist_append(&ofl->ofl_ismoverel,
isc, AL_CNT_OFL_MOVE) == NULL)
return (S_ERROR);
return (1);
}
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_FIL_INVRELOC1), ifl->ifl_name,
EC_WORD(isc->is_scnndx), isc->is_name,
EC_WORD(risc->is_scnndx), risc->is_name);
return (0);
}
if (aplist_append(&osp->os_relisdescs, isc,
AL_CNT_OS_RELISDESCS) == NULL)
return (S_ERROR);
}
return (1);
}
/*
* SHF_EXCLUDE flags is set for this section.
*/
static uintptr_t
process_exclude(const char *name, Ifl_desc *ifl, Shdr *shdr, Elf_Scn *scn,
Word ndx, Ofl_desc *ofl)
{
/*
* Sections SHT_SYMTAB and SHT_DYNDYM, even if SHF_EXCLUDE is on, might
* be needed for ld processing. These sections need to be in the
* internal table. Later it will be determined whether they can be
* eliminated or not.
*/
if (shdr->sh_type == SHT_SYMTAB || shdr->sh_type == SHT_DYNSYM)
return (0);
/*
* Other checks
*/
if (shdr->sh_flags & SHF_ALLOC) {
/*
* A conflict, issue an warning message, and ignore the section.
*/
ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_EXCLUDE),
ifl->ifl_name, EC_WORD(ndx), name);
return (0);
}
/*
* This sections is not going to the output file.
*/
return (process_section(name, ifl, shdr, scn, ndx, 0, ofl));
}
/*
* Section processing state table. `Initial' describes the required initial
* procedure to be called (if any), `Final' describes the final processing
* procedure (ie. things that can only be done when all required sections
* have been collected).
*/
typedef uintptr_t (* initial_func_t)(const char *, Ifl_desc *, Shdr *,
Elf_Scn *, Word, int, Ofl_desc *);
static initial_func_t Initial[SHT_NUM][2] = {
/* ET_REL ET_DYN */
/* SHT_NULL */ invalid_section, invalid_section,
/* SHT_PROGBITS */ process_progbits, process_progbits,
/* SHT_SYMTAB */ process_input, process_input,
/* SHT_STRTAB */ process_strtab, process_strtab,
/* SHT_RELA */ process_reloc, process_reloc,
/* SHT_HASH */ invalid_section, NULL,
/* SHT_DYNAMIC */ process_rel_dynamic, process_dynamic_isgnu,
/* SHT_NOTE */ process_section, NULL,
/* SHT_NOBITS */ process_nobits, process_nobits,
/* SHT_REL */ process_reloc, process_reloc,
/* SHT_SHLIB */ process_section, invalid_section,
/* SHT_DYNSYM */ invalid_section, process_input,
/* SHT_UNKNOWN12 */ process_progbits, process_progbits,
/* SHT_UNKNOWN13 */ process_progbits, process_progbits,
/* SHT_INIT_ARRAY */ process_array, NULL,
/* SHT_FINI_ARRAY */ process_array, NULL,
/* SHT_PREINIT_ARRAY */ process_array, NULL,
/* SHT_GROUP */ process_group, invalid_section,
/* SHT_SYMTAB_SHNDX */ process_sym_shndx, NULL
};
typedef uintptr_t (* final_func_t)(Is_desc *, Ifl_desc *, Ofl_desc *);
static final_func_t Final[SHT_NUM][2] = {
/* ET_REL ET_DYN */
/* SHT_NULL */ NULL, NULL,
/* SHT_PROGBITS */ process_progbits_final, NULL,
/* SHT_SYMTAB */ ld_sym_process, ld_sym_process,
/* SHT_STRTAB */ NULL, NULL,
/* SHT_RELA */ rel_process, NULL,
/* SHT_HASH */ NULL, NULL,
/* SHT_DYNAMIC */ NULL, process_dynamic,
/* SHT_NOTE */ NULL, NULL,
/* SHT_NOBITS */ NULL, NULL,
/* SHT_REL */ rel_process, NULL,
/* SHT_SHLIB */ NULL, NULL,
/* SHT_DYNSYM */ NULL, ld_sym_process,
/* SHT_UNKNOWN12 */ NULL, NULL,
/* SHT_UNKNOWN13 */ NULL, NULL,
/* SHT_INIT_ARRAY */ array_process, NULL,
/* SHT_FINI_ARRAY */ array_process, NULL,
/* SHT_PREINIT_ARRAY */ array_process, NULL,
/* SHT_GROUP */ NULL, NULL,
/* SHT_SYMTAB_SHNDX */ sym_shndx_process, NULL
};
#define MAXNDXSIZE 10
/*
* Process an elf file. Each section is compared against the section state
* table to determine whether it should be processed (saved), ignored, or
* is invalid for the type of input file being processed.
*/
static uintptr_t
process_elf(Ifl_desc *ifl, Elf *elf, Ofl_desc *ofl)
{
Elf_Scn *scn;
Shdr *shdr;
Word ndx, sndx, ordndx = 0, ordcnt = 0;
char *str, *name;
Word row, column;
int ident;
uintptr_t error;
Is_desc *vdfisp, *vndisp, *vsyisp, *sifisp;
Is_desc *capinfoisp, *capisp;
Sdf_desc *sdf;
Place_path_info path_info_buf, *path_info;
/*
* Path information buffer used by ld_place_section() and related
* routines. This information is used to evaluate entrance criteria
* with non-empty file matching lists (ec_files).
*/
path_info = ld_place_path_info_init(ofl, ifl, &path_info_buf);
/*
* First process the .shstrtab section so that later sections can
* reference their name.
*/
ld_sup_file(ofl, ifl->ifl_name, elf_kind(elf), ifl->ifl_flags, elf);
sndx = ifl->ifl_shstrndx;
if ((scn = elf_getscn(elf, (size_t)sndx)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSCN),
ifl->ifl_name);
return (0);
}
if ((shdr = elf_getshdr(scn)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
ifl->ifl_name);
return (0);
}
if ((name = elf_strptr(elf, (size_t)sndx, (size_t)shdr->sh_name)) ==
NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_STRPTR),
ifl->ifl_name);
return (0);
}
if (ld_sup_input_section(ofl, ifl, name, &shdr, sndx, scn,
elf) == S_ERROR)
return (S_ERROR);
/*
* Reset the name since the shdr->sh_name could have been changed as
* part of ld_sup_input_section().
*/
if ((name = elf_strptr(elf, (size_t)sndx, (size_t)shdr->sh_name)) ==
NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_STRPTR),
ifl->ifl_name);
return (0);
}
error = process_strtab(name, ifl, shdr, scn, sndx, FALSE, ofl);
if ((error == 0) || (error == S_ERROR))
return (error);
str = ifl->ifl_isdesc[sndx]->is_indata->d_buf;
/*
* Determine the state table column from the input file type. Note,
* shared library sections are not added to the output section list.
*/
if (ifl->ifl_ehdr->e_type == ET_DYN) {
column = 1;
ofl->ofl_soscnt++;
ident = ld_targ.t_id.id_null;
} else {
column = 0;
ofl->ofl_objscnt++;
ident = ld_targ.t_id.id_unknown;
}
DBG_CALL(Dbg_file_generic(ofl->ofl_lml, ifl));
ndx = 0;
vdfisp = vndisp = vsyisp = sifisp = capinfoisp = capisp = NULL;
scn = NULL;
while (scn = elf_nextscn(elf, scn)) {
ndx++;
/*
* As we've already processed the .shstrtab don't do it again.
*/
if (ndx == sndx)
continue;
if ((shdr = elf_getshdr(scn)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
ifl->ifl_name);
return (0);
}
name = str + (size_t)(shdr->sh_name);
if (ld_sup_input_section(ofl, ifl, name, &shdr, ndx, scn,
elf) == S_ERROR)
return (S_ERROR);
/*
* Reset the name since the shdr->sh_name could have been
* changed as part of ld_sup_input_section().
*/
name = str + (size_t)(shdr->sh_name);
row = shdr->sh_type;
/*
* If the section has the SHF_EXCLUDE flag on, and we're not
* generating a relocatable object, exclude the section.
*/
if (((shdr->sh_flags & SHF_EXCLUDE) != 0) &&
((ofl->ofl_flags & FLG_OF_RELOBJ) == 0)) {
if ((error = process_exclude(name, ifl, shdr, scn,
ndx, ofl)) == S_ERROR)
return (S_ERROR);
if (error == 1)
continue;
}
/*
* If this is a standard section type process it via the
* appropriate action routine.
*/
if (row < SHT_NUM) {
if (Initial[row][column] != NULL) {
if (Initial[row][column](name, ifl, shdr, scn,
ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
}
} else {
/*
* If this section is below SHT_LOSUNW then we don't
* really know what to do with it, issue a warning
* message but do the basic section processing anyway.
*/
if (row < (Word)SHT_LOSUNW) {
Conv_inv_buf_t inv_buf;
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_INVALSEC), ifl->ifl_name,
EC_WORD(ndx), name, conv_sec_type(
ifl->ifl_ehdr->e_ident[EI_OSABI],
ifl->ifl_ehdr->e_machine,
shdr->sh_type, 0, &inv_buf));
}
/*
* Handle sections greater than SHT_LOSUNW.
*/
switch (row) {
case SHT_SUNW_dof:
if (process_section(name, ifl, shdr, scn,
ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
break;
case SHT_SUNW_cap:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
capisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SUNW_capinfo:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
capinfoisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SUNW_DEBUGSTR:
case SHT_SUNW_DEBUG:
if (process_debug(name, ifl, shdr, scn,
ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
break;
case SHT_SUNW_move:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
break;
case SHT_SUNW_syminfo:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
sifisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SUNW_ANNOTATE:
if (process_progbits(name, ifl, shdr, scn,
ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
break;
case SHT_SUNW_COMDAT:
if (process_progbits(name, ifl, shdr, scn,
ndx, ident, ofl) == S_ERROR)
return (S_ERROR);
ifl->ifl_isdesc[ndx]->is_flags |= FLG_IS_COMDAT;
break;
case SHT_SUNW_verdef:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
vdfisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SUNW_verneed:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
vndisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SUNW_versym:
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_null, ofl) == S_ERROR)
return (S_ERROR);
vsyisp = ifl->ifl_isdesc[ndx];
break;
case SHT_SPARC_GOTDATA:
/*
* SHT_SPARC_GOTDATA (0x70000000) is in the
* SHT_LOPROC - SHT_HIPROC range reserved
* for processor-specific semantics. It is
* only meaningful for sparc targets.
*/
if (ld_targ.t_m.m_mach !=
LD_TARG_BYCLASS(EM_SPARC, EM_SPARCV9))
goto do_default;
if (process_section(name, ifl, shdr, scn, ndx,
ld_targ.t_id.id_gotdata, ofl) == S_ERROR)
return (S_ERROR);
break;
#if defined(_ELF64)
case SHT_AMD64_UNWIND:
/*
* SHT_AMD64_UNWIND (0x70000001) is in the
* SHT_LOPROC - SHT_HIPROC range reserved
* for processor-specific semantics. It is
* only meaningful for amd64 targets.
*/
if (ld_targ.t_m.m_mach != EM_AMD64)
goto do_default;
/*
* Target is x86, so this really is
* SHT_AMD64_UNWIND
*/
if (column == 0) {
/*
* column == ET_REL
*/
if (process_section(name, ifl, shdr,
scn, ndx, ld_targ.t_id.id_unwind,
ofl) == S_ERROR)
return (S_ERROR);
ifl->ifl_isdesc[ndx]->is_flags |=
FLG_IS_EHFRAME;
}
break;
#endif
default:
do_default:
if (process_section(name, ifl, shdr, scn, ndx,
((ident == ld_targ.t_id.id_null) ?
ident : ld_targ.t_id.id_user), ofl) ==
S_ERROR)
return (S_ERROR);
break;
}
}
}
/*
* Now that all input sections have been analyzed, and prior to placing
* any input sections to their output sections, process any groups.
* Groups can contribute COMDAT items, which may get discarded as part
* of placement. In addition, COMDAT names may require transformation
* to indicate different output section placement.
*/
if (ifl->ifl_flags & FLG_IF_GROUPS) {
for (ndx = 1; ndx < ifl->ifl_shnum; ndx++) {
Is_desc *isp;
if (((isp = ifl->ifl_isdesc[ndx]) == NULL) ||
(isp->is_shdr->sh_type != SHT_GROUP))
continue;
if (ld_group_process(isp, ofl) == S_ERROR)
return (S_ERROR);
}
}
/*
* Now group information has been processed, we can safely validate
* that nothing is fishy about the section COMDAT description. We
* need to do this prior to placing the section (where any
* SHT_SUNW_COMDAT sections will be restored to being PROGBITS)
*/
ld_comdat_validate(ofl, ifl);
/*
* Now that all of the input sections have been processed, place
* them in the appropriate output sections.
*/
for (ndx = 1; ndx < ifl->ifl_shnum; ndx++) {
Is_desc *isp;
if (((isp = ifl->ifl_isdesc[ndx]) == NULL) ||
((isp->is_flags & FLG_IS_PLACE) == 0))
continue;
/*
* Place all non-ordered sections within their appropriate
* output section.
*/
if ((isp->is_flags & FLG_IS_ORDERED) == 0) {
if (ld_place_section(ofl, isp, path_info,
isp->is_keyident, NULL) == (Os_desc *)S_ERROR)
return (S_ERROR);
continue;
}
/*
* Count the number of ordered sections and retain the first
* ordered section index. This will be used to optimize the
* ordered section loop that immediately follows this one.
*/
ordcnt++;
if (ordndx == 0)
ordndx = ndx;
}
/*
* Having placed all the non-ordered sections, it is now
* safe to place SHF_ORDERED/SHF_LINK_ORDER sections.
*/
if (ifl->ifl_flags & FLG_IF_ORDERED) {
for (ndx = ordndx; ndx < ifl->ifl_shnum; ndx++) {
Is_desc *isp;
if (((isp = ifl->ifl_isdesc[ndx]) == NULL) ||
((isp->is_flags &
(FLG_IS_PLACE | FLG_IS_ORDERED)) !=
(FLG_IS_PLACE | FLG_IS_ORDERED)))
continue;
/* ld_process_ordered() calls ld_place_section() */
if (ld_process_ordered(ofl, ifl, path_info, ndx) ==
S_ERROR)
return (S_ERROR);
/* If we've done them all, stop searching */
if (--ordcnt == 0)
break;
}
}
/*
* If this is a shared object explicitly specified on the command
* line (as opposed to being a dependency of such an object),
* determine if the user has specified a control definition. This
* descriptor may specify which version definitions can be used
* from this object. It may also update the dependency to USED and
* supply an alternative SONAME.
*/
sdf = NULL;
if (column && (ifl->ifl_flags & FLG_IF_NEEDED)) {
const char *base;
/*
* Use the basename of the input file (typically this is the
* compilation environment name, ie. libfoo.so).
*/
if ((base = strrchr(ifl->ifl_name, '/')) == NULL)
base = ifl->ifl_name;
else
base++;
if ((sdf = sdf_find(base, ofl->ofl_socntl)) != NULL) {
sdf->sdf_file = ifl;
ifl->ifl_sdfdesc = sdf;
}
}
/*
* Before symbol processing, process any capabilities. Capabilities
* can reference a string table, which is why this processing is
* carried out after the initial section processing. Capabilities,
* together with -z symbolcap, can require the conversion of global
* symbols to local symbols.
*/
if (capisp && (process_cap(ofl, ifl, capisp) == S_ERROR))
return (S_ERROR);
/*
* Process any version dependencies. These will establish shared object
* `needed' entries in the same manner as will be generated from the
* .dynamic's NEEDED entries.
*/
if (vndisp && ((ofl->ofl_flags & (FLG_OF_NOUNDEF | FLG_OF_SYMBOLIC)) ||
OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS)))
if (ld_vers_need_process(vndisp, ifl, ofl) == S_ERROR)
return (S_ERROR);
/*
* Before processing any symbol resolution or relocations process any
* version sections.
*/
if (vsyisp)
(void) ld_vers_sym_process(ofl, vsyisp, ifl);
if (ifl->ifl_versym &&
(vdfisp || (sdf && (sdf->sdf_flags & FLG_SDF_SELECT))))
if (ld_vers_def_process(vdfisp, ifl, ofl) == S_ERROR)
return (S_ERROR);
/*
* Having collected the appropriate sections carry out any additional
* processing if necessary.
*/
for (ndx = 0; ndx < ifl->ifl_shnum; ndx++) {
Is_desc *isp;
if ((isp = ifl->ifl_isdesc[ndx]) == NULL)
continue;
row = isp->is_shdr->sh_type;
if ((isp->is_flags & FLG_IS_DISCARD) == 0)
ld_sup_section(ofl, isp->is_name, isp->is_shdr, ndx,
isp->is_indata, elf);
/*
* If this is a SHT_SUNW_move section from a relocatable file,
* keep track of the section for later processing.
*/
if ((row == SHT_SUNW_move) && (column == 0)) {
if (aplist_append(&(ofl->ofl_ismove), isp,
AL_CNT_OFL_MOVE) == NULL)
return (S_ERROR);
}
/*
* If this is a standard section type process it via the
* appropriate action routine.
*/
if (row < SHT_NUM) {
if (Final[row][column] != NULL) {
if (Final[row][column](isp, ifl,
ofl) == S_ERROR)
return (S_ERROR);
}
#if defined(_ELF64)
} else if ((row == SHT_AMD64_UNWIND) && (column == 0)) {
Os_desc *osp = isp->is_osdesc;
/*
* SHT_AMD64_UNWIND (0x70000001) is in the SHT_LOPROC -
* SHT_HIPROC range reserved for processor-specific
* semantics, and is only meaningful for amd64 targets.
*
* Only process unwind contents from relocatable
* objects.
*/
if (osp && (ld_targ.t_m.m_mach == EM_AMD64) &&
(ld_unwind_register(osp, ofl) == S_ERROR))
return (S_ERROR);
#endif
}
}
/*
* Following symbol processing, if this relocatable object input file
* provides symbol capabilities, tag the associated symbols so that
* the symbols can be re-assigned to the new capabilities symbol
* section that will be created for the output file.
*/
if (capinfoisp && (ifl->ifl_ehdr->e_type == ET_REL) &&
(process_capinfo(ofl, ifl, capinfoisp) == S_ERROR))
return (S_ERROR);
/*
* After processing any symbol resolution, and if this dependency
* indicates it contains symbols that can't be directly bound to,
* set the symbols appropriately.
*/
if (sifisp && ((ifl->ifl_flags & (FLG_IF_NEEDED | FLG_IF_NODIRECT)) ==
(FLG_IF_NEEDED | FLG_IF_NODIRECT)))
(void) ld_sym_nodirect(sifisp, ifl, ofl);
return (1);
}
/*
* Process the current input file. There are basically three types of files
* that come through here:
*
* - files explicitly defined on the command line (ie. foo.o or bar.so),
* in this case only the `name' field is valid.
*
* - libraries determined from the -l command line option (ie. -lbar),
* in this case the `soname' field contains the basename of the located
* file.
*
* Any shared object specified via the above two conventions must be recorded
* as a needed dependency.
*
* - libraries specified as dependencies of those libraries already obtained
* via the command line (ie. bar.so has a DT_NEEDED entry of fred.so.1),
* in this case the `soname' field contains either a full pathname (if the
* needed entry contained a `/'), or the basename of the located file.
* These libraries are processed to verify symbol binding but are not
* recorded as dependencies of the output file being generated.
*
* entry:
* name - File name
* soname - SONAME for needed sharable library, as described above
* fd - Open file descriptor
* elf - Open ELF handle
* flags - FLG_IF_ flags applicable to file
* ofl - Output file descriptor
* rej - Rejection descriptor used to record rejection reason
* ifl_ret - NULL, or address of pointer to receive reference to
* resulting input descriptor for file. If ifl_ret is non-NULL,
* the file cannot be an archive or it will be rejected.
*
* exit:
* If a error occurs in examining the file, S_ERROR is returned.
* If the file can be examined, but is not suitable, *rej is updated,
* and 0 is returned. If the file is acceptable, 1 is returned, and if
* ifl_ret is non-NULL, *ifl_ret is set to contain the pointer to the
* resulting input descriptor.
*/
uintptr_t
ld_process_ifl(const char *name, const char *soname, int fd, Elf *elf,
Word flags, Ofl_desc *ofl, Rej_desc *rej, Ifl_desc **ifl_ret)
{
Ifl_desc *ifl;
Ehdr *ehdr;
uintptr_t error = 0;
struct stat status;
Ar_desc *adp;
Rej_desc _rej;
/*
* If this file was not extracted from an archive obtain its device
* information. This will be used to determine if the file has already
* been processed (rather than simply comparing filenames, the device
* information provides a quicker comparison and detects linked files).
*/
if (fd && ((flags & FLG_IF_EXTRACT) == 0))
(void) fstat(fd, &status);
else {
status.st_dev = 0;
status.st_ino = 0;
}
switch (elf_kind(elf)) {
case ELF_K_AR:
/*
* If the caller has supplied a non-NULL ifl_ret, then
* we cannot process archives, for there will be no
* input file descriptor for us to return. In this case,
* reject the attempt.
*/
if (ifl_ret != NULL) {
_rej.rej_type = SGS_REJ_ARCHIVE;
_rej.rej_name = name;
DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
ld_targ.t_m.m_mach));
if (rej->rej_type == 0) {
*rej = _rej;
rej->rej_name = strdup(_rej.rej_name);
}
return (0);
}
/*
* Determine if we've already come across this archive file.
*/
if (!(flags & FLG_IF_EXTRACT)) {
Aliste idx;
for (APLIST_TRAVERSE(ofl->ofl_ars, idx, adp)) {
if ((adp->ad_stdev != status.st_dev) ||
(adp->ad_stino != status.st_ino))
continue;
/*
* We've seen this file before so reuse the
* original archive descriptor and discard the
* new elf descriptor. Note that a file
* descriptor is unnecessary, as the file is
* already available in memory.
*/
DBG_CALL(Dbg_file_reuse(ofl->ofl_lml, name,
adp->ad_name));
(void) elf_end(elf);
if (!ld_process_archive(name, -1, adp, ofl))
return (S_ERROR);
return (1);
}
}
/*
* As we haven't processed this file before establish a new
* archive descriptor.
*/
adp = ld_ar_setup(name, elf, ofl);
if ((adp == NULL) || (adp == (Ar_desc *)S_ERROR))
return ((uintptr_t)adp);
adp->ad_stdev = status.st_dev;
adp->ad_stino = status.st_ino;
ld_sup_file(ofl, name, ELF_K_AR, flags, elf);
/*
* Indicate that the ELF descriptor no longer requires a file
* descriptor by reading the entire file. The file is already
* read via the initial mmap(2) behind elf_begin(3elf), thus
* this operation is effectively a no-op. However, a side-
* effect is that the internal file descriptor, maintained in
* the ELF descriptor, is set to -1. This setting will not
* be compared with any file descriptor that is passed to
* elf_begin(), should this archive, or one of the archive
* members, be processed again from the command line or
* because of a -z rescan.
*/
if (elf_cntl(elf, ELF_C_FDREAD) == -1) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_CNTL),
name);
return (0);
}
if (!ld_process_archive(name, -1, adp, ofl))
return (S_ERROR);
return (1);
case ELF_K_ELF:
/*
* Obtain the elf header so that we can determine what type of
* elf ELF_K_ELF file this is.
*/
if ((ehdr = elf_getehdr(elf)) == NULL) {
int _class = gelf_getclass(elf);
/*
* This can fail for a number of reasons. Typically
* the object class is incorrect (ie. user is building
* 64-bit but managed to point at 32-bit libraries).
* Other ELF errors can include a truncated or corrupt
* file. Try to get the best error message possible.
*/
if (ld_targ.t_m.m_class != _class) {
_rej.rej_type = SGS_REJ_CLASS;
_rej.rej_info = (uint_t)_class;
} else {
_rej.rej_type = SGS_REJ_STR;
_rej.rej_str = elf_errmsg(-1);
}
_rej.rej_name = name;
DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
ld_targ.t_m.m_mach));
if (rej->rej_type == 0) {
*rej = _rej;
rej->rej_name = strdup(_rej.rej_name);
}
return (0);
}
/*
* Determine if we've already come across this file.
*/
if (!(flags & FLG_IF_EXTRACT)) {
APlist *apl;
Aliste idx;
if (ehdr->e_type == ET_REL)
apl = ofl->ofl_objs;
else
apl = ofl->ofl_sos;
/*
* Traverse the appropriate file list and determine if
* a dev/inode match is found.
*/
for (APLIST_TRAVERSE(apl, idx, ifl)) {
/*
* Ifl_desc generated via -Nneed, therefore no
* actual file behind it.
*/
if (ifl->ifl_flags & FLG_IF_NEEDSTR)
continue;
if ((ifl->ifl_stino != status.st_ino) ||
(ifl->ifl_stdev != status.st_dev))
continue;
/*
* Disregard (skip) this image.
*/
DBG_CALL(Dbg_file_skip(ofl->ofl_lml,
ifl->ifl_name, name));
(void) elf_end(elf);
/*
* If the file was explicitly defined on the
* command line (this is always the case for
* relocatable objects, and is true for shared
* objects when they weren't specified via -l or
* were dragged in as an implicit dependency),
* then warn the user.
*/
if ((flags & FLG_IF_CMDLINE) ||
(ifl->ifl_flags & FLG_IF_CMDLINE)) {
const char *errmsg;
/*
* Determine whether this is the same
* file name as originally encountered
* so as to provide the most
* descriptive diagnostic.
*/
errmsg =
(strcmp(name, ifl->ifl_name) == 0) ?
MSG_INTL(MSG_FIL_MULINC_1) :
MSG_INTL(MSG_FIL_MULINC_2);
ld_eprintf(ofl, ERR_WARNING,
errmsg, name, ifl->ifl_name);
}
if (ifl_ret)
*ifl_ret = ifl;
return (1);
}
}
/*
* At this point, we know we need the file. Establish an input
* file descriptor and continue processing.
*/
ifl = ifl_setup(name, ehdr, elf, flags, ofl, rej);
if ((ifl == NULL) || (ifl == (Ifl_desc *)S_ERROR))
return ((uintptr_t)ifl);
ifl->ifl_stdev = status.st_dev;
ifl->ifl_stino = status.st_ino;
/*
* If -zignore is in effect, mark this file as a potential
* candidate (the files use isn't actually determined until
* symbol resolution and relocation processing are completed).
*/
if (ofl->ofl_flags1 & FLG_OF1_IGNORE)
ifl->ifl_flags |= FLG_IF_IGNORE;
switch (ehdr->e_type) {
case ET_REL:
(*ld_targ.t_mr.mr_mach_eflags)(ehdr, ofl);
error = process_elf(ifl, elf, ofl);
break;
case ET_DYN:
if ((ofl->ofl_flags & FLG_OF_STATIC) ||
!(ofl->ofl_flags & FLG_OF_DYNLIBS)) {
ld_eprintf(ofl, ERR_FATAL,
MSG_INTL(MSG_FIL_SOINSTAT), name);
return (0);
}
/*
* Record any additional shared object information.
* If no soname is specified (eg. this file was
* derived from a explicit filename declaration on the
* command line, ie. bar.so) use the pathname.
* This entry may be overridden if the files dynamic
* section specifies an DT_SONAME value.
*/
if (soname == NULL)
ifl->ifl_soname = ifl->ifl_name;
else
ifl->ifl_soname = soname;
/*
* If direct bindings, lazy loading, group permissions,
* or deferred dependencies need to be established, mark
* this object.
*/
if (ofl->ofl_flags1 & FLG_OF1_ZDIRECT)
ifl->ifl_flags |= FLG_IF_DIRECT;
if (ofl->ofl_flags1 & FLG_OF1_LAZYLD)
ifl->ifl_flags |= FLG_IF_LAZYLD;
if (ofl->ofl_flags1 & FLG_OF1_GRPPRM)
ifl->ifl_flags |= FLG_IF_GRPPRM;
if (ofl->ofl_flags1 & FLG_OF1_DEFERRED)
ifl->ifl_flags |=
(FLG_IF_LAZYLD | FLG_IF_DEFERRED);
error = process_elf(ifl, elf, ofl);
/*
* Determine whether this dependency requires a syminfo.
*/
if (ifl->ifl_flags & MSK_IF_SYMINFO)
ofl->ofl_flags |= FLG_OF_SYMINFO;
/*
* Guidance: Use -z lazyload/nolazyload.
* libc is exempt from this advice, because it cannot
* be lazy loaded, and requests to do so are ignored.
*/
if (OFL_GUIDANCE(ofl, FLG_OFG_NO_LAZY) &&
((ifl->ifl_flags & FLG_IF_RTLDINF) == 0)) {
ld_eprintf(ofl, ERR_GUIDANCE,
MSG_INTL(MSG_GUIDE_LAZYLOAD));
ofl->ofl_guideflags |= FLG_OFG_NO_LAZY;
}
/*
* Guidance: Use -B direct/nodirect or
* -z direct/nodirect.
*/
if (OFL_GUIDANCE(ofl, FLG_OFG_NO_DB)) {
ld_eprintf(ofl, ERR_GUIDANCE,
MSG_INTL(MSG_GUIDE_DIRECT));
ofl->ofl_guideflags |= FLG_OFG_NO_DB;
}
break;
default:
(void) elf_errno();
_rej.rej_type = SGS_REJ_UNKFILE;
_rej.rej_name = name;
DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
ld_targ.t_m.m_mach));
if (rej->rej_type == 0) {
*rej = _rej;
rej->rej_name = strdup(_rej.rej_name);
}
return (0);
}
break;
default:
(void) elf_errno();
_rej.rej_type = SGS_REJ_UNKFILE;
_rej.rej_name = name;
DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
ld_targ.t_m.m_mach));
if (rej->rej_type == 0) {
*rej = _rej;
rej->rej_name = strdup(_rej.rej_name);
}
return (0);
}
if ((error == 0) || (error == S_ERROR))
return (error);
if (ifl_ret)
*ifl_ret = ifl;
return (1);
}
/*
* Having successfully opened a file, set up the necessary elf structures to
* process it further. This small section of processing is slightly different
* from the elf initialization required to process a relocatable object from an
* archive (see libs.c: ld_process_archive()).
*/
uintptr_t
ld_process_open(const char *opath, const char *ofile, int *fd, Ofl_desc *ofl,
Word flags, Rej_desc *rej, Ifl_desc **ifl_ret)
{
Elf *elf;
const char *npath = opath;
const char *nfile = ofile;
if ((elf = elf_begin(*fd, ELF_C_READ, NULL)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), npath);
return (0);
}
/*
* Determine whether the support library wishes to process this open.
* The support library may return:
* . a different ELF descriptor (in which case they should have
* closed the original)
* . a different file descriptor (in which case they should have
* closed the original)
* . a different path and file name (presumably associated with
* a different file descriptor)
*
* A file descriptor of -1, or and ELF descriptor of zero indicates
* the file should be ignored.
*/
ld_sup_open(ofl, &npath, &nfile, fd, flags, &elf, NULL, 0,
elf_kind(elf));
if ((*fd == -1) || (elf == NULL))
return (0);
return (ld_process_ifl(npath, nfile, *fd, elf, flags, ofl, rej,
ifl_ret));
}
/*
* Having successfully mapped a file, set up the necessary elf structures to
* process it further. This routine is patterned after ld_process_open() and
* is only called by ld.so.1(1) to process a relocatable object.
*/
Ifl_desc *
ld_process_mem(const char *path, const char *file, char *addr, size_t size,
Ofl_desc *ofl, Rej_desc *rej)
{
Elf *elf;
uintptr_t open_ret;
Ifl_desc *ifl;
if ((elf = elf_memory(addr, size)) == NULL) {
ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_MEMORY), path);
return (0);
}
open_ret = ld_process_ifl(path, file, 0, elf, 0, ofl, rej, &ifl);
if (open_ret != 1)
return ((Ifl_desc *) open_ret);
return (ifl);
}
/*
* Process a required library (i.e. the dependency of a shared object).
* Combine the directory and filename, check the resultant path size, and try
* opening the pathname.
*/
static Ifl_desc *
process_req_lib(Sdf_desc *sdf, const char *dir, const char *file,
Ofl_desc *ofl, Rej_desc *rej)
{
size_t dlen, plen;
int fd;
char path[PATH_MAX];
const char *_dir = dir;
/*
* Determine the sizes of the directory and filename to insure we don't
* exceed our buffer.
*/
if ((dlen = strlen(dir)) == 0) {
_dir = MSG_ORIG(MSG_STR_DOT);
dlen = 1;
}
dlen++;
plen = dlen + strlen(file) + 1;
if (plen > PATH_MAX) {
ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_PTHTOLONG),
_dir, file);
return (0);
}
/*
* Build the entire pathname and try and open the file.
*/
(void) strcpy(path, _dir);
(void) strcat(path, MSG_ORIG(MSG_STR_SLASH));
(void) strcat(path, file);
DBG_CALL(Dbg_libs_req(ofl->ofl_lml, sdf->sdf_name,
sdf->sdf_rfile, path));
if ((fd = open(path, O_RDONLY)) == -1)
return (0);
else {
uintptr_t open_ret;
Ifl_desc *ifl;
char *_path;
if ((_path = libld_malloc(strlen(path) + 1)) == NULL)
return ((Ifl_desc *)S_ERROR);
(void) strcpy(_path, path);
open_ret = ld_process_open(_path, &_path[dlen], &fd, ofl,
0, rej, &ifl);
if (fd != -1)
(void) close(fd);
if (open_ret != 1)
return ((Ifl_desc *)open_ret);
return (ifl);
}
}
/*
* Finish any library processing. Walk the list of so's that have been listed
* as "included" by shared objects we have previously processed. Examine them,
* without adding them as explicit dependents of this program, in order to
* complete our symbol definition process. The search path rules are:
*
* - use any user supplied paths, i.e. LD_LIBRARY_PATH and -L, then
*
* - use any RPATH defined within the parent shared object, then
*
* - use the default directories, i.e. LIBPATH or -YP.
*/
uintptr_t
ld_finish_libs(Ofl_desc *ofl)
{
Aliste idx1;
Sdf_desc *sdf;
Rej_desc rej = { 0 };
/*
* Make sure we are back in dynamic mode.
*/
ofl->ofl_flags |= FLG_OF_DYNLIBS;
for (APLIST_TRAVERSE(ofl->ofl_soneed, idx1, sdf)) {
Aliste idx2;
char *path, *slash = NULL;
int fd;
Ifl_desc *ifl;
char *file = (char *)sdf->sdf_name;
/*
* See if this file has already been processed. At the time
* this implicit dependency was determined there may still have
* been more explicit dependencies to process. Note, if we ever
* do parse the command line three times we would be able to
* do all this checking when processing the dynamic section.
*/
if (sdf->sdf_file)
continue;
for (APLIST_TRAVERSE(ofl->ofl_sos, idx2, ifl)) {
if (!(ifl->ifl_flags & FLG_IF_NEEDSTR) &&
(strcmp(file, ifl->ifl_soname) == 0)) {
sdf->sdf_file = ifl;
break;
}
}
if (sdf->sdf_file)
continue;
/*
* If the current path name element embeds a "/", then it's to
* be taken "as is", with no searching involved. Process all
* "/" occurrences, so that we can deduce the base file name.
*/
for (path = file; *path; path++) {
if (*path == '/')
slash = path;
}
if (slash) {
DBG_CALL(Dbg_libs_req(ofl->ofl_lml, sdf->sdf_name,
sdf->sdf_rfile, file));
if ((fd = open(file, O_RDONLY)) == -1) {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_NOTFOUND), file,
sdf->sdf_rfile);
} else {
uintptr_t open_ret;
Rej_desc _rej = { 0 };
open_ret = ld_process_open(file, ++slash,
&fd, ofl, 0, &_rej, &ifl);
if (fd != -1)
(void) close(fd);
if (open_ret == S_ERROR)
return (S_ERROR);
if (_rej.rej_type) {
Conv_reject_desc_buf_t rej_buf;
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(reject[_rej.rej_type]),
_rej.rej_name ? rej.rej_name :
MSG_INTL(MSG_STR_UNKNOWN),
conv_reject_desc(&_rej, &rej_buf,
ld_targ.t_m.m_mach));
} else
sdf->sdf_file = ifl;
}
continue;
}
/*
* Now search for this file in any user defined directories.
*/
for (APLIST_TRAVERSE(ofl->ofl_ulibdirs, idx2, path)) {
Rej_desc _rej = { 0 };
ifl = process_req_lib(sdf, path, file, ofl, &_rej);
if (ifl == (Ifl_desc *)S_ERROR) {
return (S_ERROR);
}
if (_rej.rej_type) {
if (rej.rej_type == 0) {
rej = _rej;
rej.rej_name = strdup(_rej.rej_name);
}
}
if (ifl) {
sdf->sdf_file = ifl;
break;
}
}
if (sdf->sdf_file)
continue;
/*
* Next use the local rules defined within the parent shared
* object.
*/
if (sdf->sdf_rpath != NULL) {
char *rpath, *next;
rpath = libld_malloc(strlen(sdf->sdf_rpath) + 1);
if (rpath == NULL)
return (S_ERROR);
(void) strcpy(rpath, sdf->sdf_rpath);
DBG_CALL(Dbg_libs_path(ofl->ofl_lml, rpath,
LA_SER_RUNPATH, sdf->sdf_rfile));
if ((path = strtok_r(rpath,
MSG_ORIG(MSG_STR_COLON), &next)) != NULL) {
do {
Rej_desc _rej = { 0 };
path = expand(sdf->sdf_rfile, path,
&next);
ifl = process_req_lib(sdf, path,
file, ofl, &_rej);
if (ifl == (Ifl_desc *)S_ERROR) {
return (S_ERROR);
}
if ((_rej.rej_type) &&
(rej.rej_type == 0)) {
rej = _rej;
rej.rej_name =
strdup(_rej.rej_name);
}
if (ifl) {
sdf->sdf_file = ifl;
break;
}
} while ((path = strtok_r(NULL,
MSG_ORIG(MSG_STR_COLON), &next)) != NULL);
}
}
if (sdf->sdf_file)
continue;
/*
* Finally try the default library search directories.
*/
for (APLIST_TRAVERSE(ofl->ofl_dlibdirs, idx2, path)) {
Rej_desc _rej = { 0 };
ifl = process_req_lib(sdf, path, file, ofl, &rej);
if (ifl == (Ifl_desc *)S_ERROR) {
return (S_ERROR);
}
if (_rej.rej_type) {
if (rej.rej_type == 0) {
rej = _rej;
rej.rej_name = strdup(_rej.rej_name);
}
}
if (ifl) {
sdf->sdf_file = ifl;
break;
}
}
if (sdf->sdf_file)
continue;
/*
* If we've got this far we haven't found the shared object.
* If an object was found, but was rejected for some reason,
* print a diagnostic to that effect, otherwise generate a
* generic "not found" diagnostic.
*/
if (rej.rej_type) {
Conv_reject_desc_buf_t rej_buf;
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(reject[rej.rej_type]),
rej.rej_name ? rej.rej_name :
MSG_INTL(MSG_STR_UNKNOWN),
conv_reject_desc(&rej, &rej_buf,
ld_targ.t_m.m_mach));
} else {
ld_eprintf(ofl, ERR_WARNING,
MSG_INTL(MSG_FIL_NOTFOUND), file, sdf->sdf_rfile);
}
}
/*
* Finally, now that all objects have been input, make sure any version
* requirements have been met.
*/
return (ld_vers_verify(ofl));
}