elfdump.c revision ba2be53024c0b999e74ba9adcd7d80fec5df8c57
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Dump an elf file.
*/
#include <sys/elf_386.h>
#include <sys/elf_amd64.h>
#include <sys/elf_SPARC.h>
#include <_libelf.h>
#include <dwarf.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <strings.h>
#include <debug.h>
#include <conv.h>
#include <msg.h>
#include <_elfdump.h>
/*
* VERSYM_STATE is used to maintain information about the VERSYM section
* in the object being analyzed. It is filled in by versions(), and used
* by init_symtbl_state() when displaying symbol information.
*
* max_verndx contains the largest version index that can appear
* in a Versym entry. This can never be less than 1: In the case where
* there is no verdef/verneed sections, the [0] index is reserved
* for local symbols, and the [1] index for globals. If Solaris versioning
* rules are in effect and there is a verdef section, then the number
* of defined versions provides this number. If GNU versioning is in effect,
* then:
* - If there is no verneed section, it is the same as for
* Solaris versioning.
* - If there is a verneed section, the vna_other field of the
* Vernaux structs contain versions, and max_verndx is the
* largest such index.
*
* The value of the gnu field is based on the presence of
* a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
* Solaris ld does not.
*/
typedef struct {
Cache *cache; /* Pointer to cache entry for VERSYM */
Versym *data; /* Pointer to versym array */
int gnu; /* True if object uses GNU versioning rules */
int max_verndx; /* largest versym index value */
} VERSYM_STATE;
/*
* SYMTBL_STATE is used to maintain information about a single symbol
* table section, for use by the routines that display symbol information.
*/
typedef struct {
const char *file; /* Name of file */
Ehdr *ehdr; /* ELF header for file */
Cache *cache; /* Cache of all section headers */
Word shnum; /* # of sections in cache */
Cache *seccache; /* Cache of symbol table section hdr */
Word secndx; /* Index of symbol table section hdr */
const char *secname; /* Name of section */
uint_t flags; /* Command line option flags */
struct { /* Extended section index data */
int checked; /* TRUE if already checked for shxndx */
Word *data; /* NULL, or extended section index */
/* used for symbol table entries */
uint_t n; /* # items in shxndx.data */
} shxndx;
VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
Sym *sym; /* Array of symbols */
Word symn; /* # of symbols */
} SYMTBL_STATE;
/*
* Focal point for verifying symbol names.
*/
static const char *
string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
{
/*
* If an error in this routine is due to a property of the string
* section, as opposed to a bad offset into the section (a property of
* the referencing section), then we will detect the same error on
* every call involving those sections. We use these static variables
* to retain the information needed to only issue each such error once.
*/
static Cache *last_refsec; /* Last referencing section seen */
static int strsec_err; /* True if error issued */
const char *strs;
Word strn;
if (strsec->c_data == NULL)
return (NULL);
strs = (char *)strsec->c_data->d_buf;
strn = strsec->c_data->d_size;
/*
* We only print a diagnostic regarding a bad string table once per
* input section being processed. If the refsec has changed, reset
* our retained error state.
*/
if (last_refsec != refsec) {
last_refsec = refsec;
strsec_err = 0;
}
/* Verify that strsec really is a string table */
if (strsec->c_shdr->sh_type != SHT_STRTAB) {
if (!strsec_err) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
file, strsec->c_ndx, refsec->c_ndx);
strsec_err = 1;
}
return (MSG_INTL(MSG_STR_UNKNOWN));
}
/*
* Is the string table offset within range of the available strings?
*/
if (name >= strn) {
/*
* Do we have a empty string table?
*/
if (strs == 0) {
if (!strsec_err) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, strsec->c_name);
strsec_err = 1;
}
} else {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
EC_WORD(name), EC_WORD(strn - 1));
}
/*
* Return the empty string so that the calling function can
* continue it's output diagnostics.
*/
return (MSG_INTL(MSG_STR_UNKNOWN));
}
return (strs + name);
}
/*
* Relocations can reference section symbols and standard symbols. If the
* former, establish the section name.
*/
static const char *
relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file,
uint_t flags)
{
Sym *sym;
if (symndx >= symnum) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
file, EC_WORD(symndx), EC_WORD(relndx));
return (MSG_INTL(MSG_STR_UNKNOWN));
}
sym = (Sym *)(syms + symndx);
/*
* If the symbol represents a section offset construct an appropriate
* string.
*/
if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && (sym->st_name == 0)) {
if (flags & FLG_CTL_LONGNAME)
(void) snprintf(secstr, secsz,
MSG_INTL(MSG_STR_L_SECTION),
cache[sym->st_shndx].c_name);
else
(void) snprintf(secstr, secsz,
MSG_INTL(MSG_STR_SECTION),
cache[sym->st_shndx].c_name);
return ((const char *)secstr);
}
return (string(csec, symndx, strsec, file, sym->st_name));
}
/*
* Focal point for establishing a string table section. Data such as the
* dynamic information simply points to a string table. Data such as
* relocations, reference a symbol table, which in turn is associated with a
* string table.
*/
static int
stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
Word *symnum, Cache **symsec, Cache **strsec)
{
Shdr *shdr = cache[ndx].c_shdr;
if (symtab) {
/*
* Validate the symbol table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
return (0);
}
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, cache[ndx].c_name);
return (0);
}
/*
* Obtain, and verify the symbol table data.
*/
if ((cache[ndx].c_data == NULL) ||
(cache[ndx].c_data->d_buf == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, cache[ndx].c_name);
return (0);
}
/*
* Establish the string table index.
*/
ndx = shdr->sh_link;
shdr = cache[ndx].c_shdr;
/*
* Return symbol table information.
*/
if (symnum)
*symnum = (shdr->sh_size / shdr->sh_entsize);
if (symsec)
*symsec = &cache[ndx];
}
/*
* Validate the associated string table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
return (0);
}
if (strsec)
*strsec = &cache[shdr->sh_link];
return (1);
}
/*
* Lookup a symbol and set Sym accordingly.
*/
static int
symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
Cache *symtab, const char *file)
{
Shdr *shdr;
Word symn, cnt;
Sym *syms;
if (symtab == 0)
return (0);
shdr = symtab->c_shdr;
/*
* Determine the symbol data and number.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, symtab->c_name);
return (0);
}
if (symtab->c_data == NULL)
return (0);
/* LINTED */
symn = (Word)(shdr->sh_size / shdr->sh_entsize);
syms = (Sym *)symtab->c_data->d_buf;
/*
* Get the associated string table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, symtab->c_name, EC_WORD(shdr->sh_link));
return (0);
}
/*
* Loop through the symbol table to find a match.
*/
for (cnt = 0; cnt < symn; syms++, cnt++) {
const char *symname;
symname = string(symtab, cnt, &cache[shdr->sh_link], file,
syms->st_name);
if (symname && (strcmp(name, symname) == 0)) {
*sym = syms;
return (1);
}
}
return (0);
}
/*
* Print section headers.
*/
static void
sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
{
size_t seccnt;
for (seccnt = 1; seccnt < shnum; seccnt++) {
Cache *_cache = &cache[seccnt];
Shdr *shdr = _cache->c_shdr;
const char *secname = _cache->c_name;
/*
* Although numerous section header entries can be zero, it's
* usually a sign of trouble if the type is zero.
*/
if (shdr->sh_type == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
file, secname, EC_WORD(shdr->sh_type));
}
if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
continue;
/*
* Identify any sections that are suspicious. A .got section
* shouldn't exist in a relocatable object.
*/
if (ehdr->e_type == ET_REL) {
if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
MSG_ELF_GOT_SIZE) == 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_GOT_UNEXPECTED), file,
secname);
}
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
Elf_shdr(0, ehdr->e_machine, shdr);
}
}
/*
* A couple of instances of unwind data are printed as tables of 8 data items
* expressed as 0x?? integers.
*/
#define UNWINDTBLSZ 10 + (8 * 5) + 1
static void
unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
const char *msg, const char *pre, size_t plen)
{
char buffer[UNWINDTBLSZ];
uint_t boff = plen, cnt = 0;
dbg_print(0, msg);
(void) strncpy(buffer, pre, UNWINDTBLSZ);
while (*ndx < (len + 4)) {
if (cnt == 8) {
dbg_print(0, buffer);
boff = plen;
cnt = 0;
}
(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
boff += 5;
cnt++;
}
if (cnt)
dbg_print(0, buffer);
}
/*
* Obtain a specified Phdr entry.
*/
static Phdr *
getphdr(Word phnum, Word type, const char *file, Elf *elf)
{
Word cnt;
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return (0);
}
for (cnt = 0; cnt < phnum; phdr++, cnt++) {
if (phdr->p_type == type)
return (phdr);
}
return (0);
}
static void
unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
Elf *elf)
{
Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
Word cnt;
Phdr *uphdr = 0;
/*
* For the moment - UNWIND is only relevant for a AMD64 object.
*/
if (ehdr->e_machine != EM_AMD64)
return;
if (phnum)
uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
uchar_t *data;
size_t datasize;
uint64_t off, ndx, frame_ptr, fde_cnt, tabndx;
uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
/*
* AMD64 - this is a strmcp() just to find the gcc produced
* sections. Soon gcc should be setting the section type - and
* we'll not need this strcmp().
*/
if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
(strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
MSG_SCN_FRM_SIZE) != 0) &&
(strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
MSG_SCN_FRMHDR_SIZE) != 0))
continue;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
if (_cache->c_data == NULL)
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
data = (uchar_t *)(_cache->c_data->d_buf);
datasize = _cache->c_data->d_size;
off = 0;
/*
* Is this a .eh_frame_hdr
*/
if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
(strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
MSG_SCN_FRMHDR_SIZE) == 0)) {
dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
ndx = 0;
vers = data[ndx++];
frame_ptr_enc = data[ndx++];
fde_cnt_enc = data[ndx++];
table_enc = data[ndx++];
dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
ehdr->e_ident, shdr->sh_addr + ndx);
dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
EC_XWORD(frame_ptr));
fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
ehdr->e_ident, shdr->sh_addr + ndx);
dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
EC_XWORD(fde_cnt));
dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
EC_XWORD(dwarf_ehe_extract(data, &ndx,
table_enc, ehdr->e_ident, shdr->sh_addr)),
EC_XWORD(dwarf_ehe_extract(data, &ndx,
table_enc, ehdr->e_ident, shdr->sh_addr)));
}
continue;
}
/*
* Walk the Eh_frame's
*/
while (off < datasize) {
uint_t cieid, cielength, cieversion;
uint_t cieretaddr;
int cieRflag, cieLflag, ciePflag, cieZflag;
uint_t cieaugndx, length, id;
uint64_t ciecalign, ciedalign;
char *cieaugstr;
ndx = 0;
/*
* extract length in lsb format
*/
length = LSB32EXTRACT(data + off + ndx);
ndx += 4;
/*
* extract CIE id in lsb format
*/
id = LSB32EXTRACT(data + off + ndx);
ndx += 4;
/*
* A CIE record has a id of '0', otherwise this is a
* FDE entry and the 'id' is the CIE pointer.
*/
if (id == 0) {
uint64_t persVal;
cielength = length;
cieid = id;
cieLflag = ciePflag = cieRflag = cieZflag = 0;
dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
EC_XWORD(shdr->sh_addr + off));
dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
cielength, cieid);
cieversion = data[off + ndx];
ndx += 1;
cieaugstr = (char *)(&data[off + ndx]);
ndx += strlen(cieaugstr) + 1;
dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
cieversion, cieaugstr);
ciecalign = uleb_extract(&data[off], &ndx);
ciedalign = sleb_extract(&data[off], &ndx);
cieretaddr = data[off + ndx];
ndx += 1;
dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
EC_XWORD(ciecalign), EC_XWORD(ciedalign),
cieretaddr);
if (cieaugstr[0])
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXVAL));
for (cieaugndx = 0; cieaugstr[cieaugndx];
cieaugndx++) {
uint_t val;
switch (cieaugstr[cieaugndx]) {
case 'z':
val = uleb_extract(&data[off],
&ndx);
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXSIZ),
val);
cieZflag = 1;
break;
case 'P':
ciePflag = data[off + ndx];
ndx += 1;
persVal = dwarf_ehe_extract(
&data[off], &ndx, ciePflag,
ehdr->e_ident,
shdr->sh_addr + off + ndx);
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXPERS),
ciePflag,
conv_dwarf_ehe(ciePflag,
&dwarf_ehe_buf),
EC_XWORD(persVal));
break;
case 'R':
val = data[off + ndx];
ndx += 1;
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXCENC),
val, conv_dwarf_ehe(val,
&dwarf_ehe_buf));
cieRflag = val;
break;
case 'L':
val = data[off + ndx];
ndx += 1;
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXLSDA),
val, conv_dwarf_ehe(val,
&dwarf_ehe_buf));
cieLflag = val;
break;
default:
dbg_print(0,
MSG_ORIG(MSG_UNW_CIEAXUNEC),
cieaugstr[cieaugndx]);
break;
}
}
if ((cielength + 4) > ndx)
unwindtbl(&ndx, cielength, data, off,
MSG_ORIG(MSG_UNW_CIECFI),
MSG_ORIG(MSG_UNW_CIEPRE),
MSG_UNW_CIEPRE_SIZE);
off += cielength + 4;
} else {
uint_t fdelength = length;
int fdecieptr = id;
uint64_t fdeinitloc, fdeaddrrange;
dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
EC_XWORD(shdr->sh_addr + off));
dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
fdelength, fdecieptr);
fdeinitloc = dwarf_ehe_extract(&data[off],
&ndx, cieRflag, ehdr->e_ident,
shdr->sh_addr + off + ndx);
fdeaddrrange = dwarf_ehe_extract(&data[off],
&ndx, (cieRflag & ~DW_EH_PE_pcrel),
ehdr->e_ident,
shdr->sh_addr + off + ndx);
dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
EC_XWORD(fdeinitloc),
EC_XWORD(fdeaddrrange));
if (cieaugstr[0])
dbg_print(0,
MSG_ORIG(MSG_UNW_FDEAXVAL));
if (cieZflag) {
uint64_t val;
val = uleb_extract(&data[off], &ndx);
dbg_print(0,
MSG_ORIG(MSG_UNW_FDEAXSIZE),
EC_XWORD(val));
if (val & cieLflag) {
fdeinitloc = dwarf_ehe_extract(
&data[off], &ndx, cieLflag,
ehdr->e_ident,
shdr->sh_addr + off + ndx);
dbg_print(0,
MSG_ORIG(MSG_UNW_FDEAXLSDA),
EC_XWORD(val));
}
}
if ((fdelength + 4) > ndx)
unwindtbl(&ndx, fdelength, data, off,
MSG_ORIG(MSG_UNW_FDECFI),
MSG_ORIG(MSG_UNW_FDEPRE),
MSG_UNW_FDEPRE_SIZE);
off += fdelength + 4;
}
}
}
}
/*
* Print the hardware/software capabilities. For executables and shared objects
* this should be accompanied with a program header.
*/
static void
cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
Elf *elf)
{
Word cnt;
Shdr *cshdr = 0;
Cache *ccache;
Off cphdr_off = 0;
Xword cphdr_sz;
/*
* Determine if a hardware/software capabilities header exists.
*/
if (phnum) {
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return;
}
for (cnt = 0; cnt < phnum; phdr++, cnt++) {
if (phdr->p_type == PT_SUNWCAP) {
cphdr_off = phdr->p_offset;
cphdr_sz = phdr->p_filesz;
break;
}
}
}
/*
* Determine if a hardware/software capabilities section exists.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
if (shdr->sh_type != SHT_SUNW_cap)
continue;
if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
(cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
continue;
if (_cache->c_data == NULL)
continue;
ccache = _cache;
cshdr = shdr;
break;
}
if ((cshdr == 0) && (cphdr_off == 0))
return;
/*
* Print the hardware/software capabilities section.
*/
if (cshdr) {
Word ndx, capn;
Cap *cap = (Cap *)ccache->c_data->d_buf;
if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ccache->c_name);
return;
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
Elf_cap_title(0);
capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
for (ndx = 0; ndx < capn; cap++, ndx++) {
if (cap->c_tag != CA_SUNW_NULL)
Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
}
} else
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
/*
* If this object is an executable or shared object, then the
* hardware/software capabilities section should have an accompanying
* program header.
*/
if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
if (cphdr_off == 0)
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
file, ccache->c_name);
else if ((cphdr_off != cshdr->sh_offset) ||
(cphdr_sz != cshdr->sh_size))
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
file, ccache->c_name);
}
}
/*
* Print the interpretor.
*/
static void
interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
{
Word cnt;
Shdr *ishdr = 0;
Cache *icache;
Off iphdr_off = 0;
Xword iphdr_fsz;
/*
* Determine if an interp header exists.
*/
if (phnum) {
Phdr *phdr;
if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
iphdr_off = phdr->p_offset;
iphdr_fsz = phdr->p_filesz;
}
}
if (iphdr_off == 0)
return;
/*
* Determine if an interp section exists.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
/*
* Scan sections to find a section which contains the PT_INTERP
* string. The target section can't be in a NOBITS section.
*/
if ((shdr->sh_type == SHT_NOBITS) ||
(iphdr_off < shdr->sh_offset) ||
(iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
continue;
icache = _cache;
ishdr = shdr;
break;
}
/*
* Print the interpreter string based on the offset defined in the
* program header, as this is the offset used by the kernel.
*/
if (ishdr && icache->c_data) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
(char *)icache->c_data->d_buf +
(iphdr_off - ishdr->sh_offset));
} else
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
/*
* If there are any inconsistences between the program header and
* section information, flag them.
*/
if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
(iphdr_fsz != ishdr->sh_size))) {
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
icache->c_name);
}
}
/*
* Print the syminfo section.
*/
static void
syminfo(Cache *cache, Word shnum, const char *file)
{
Shdr *infoshdr;
Syminfo *info;
Sym *syms;
Dyn *dyns;
Word infonum, cnt, ndx, symnum;
Cache *infocache = 0, *symsec, *strsec;
for (cnt = 1; cnt < shnum; cnt++) {
if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
infocache = &cache[cnt];
break;
}
}
if (infocache == 0)
return;
infoshdr = infocache->c_shdr;
if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, infocache->c_name);
return;
}
if (infocache->c_data == NULL)
return;
infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
info = (Syminfo *)infocache->c_data->d_buf;
/*
* Get the data buffer of the associated dynamic section.
*/
if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
file, infocache->c_name, EC_WORD(infoshdr->sh_info));
return;
}
if (cache[infoshdr->sh_info].c_data == NULL)
return;
dyns = cache[infoshdr->sh_info].c_data->d_buf;
if (dyns == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, cache[infoshdr->sh_info].c_name);
return;
}
/*
* Get the data buffer for the associated symbol table and string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = symsec->c_data->d_buf;
/*
* Loop through the syminfo entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
Elf_syminfo_title(0);
for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
Sym *sym;
const char *needed = 0, *name;
if ((info->si_flags == 0) && (info->si_boundto == 0))
continue;
sym = &syms[ndx];
name = string(infocache, ndx, strsec, file, sym->st_name);
if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
Dyn *dyn = &dyns[info->si_boundto];
needed = string(infocache, info->si_boundto,
strsec, file, dyn->d_un.d_val);
}
Elf_syminfo_entry(0, ndx, info, name, needed);
}
}
/*
* Print version definition section entries.
*/
static void
version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
const char *file)
{
Word cnt;
char index[MAXNDXSIZE];
Elf_ver_def_title(0);
for (cnt = 1; cnt <= vdf_num; cnt++,
vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
const char *name, *dep;
Half vcnt = vdf->vd_cnt - 1;
Half ndx = vdf->vd_ndx;
Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
/*
* Obtain the name and first dependency (if any).
*/
name = string(vcache, cnt, scache, file, vdap->vda_name);
vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
if (vcnt)
dep = string(vcache, cnt, scache, file, vdap->vda_name);
else
dep = MSG_ORIG(MSG_STR_EMPTY);
(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
EC_XWORD(ndx));
Elf_ver_line_1(0, index, name, dep,
conv_ver_flags(vdf->vd_flags));
/*
* Print any additional dependencies.
*/
if (vcnt) {
vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
for (vcnt--; vcnt; vcnt--,
vdap = (Verdaux *)((uintptr_t)vdap +
vdap->vda_next)) {
dep = string(vcache, cnt, scache, file,
vdap->vda_name);
Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
}
}
}
}
/*
* Print version needed section entries.
*
* entry:
* vnd - Address of verneed data
* vnd_num - # of Verneed entries
* vcache - Cache of verneed section being processed
* scache - Cache of associated string table section
* file - Name of object being processed.
* versym - Information about versym section
*
* exit:
* The versions have been printed. If GNU style versioning
* is in effect, versym->max_verndx has been updated to
* contain the largest version index seen.
*/
static void
version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
const char *file, VERSYM_STATE *versym)
{
Word cnt;
char index[MAXNDXSIZE];
const char *index_str;
Elf_ver_need_title(0, versym->gnu);
/*
* The versym section in an object that follows Solaris versioning
* rules contains indexes into the verdef section. Symbols defined
* in other objects (UNDEF) are given a version of 0, indicating that
* they are not defined by this file, and the Verneed entries do not
* have associated version indexes. For these reasons, we do not
* display a version index for Solaris Verneed sections.
*
* The GNU versioning rules are different: Symbols defined in other
* objects receive a version index in the range above those defined
* by the Verdef section, and the vna_other field of the Vernaux
* structs inside the Verneed section contain the version index for
* that item. We therefore display the index when showing the
* contents of a GNU Verneed section. You should not expect these
* indexes to appear in sorted order --- it seems that the GNU ld
* assigns the versions as symbols are encountered during linking,
* and then the results are assembled into the Verneed section
* afterwards.
*/
if (versym->gnu) {
index_str = index;
} else {
/* For Solaris versioning, display a NULL string */
index_str = MSG_ORIG(MSG_STR_EMPTY);
}
for (cnt = 1; cnt <= vnd_num; cnt++,
vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
const char *name, *dep;
Half vcnt = vnd->vn_cnt;
Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
/*
* Obtain the name of the needed file and the version name
* within it that we're dependent on. Note that the count
* should be at least one, otherwise this is a pretty bogus
* entry.
*/
name = string(vcache, cnt, scache, file, vnd->vn_file);
if (vcnt)
dep = string(vcache, cnt, scache, file, vnap->vna_name);
else
dep = MSG_INTL(MSG_STR_NULL);
if (versym->gnu) {
/* Format the version index value */
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
}
Elf_ver_line_1(0, index_str, name, dep,
conv_ver_flags(vnap->vna_flags));
/*
* Print any additional version dependencies.
*/
if (vcnt) {
vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
for (vcnt--; vcnt; vcnt--,
vnap = (Vernaux *)((uintptr_t)vnap +
vnap->vna_next)) {
dep = string(vcache, cnt, scache, file,
vnap->vna_name);
if (versym->gnu) {
/* Format the next index value */
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX),
EC_XWORD(vnap->vna_other));
Elf_ver_line_1(0, index_str,
MSG_ORIG(MSG_STR_EMPTY), dep,
conv_ver_flags(vnap->vna_flags));
if (vnap->vna_other >
versym->max_verndx)
versym->max_verndx =
vnap->vna_other;
} else {
Elf_ver_line_3(0,
MSG_ORIG(MSG_STR_EMPTY), dep,
conv_ver_flags(vnap->vna_flags));
}
}
}
}
}
/*
* Compute the max_verndx value for a GNU style object with
* a Verneed section. This is only needed if version_need() is not
* called.
*
* entry:
* vnd - Address of verneed data
* vnd_num - # of Verneed entries
* versym - Information about versym section
*
* exit:
* versym->max_verndx has been updated to contain the largest
* version index seen.
*/
static void
update_gnu_max_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
{
Word cnt;
for (cnt = 1; cnt <= vnd_num; cnt++,
vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
Half vcnt = vnd->vn_cnt;
Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
/*
* Check any additional version dependencies.
*/
if (vcnt) {
vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
for (vcnt--; vcnt; vcnt--,
vnap = (Vernaux *)((uintptr_t)vnap +
vnap->vna_next)) {
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
}
}
}
}
/*
* Display version section information if the flags require it.
* Return version information needed by other output.
*
* entry:
* cache - Cache of all section headers
* shnum - # of sections in cache
* file - Name of file
* flags - Command line option flags
* versym - VERSYM_STATE block to be filled in.
*/
static void
versions(Cache *cache, Word shnum, const char *file, uint_t flags,
VERSYM_STATE *versym)
{
GElf_Word cnt;
Cache *verdef_cache = NULL, *verneed_cache = NULL;
/* Gather information about the version sections */
bzero(versym, sizeof (*versym));
versym->max_verndx = 1;
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
Dyn *dyn;
ulong_t numdyn;
switch (shdr->sh_type) {
case SHT_DYNAMIC:
/*
* The GNU ld puts a DT_VERSYM entry in the dynamic
* section so that the runtime linker can use it to
* implement their versioning rules. They allow multiple
* incompatible functions with the same name to exist
* in different versions. The Solaris ld does not
* support this mechanism, and as such, does not
* produce DT_VERSYM. We use this fact to determine
* which ld produced this object, and how to interpret
* the version values.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
(_cache->c_data == NULL))
continue;
numdyn = shdr->sh_size / shdr->sh_entsize;
dyn = (Dyn *)_cache->c_data->d_buf;
for (; numdyn-- > 0; dyn++)
if (dyn->d_tag == DT_VERSYM) {
versym->gnu = 1;
break;
}
break;
case SHT_SUNW_versym:
/* Record data address for later symbol processing */
if (_cache->c_data != NULL) {
versym->cache = _cache;
versym->data = _cache->c_data->d_buf;
continue;
}
break;
case SHT_SUNW_verdef:
case SHT_SUNW_verneed:
/*
* Ensure the data is non-NULL and the number
* of items is non-zero. Otherwise, we don't
* understand the section, and will not use it.
*/
if ((_cache->c_data == NULL) ||
(_cache->c_data->d_buf == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if (shdr->sh_info == 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHINFO),
file, _cache->c_name,
EC_WORD(shdr->sh_info));
continue;
}
/* Make sure the string table index is in range */
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHLINK), file,
_cache->c_name, EC_WORD(shdr->sh_link));
continue;
}
/*
* The section is usable. Save the cache entry.
*/
if (shdr->sh_type == SHT_SUNW_verdef) {
verdef_cache = _cache;
/*
* Under Solaris rules, if there is a verdef
* section, the max versym index is number
* of version definitions it supplies.
*/
versym->max_verndx = shdr->sh_info;
} else {
verneed_cache = _cache;
}
break;
}
}
if ((flags & FLG_SHOW_VERSIONS) == 0) {
/*
* If GNU versioning applies to this object, and there
* is a Verneed section, then examine it to determine
* the maximum Versym version index for this file.
*/
if ((versym->gnu) && (verneed_cache != NULL))
update_gnu_max_verndx(
(Verneed *)verneed_cache->c_data->d_buf,
verneed_cache->c_shdr->sh_info, versym);
return;
}
/*
* Now that all the information is available, display the
* Verdef and Verneed section contents.
*/
if (verdef_cache != NULL) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
verdef_cache->c_name);
version_def((Verdef *)verdef_cache->c_data->d_buf,
verdef_cache->c_shdr->sh_info, verdef_cache,
&cache[verdef_cache->c_shdr->sh_link], file);
}
if (verneed_cache != NULL) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
verneed_cache->c_name);
/*
* If GNU versioning applies to this object, version_need()
* will update versym->max_verndx, and it is not
* necessary to call update_gnu_max_verndx().
*/
version_need((Verneed *)verneed_cache->c_data->d_buf,
verneed_cache->c_shdr->sh_info, verneed_cache,
&cache[verneed_cache->c_shdr->sh_link], file, versym);
}
}
/*
* Initialize a symbol table state structure
*
* entry:
* state - State structure to be initialized
* cache - Cache of all section headers
* shnum - # of sections in cache
* secndx - Index of symbol table section
* ehdr - ELF header for file
* versym - Information about versym section
* file - Name of file
* flags - Command line option flags
*/
static int
init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
{
Shdr *shdr;
state->file = file;
state->ehdr = ehdr;
state->cache = cache;
state->shnum = shnum;
state->seccache = &cache[secndx];
state->secndx = secndx;
state->secname = state->seccache->c_name;
state->flags = flags;
state->shxndx.checked = 0;
state->shxndx.data = NULL;
state->shxndx.n = 0;
shdr = state->seccache->c_shdr;
/*
* Check the symbol data and per-item size.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, state->secname);
return (0);
}
if (state->seccache->c_data == NULL)
return (0);
/* LINTED */
state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
state->sym = (Sym *)state->seccache->c_data->d_buf;
/*
* Check associated string table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, state->secname, EC_WORD(shdr->sh_link));
return (0);
}
/*
* Determine if there is a associated Versym section
* with this Symbol Table.
*/
if (versym->cache &&
(versym->cache->c_shdr->sh_link == state->secndx))
state->versym = versym;
else
state->versym = NULL;
return (1);
}
/*
* Determine the extended section index used for symbol tables entries.
*/
static void
symbols_getxindex(SYMTBL_STATE * state)
{
uint_t symn;
Word symcnt;
state->shxndx.checked = 1; /* Note that we've been called */
for (symcnt = 1; symcnt < state->shnum; symcnt++) {
Cache *_cache = &state->cache[symcnt];
Shdr *shdr = _cache->c_shdr;
if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
(shdr->sh_link != state->secndx))
continue;
if ((shdr->sh_entsize) &&
/* LINTED */
((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
continue;
if (_cache->c_data == NULL)
continue;
state->shxndx.data = _cache->c_data->d_buf;
state->shxndx.n = symn;
return;
}
}
/*
* Produce a line of output for the given symbol
*
* entry:
* state - Symbol table state
* symndx - Index of symbol within the table
* info - Value of st_info (indicates local/global range)
* symndx_disp - Index to display. This may not be the same
* as symndx if the display is relative to the logical
* combination of the SUNW_ldynsym/dynsym tables.
* sym - Symbol to display
*/
static void
output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
Sym *sym)
{
/*
* Symbol types for which we check that the specified
* address/size land inside the target section.
*/
static const int addr_symtype[STT_NUM] = {
0, /* STT_NOTYPE */
1, /* STT_OBJECT */
1, /* STT_FUNC */
0, /* STT_SECTION */
0, /* STT_FILE */
1, /* STT_COMMON */
0, /* STT_TLS */
};
#if STT_NUM != (STT_TLS + 1)
#error "STT_NUM has grown. Update addr_symtype[]"
#endif
char index[MAXNDXSIZE];
const char *symname, *sec;
Versym verndx;
int gnuver;
uchar_t type;
Shdr *tshdr;
Word shndx;
Conv_inv_buf_t inv_buf;
/* Ensure symbol index is in range */
if (symndx >= state->symn) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
state->file, state->secname, EC_WORD(symndx));
return;
}
/*
* If we are using extended symbol indexes, find the
* corresponding SHN_SYMTAB_SHNDX table.
*/
if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
symbols_getxindex(state);
/* LINTED */
symname = string(state->seccache, symndx,
&state->cache[state->seccache->c_shdr->sh_link], state->file,
sym->st_name);
tshdr = 0;
sec = NULL;
if (state->ehdr->e_type == ET_CORE) {
sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
} else if (state->flags & FLG_CTL_FAKESHDR) {
/*
* If we are using fake section headers derived from
* the program headers, then the section indexes
* in the symbols do not correspond to these headers.
* The section names are not available, so all we can
* do is to display them in numeric form.
*/
sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
} else if ((sym->st_shndx < SHN_LORESERVE) &&
(sym->st_shndx < state->shnum)) {
shndx = sym->st_shndx;
tshdr = state->cache[shndx].c_shdr;
sec = state->cache[shndx].c_name;
} else if (sym->st_shndx == SHN_XINDEX) {
if (state->shxndx.data) {
Word _shxndx;
if (symndx > state->shxndx.n) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX1),
state->file, state->secname,
EC_WORD(symndx));
} else if ((_shxndx =
state->shxndx.data[symndx]) > state->shnum) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX2),
state->file, state->secname,
EC_WORD(symndx), EC_WORD(_shxndx));
} else {
shndx = _shxndx;
tshdr = state->cache[shndx].c_shdr;
sec = state->cache[shndx].c_name;
}
} else {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX3),
state->file, state->secname, EC_WORD(symndx));
}
} else if ((sym->st_shndx < SHN_LORESERVE) &&
(sym->st_shndx >= state->shnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM5), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), sym->st_shndx);
}
/*
* If versioning is available display the
* version index. If not, then use 0.
*/
if (state->versym) {
Versym test_verndx;
verndx = test_verndx = state->versym->data[symndx];
gnuver = state->versym->gnu;
/*
* Check to see if this is a defined symbol with a
* version index that is outside the valid range for
* the file. The interpretation of this depends on
* the style of versioning used by the object.
*
* Versions >= VER_NDX_LORESERVE have special meanings,
* and are exempt from this checking.
*
* GNU style version indexes use the top bit of the
* 16-bit index value (0x8000) as the "hidden bit".
* We must mask off this bit in order to compare
* the version against the maximum value.
*/
if (gnuver)
test_verndx &= ~0x8000;
if ((test_verndx > state->versym->max_verndx) &&
(verndx < VER_NDX_LORESERVE))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
state->file, state->secname, EC_WORD(symndx),
EC_HALF(test_verndx), state->versym->max_verndx);
} else {
verndx = 0;
gnuver = 0;
}
/*
* Error checking for TLS.
*/
type = ELF_ST_TYPE(sym->st_info);
if (type == STT_TLS) {
if (tshdr &&
(sym->st_shndx != SHN_UNDEF) &&
((tshdr->sh_flags & SHF_TLS) == 0)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM3), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags));
}
} else if ((type != STT_SECTION) && sym->st_size &&
tshdr && (tshdr->sh_flags & SHF_TLS)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM4), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags));
}
/*
* If a symbol with non-zero size has a type that
* specifies an address, then make sure the location
* it references is actually contained within the
* section. UNDEF symbols don't count in this case,
* so we ignore them.
*
* The meaning of the st_value field in a symbol
* depends on the type of object. For a relocatable
* object, it is the offset within the section.
* For sharable objects, it is the offset relative to
* the base of the object, and for other types, it is
* the virtual address. To get an offset within the
* section for non-ET_REL files, we subtract the
* base address of the section.
*/
if (addr_symtype[type] && (sym->st_size > 0) &&
(sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
(sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
Word v = sym->st_value;
if (state->ehdr->e_type != ET_REL)
v -= tshdr->sh_addr;
if (((v + sym->st_size) > tshdr->sh_size)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM6), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags),
EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
}
}
/*
* A typical symbol table uses the sh_info field to indicate one greater
* than the symbol table index of the last local symbol, STB_LOCAL.
* Therefore, symbol indexes less than sh_info should have local
* binding. Symbol indexes greater than, or equal to sh_info, should
* have global binding. Note, we exclude UNDEF/NOTY symbols with zero
* value and size, as these symbols may be the result of an mcs(1)
* section deletion.
*/
if (info) {
uchar_t bind = ELF_ST_BIND(sym->st_info);
if ((symndx < info) && (bind != STB_LOCAL)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM7), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), EC_XWORD(info));
} else if ((symndx >= info) && (bind == STB_LOCAL) &&
((sym->st_shndx != SHN_UNDEF) ||
(ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
(sym->st_size != 0) || (sym->st_value != 0))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM8), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), EC_XWORD(info));
}
}
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
}
/*
* Search for and process any symbol tables.
*/
void
symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
const char *file, uint_t flags)
{
SYMTBL_STATE state;
Cache *_cache;
Word secndx;
for (secndx = 1; secndx < shnum; secndx++) {
Word symcnt;
Shdr *shdr;
_cache = &cache[secndx];
shdr = _cache->c_shdr;
if ((shdr->sh_type != SHT_SYMTAB) &&
(shdr->sh_type != SHT_DYNSYM) &&
(shdr->sh_type != SHT_SUNW_LDYNSYM))
continue;
if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
continue;
if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
versym, file, flags))
continue;
/*
* Loop through the symbol tables entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
for (symcnt = 0; symcnt < state.symn; symcnt++)
output_symbol(&state, symcnt, shdr->sh_info, symcnt,
state.sym + symcnt);
}
}
/*
* Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
* These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
*/
static void
sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
const char *file, uint_t flags)
{
SYMTBL_STATE ldynsym_state, dynsym_state;
Cache *sortcache, *symcache;
Shdr *sortshdr, *symshdr;
Word sortsecndx, symsecndx;
Word ldynsym_cnt;
Word *ndx;
Word ndxn;
int output_cnt = 0;
Conv_inv_buf_t inv_buf;
for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
sortcache = &cache[sortsecndx];
sortshdr = sortcache->c_shdr;
if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
(sortshdr->sh_type != SHT_SUNW_tlssort))
continue;
if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
sortshdr->sh_type))
continue;
/*
* If the section references a SUNW_ldynsym, then we
* expect to see the associated .dynsym immediately
* following. If it references a .dynsym, there is no
* SUNW_ldynsym. If it is any other type, then we don't
* know what to do with it.
*/
if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, sortcache->c_name,
EC_WORD(sortshdr->sh_link));
continue;
}
symcache = &cache[sortshdr->sh_link];
symshdr = symcache->c_shdr;
symsecndx = sortshdr->sh_link;
ldynsym_cnt = 0;
switch (symshdr->sh_type) {
case SHT_SUNW_LDYNSYM:
if (!init_symtbl_state(&ldynsym_state, cache, shnum,
symsecndx, ehdr, versym, file, flags))
continue;
ldynsym_cnt = ldynsym_state.symn;
/*
* We know that the dynsym follows immediately
* after the SUNW_ldynsym, and so, should be at
* (sortshdr->sh_link + 1). However, elfdump is a
* diagnostic tool, so we do the full paranoid
* search instead.
*/
for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
symcache = &cache[symsecndx];
symshdr = symcache->c_shdr;
if (symshdr->sh_type == SHT_DYNSYM)
break;
}
if (symsecndx >= shnum) { /* Dynsym not found! */
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_NODYNSYM),
file, sortcache->c_name);
continue;
}
/* Fallthrough to process associated dynsym */
/*FALLTHROUGH*/
case SHT_DYNSYM:
if (!init_symtbl_state(&dynsym_state, cache, shnum,
symsecndx, ehdr, versym, file, flags))
continue;
break;
default:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
file, sortcache->c_name, conv_sec_type(
ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
continue;
}
/*
* Output header
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
if (ldynsym_cnt > 0) {
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
sortcache->c_name, ldynsym_state.secname,
dynsym_state.secname);
/*
* The data for .SUNW_ldynsym and dynsym sections
* is supposed to be adjacent with SUNW_ldynsym coming
* first. Check, and issue a warning if it isn't so.
*/
if (((ldynsym_state.sym + ldynsym_state.symn)
!= dynsym_state.sym) &&
((flags & FLG_CTL_FAKESHDR) == 0))
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
ldynsym_state.secname,
dynsym_state.secname);
} else {
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
sortcache->c_name, dynsym_state.secname);
}
Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
/* If not first one, insert a line of whitespace */
if (output_cnt++ > 0)
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
/*
* SUNW_dynsymsort and SUNW_dyntlssort are arrays of
* symbol indices. Iterate over the array entries,
* dispaying the referenced symbols.
*/
ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
ndx = (Word *)sortcache->c_data->d_buf;
for (; ndxn-- > 0; ndx++) {
if (*ndx >= ldynsym_cnt) {
Word sec_ndx = *ndx - ldynsym_cnt;
output_symbol(&dynsym_state, sec_ndx, 0,
*ndx, dynsym_state.sym + sec_ndx);
} else {
output_symbol(&ldynsym_state, *ndx, 0,
*ndx, ldynsym_state.sym + *ndx);
}
}
}
}
/*
* Search for and process any relocation sections.
*/
static void
reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file,
uint_t flags)
{
Word cnt;
for (cnt = 1; cnt < shnum; cnt++) {
Word type, symnum;
Xword relndx, relnum, relsize;
void *rels;
Sym *syms;
Cache *symsec, *strsec;
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
char *relname = _cache->c_name;
Conv_inv_buf_t inv_buf;
if (((type = shdr->sh_type) != SHT_RELA) &&
(type != SHT_REL))
continue;
if (!match(MATCH_F_ALL, relname, cnt, type))
continue;
/*
* Decide entry size.
*/
if (((relsize = shdr->sh_entsize) == 0) ||
(relsize > shdr->sh_size)) {
if (type == SHT_RELA)
relsize = sizeof (Rela);
else
relsize = sizeof (Rel);
}
/*
* Determine the number of relocations available.
*/
if (shdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, relname);
continue;
}
if (_cache->c_data == NULL)
continue;
rels = _cache->c_data->d_buf;
relnum = shdr->sh_size / relsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
continue;
syms = symsec->c_data->d_buf;
/*
* Loop through the relocation entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
for (relndx = 0; relndx < relnum; relndx++,
rels = (void *)((char *)rels + relsize)) {
Half mach = ehdr->e_machine;
char section[BUFSIZ];
const char *symname;
Word symndx, reltype;
Rela *rela;
Rel *rel;
/*
* Unravel the relocation and determine the symbol with
* which this relocation is associated.
*/
if (type == SHT_RELA) {
rela = (Rela *)rels;
symndx = ELF_R_SYM(rela->r_info);
reltype = ELF_R_TYPE(rela->r_info, mach);
} else {
rel = (Rel *)rels;
symndx = ELF_R_SYM(rel->r_info);
reltype = ELF_R_TYPE(rel->r_info, mach);
}
symname = relsymname(cache, _cache, strsec, symndx,
symnum, relndx, syms, section, BUFSIZ, file,
flags);
/*
* A zero symbol index is only valid for a few
* relocations.
*/
if (symndx == 0) {
int badrel = 0;
if ((mach == EM_SPARC) ||
(mach == EM_SPARC32PLUS) ||
(mach == EM_SPARCV9)) {
if ((reltype != R_SPARC_NONE) &&
(reltype != R_SPARC_REGISTER) &&
(reltype != R_SPARC_RELATIVE))
badrel++;
} else if (mach == EM_386) {
if ((reltype != R_386_NONE) &&
(reltype != R_386_RELATIVE))
badrel++;
} else if (mach == EM_AMD64) {
if ((reltype != R_AMD64_NONE) &&
(reltype != R_AMD64_RELATIVE))
badrel++;
}
if (badrel) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADREL1), file,
conv_reloc_type(mach, reltype,
0, &inv_buf));
}
}
Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
rels, relname, symname, 0);
}
}
}
/*
* This value controls which test dyn_test() performs.
*/
typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
/*
* Used by dynamic() to compare the value of a dynamic element against
* the starting address of the section it references.
*
* entry:
* test_type - Specify which dyn item is being tested.
* sh_type - SHT_* type value for required section.
* sec_cache - Cache entry for section, or NULL if the object lacks
* a section of this type.
* dyn - Dyn entry to be tested
* dynsec_cnt - # of dynamic section being examined. The first
* dynamic section is 1, the next is 2, and so on...
* ehdr - ELF header for file
* file - Name of file
*/
static void
dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
Word dynsec_cnt, Ehdr *ehdr, const char *file)
{
Conv_inv_buf_t buf1, buf2;
/*
* These tests are based around the implicit assumption that
* there is only one dynamic section in an object, and also only
* one of the sections it references. We have therefore gathered
* all of the necessary information to test this in a single pass
* over the section headers, which is very efficient. We are not
* aware of any case where more than one dynamic section would
* be meaningful in an ELF object, so this is a reasonable solution.
*
* To test multiple dynamic sections correctly would be more
* expensive in code and time. We would have to build a data structure
* containing all the dynamic elements. Then, we would use the address
* to locate the section it references and ensure the section is of
* the right type and that the address in the dynamic element is
* to the start of the section. Then, we could check the size and
* entsize values against those same sections. This is O(n^2), and
* also complicated.
*
* In the highly unlikely case that there is more than one dynamic
* section, we only test the first one, and simply allow the values
* of the subsequent one to be displayed unchallenged.
*/
if (dynsec_cnt != 1)
return;
/*
* A DT_ item that references a section address should always find
* the section in the file.
*/
if (sec_cache == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
conv_sec_type(ehdr->e_machine, sh_type, 0, &buf1),
conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
return;
}
switch (test_type) {
case DYN_TEST_ADDR:
/* The section address should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADADDR), file,
conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
sec_cache->c_name,
EC_ADDR(sec_cache->c_shdr->sh_addr));
break;
case DYN_TEST_SIZE:
/* The section size should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADSIZE), file,
conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
EC_XWORD(dyn->d_un.d_val),
sec_cache->c_ndx, sec_cache->c_name,
EC_XWORD(sec_cache->c_shdr->sh_size));
break;
case DYN_TEST_ENTSIZE:
/* The sh_entsize value should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
EC_XWORD(dyn->d_un.d_val),
sec_cache->c_ndx, sec_cache->c_name,
EC_XWORD(sec_cache->c_shdr->sh_entsize));
break;
}
}
/*
* Search for and process a .dynamic section.
*/
static void
dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
{
struct {
Cache *dynstr;
Cache *dynsym;
Cache *hash;
Cache *fini;
Cache *fini_array;
Cache *init;
Cache *init_array;
Cache *preinit_array;
Cache *rel;
Cache *rela;
Cache *sunw_cap;
Cache *sunw_ldynsym;
Cache *sunw_move;
Cache *sunw_syminfo;
Cache *sunw_symsort;
Cache *sunw_tlssort;
Cache *sunw_verdef;
Cache *sunw_verneed;
Cache *sunw_versym;
} sec;
Word dynsec_ndx;
Word dynsec_num;
int dynsec_cnt;
Word cnt;
/*
* Make a pass over all the sections, gathering section information
* we'll need below.
*/
dynsec_num = 0;
bzero(&sec, sizeof (sec));
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
switch (_cache->c_shdr->sh_type) {
case SHT_DYNAMIC:
if (dynsec_num == 0) {
dynsec_ndx = cnt;
/* Does it have a valid string table? */
(void) stringtbl(cache, 0, cnt, shnum, file,
0, 0, &sec.dynstr);
}
dynsec_num++;
break;
case SHT_PROGBITS:
/*
* We want to detect the .init and .fini sections,
* if present. These are SHT_PROGBITS, so all we
* have to go on is the section name. Normally comparing
* names is a bad idea, but there are some special
* names (i.e. .init/.fini/.interp) that are very
* difficult to use in any other context, and for
* these symbols, we do the heuristic match.
*/
if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_INIT)) == 0) {
if (sec.init == NULL)
sec.init = _cache;
} else if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_FINI)) == 0) {
if (sec.fini == NULL)
sec.fini = _cache;
}
break;
case SHT_REL:
/*
* We want the SHT_REL section with the lowest
* offset. The linker gathers them together,
* and puts the address of the first one
* into the DT_REL dynamic element.
*/
if ((sec.rel == NULL) ||
(_cache->c_shdr->sh_offset <
sec.rel->c_shdr->sh_offset))
sec.rel = _cache;
break;
case SHT_RELA:
/* RELA is handled just like RELA above */
if ((sec.rela == NULL) ||
(_cache->c_shdr->sh_offset <
sec.rela->c_shdr->sh_offset))
sec.rela = _cache;
break;
/*
* The GRAB macro is used for the simple case in which
* we simply grab the first section of the desired type.
*/
#define GRAB(_sec_type, _sec_field) \
case _sec_type: \
if (sec._sec_field == NULL) \
sec._sec_field = _cache; \
break
GRAB(SHT_DYNSYM, dynsym);
GRAB(SHT_FINI_ARRAY, fini_array);
GRAB(SHT_HASH, hash);
GRAB(SHT_INIT_ARRAY, init_array);
GRAB(SHT_SUNW_move, sunw_move);
GRAB(SHT_PREINIT_ARRAY, preinit_array);
GRAB(SHT_SUNW_cap, sunw_cap);
GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
GRAB(SHT_SUNW_syminfo, sunw_syminfo);
GRAB(SHT_SUNW_symsort, sunw_symsort);
GRAB(SHT_SUNW_tlssort, sunw_tlssort);
GRAB(SHT_SUNW_verdef, sunw_verdef);
GRAB(SHT_SUNW_verneed, sunw_verneed);
GRAB(SHT_SUNW_versym, sunw_versym);
#undef GRAB
}
}
/*
* If no dynamic section, return immediately. If more than one
* dynamic section, then something odd is going on and an error
* is in order, but then continue on and display them all.
*/
if (dynsec_num == 0)
return;
if (dynsec_num > 1)
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
file, EC_WORD(dynsec_num));
dynsec_cnt = 0;
for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
cnt++) {
Dyn *dyn;
ulong_t numdyn;
int ndx, end_ndx;
Cache *_cache = &cache[cnt], *strsec;
Shdr *shdr = _cache->c_shdr;
int dumped = 0;
if (shdr->sh_type != SHT_DYNAMIC)
continue;
dynsec_cnt++;
/*
* Verify the associated string table section.
*/
if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
continue;
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if (_cache->c_data == NULL)
continue;
numdyn = shdr->sh_size / shdr->sh_entsize;
dyn = (Dyn *)_cache->c_data->d_buf;
/*
* We expect the REL/RELA entries to reference the reloc
* section with the lowest address. However, this is
* not true for dumped objects. Detect if this object has
* been dumped so that we can skip the reloc address test
* in that case.
*/
for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
if (dyn->d_tag == DT_FLAGS_1) {
dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
break;
}
}
dyn = (Dyn *)_cache->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
Elf_dyn_title(0);
for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
union {
Conv_inv_buf_t inv;
Conv_dyn_flag_buf_t flag;
Conv_dyn_flag1_buf_t flag1;
Conv_dyn_posflag1_buf_t posflag1;
Conv_dyn_feature1_buf_t feature1;
} c_buf;
const char *name = NULL;
/*
* Print the information numerically, and if possible
* as a string. If a string is available, name is
* set to reference it.
*
* Also, take this opportunity to sanity check
* the values of DT elements. In the code above,
* we gathered information on sections that are
* referenced by the dynamic section. Here, we
* compare the attributes of those sections to
* the DT_ items that reference them and report
* on inconsistencies.
*
* Things not currently tested that could be improved
* in later revisions include:
* - We don't check PLT or GOT related items
* - We don't handle computing the lengths of
* relocation arrays. To handle this
* requires examining data that spans
* across sections, in a contiguous span
* within a single segment.
* - DT_VERDEFNUM and DT_VERNEEDNUM can't be
* verified without parsing the sections.
* - We don't handle DT_SUNW_SYMSZ, which would
* be the sum of the lengths of .dynsym and
* .SUNW_ldynsym
* - DT_SUNW_STRPAD can't be verified other than
* to check that it's not larger than
* the string table.
* - Some items come in "all or none" clusters
* that give an address, element size,
* and data length in bytes. We don't
* verify that there are no missing items
* in such groups.
*/
switch (dyn->d_tag) {
case DT_NULL:
/*
* Special case: DT_NULLs can come in groups
* that we prefer to reduce to a single line.
*/
end_ndx = ndx;
while ((end_ndx < (numdyn - 1)) &&
((dyn + 1)->d_tag == DT_NULL)) {
dyn++;
end_ndx++;
}
Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
ndx = end_ndx;
continue;
/*
* String items all reference the dynstr. The string()
* function does the necessary sanity checking.
*/
case DT_NEEDED:
case DT_SONAME:
case DT_FILTER:
case DT_AUXILIARY:
case DT_CONFIG:
case DT_RPATH:
case DT_RUNPATH:
case DT_USED:
case DT_DEPAUDIT:
case DT_AUDIT:
case DT_SUNW_AUXILIARY:
case DT_SUNW_FILTER:
name = string(_cache, ndx, strsec,
file, dyn->d_un.d_ptr);
break;
case DT_FLAGS:
name = conv_dyn_flag(dyn->d_un.d_val,
0, &c_buf.flag);
break;
case DT_FLAGS_1:
name = conv_dyn_flag1(dyn->d_un.d_val, 0,
&c_buf.flag1);
break;
case DT_POSFLAG_1:
name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
&c_buf.posflag1);
break;
case DT_FEATURE_1:
name = conv_dyn_feature1(dyn->d_un.d_val, 0,
&c_buf.feature1);
break;
case DT_DEPRECATED_SPARC_REGISTER:
name = MSG_INTL(MSG_STR_DEPRECATED);
break;
case DT_SUNW_LDMACH:
name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
&c_buf.inv);
break;
/*
* Cases below this point are strictly sanity checking,
* and do not generate a name string. The TEST_ macros
* are used to hide the boilerplate arguments neeeded
* by dyn_test().
*/
#define TEST_ADDR(_sh_type, _sec_field) \
dyn_test(DYN_TEST_ADDR, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, file)
#define TEST_SIZE(_sh_type, _sec_field) \
dyn_test(DYN_TEST_SIZE, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, file)
#define TEST_ENTSIZE(_sh_type, _sec_field) \
dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, file)
case DT_FINI:
TEST_ADDR(SHT_PROGBITS, fini);
break;
case DT_FINI_ARRAY:
TEST_ADDR(SHT_FINI_ARRAY, fini_array);
break;
case DT_FINI_ARRAYSZ:
TEST_SIZE(SHT_FINI_ARRAY, fini_array);
break;
case DT_HASH:
TEST_ADDR(SHT_HASH, hash);
break;
case DT_INIT:
TEST_ADDR(SHT_PROGBITS, init);
break;
case DT_INIT_ARRAY:
TEST_ADDR(SHT_INIT_ARRAY, init_array);
break;
case DT_INIT_ARRAYSZ:
TEST_SIZE(SHT_INIT_ARRAY, init_array);
break;
case DT_MOVEENT:
TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
break;
case DT_MOVESZ:
TEST_SIZE(SHT_SUNW_move, sunw_move);
break;
case DT_MOVETAB:
TEST_ADDR(SHT_SUNW_move, sunw_move);
break;
case DT_PREINIT_ARRAY:
TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
break;
case DT_PREINIT_ARRAYSZ:
TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
break;
case DT_REL:
if (!dumped)
TEST_ADDR(SHT_REL, rel);
break;
case DT_RELENT:
TEST_ENTSIZE(SHT_REL, rel);
break;
case DT_RELA:
if (!dumped)
TEST_ADDR(SHT_RELA, rela);
break;
case DT_RELAENT:
TEST_ENTSIZE(SHT_RELA, rela);
break;
case DT_STRTAB:
TEST_ADDR(SHT_STRTAB, dynstr);
break;
case DT_STRSZ:
TEST_SIZE(SHT_STRTAB, dynstr);
break;
case DT_SUNW_CAP:
TEST_ADDR(SHT_SUNW_cap, sunw_cap);
break;
case DT_SUNW_SYMTAB:
TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
break;
case DT_SYMENT:
TEST_ENTSIZE(SHT_DYNSYM, dynsym);
break;
case DT_SYMINENT:
TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMINFO:
TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMINSZ:
TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMTAB:
TEST_ADDR(SHT_DYNSYM, dynsym);
break;
case DT_SUNW_SORTENT:
/*
* This entry is related to both the symsort and
* tlssort sections.
*/
{
int test_tls =
(sec.sunw_tlssort != NULL);
int test_sym =
(sec.sunw_symsort != NULL) ||
!test_tls;
if (test_sym)
TEST_ENTSIZE(SHT_SUNW_symsort,
sunw_symsort);
if (test_tls)
TEST_ENTSIZE(SHT_SUNW_tlssort,
sunw_tlssort);
}
break;
case DT_SUNW_SYMSORT:
TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
break;
case DT_SUNW_SYMSORTSZ:
TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
break;
case DT_SUNW_TLSSORT:
TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
break;
case DT_SUNW_TLSSORTSZ:
TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
break;
case DT_VERDEF:
TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
break;
case DT_VERNEED:
TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
break;
case DT_VERSYM:
TEST_ADDR(SHT_SUNW_versym, sunw_versym);
break;
#undef TEST_ADDR
#undef TEST_SIZE
#undef TEST_ENTSIZE
}
if (name == NULL)
name = MSG_ORIG(MSG_STR_EMPTY);
Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
}
}
}
/*
* Search for and process a MOVE section.
*/
static void
move(Cache *cache, Word shnum, const char *file, uint_t flags)
{
Word cnt;
const char *fmt = 0;
for (cnt = 1; cnt < shnum; cnt++) {
Word movenum, symnum, ndx;
Sym *syms;
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
Cache *symsec, *strsec;
Move *move;
if (shdr->sh_type != SHT_SUNW_move)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
/*
* Determine the move data and number.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if (_cache->c_data == NULL)
continue;
move = (Move *)_cache->c_data->d_buf;
movenum = shdr->sh_size / shdr->sh_entsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = (Sym *)symsec->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
if (fmt == 0)
fmt = MSG_INTL(MSG_MOVE_ENTRY);
for (ndx = 0; ndx < movenum; move++, ndx++) {
const char *symname;
char index[MAXNDXSIZE], section[BUFSIZ];
Word symndx, shndx;
Sym *sym;
/*
* Check for null entries
*/
if ((move->m_info == 0) && (move->m_value == 0) &&
(move->m_poffset == 0) && (move->m_repeat == 0) &&
(move->m_stride == 0)) {
dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
EC_XWORD(move->m_poffset), 0, 0, 0,
EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
continue;
}
if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
(symndx >= symnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADMINFO), file,
_cache->c_name, EC_XWORD(move->m_info));
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
dbg_print(0, fmt, index,
EC_XWORD(move->m_poffset),
ELF_M_SIZE(move->m_info), move->m_repeat,
move->m_stride, move->m_value,
MSG_INTL(MSG_STR_UNKNOWN));
continue;
}
symname = relsymname(cache, _cache, strsec,
symndx, symnum, ndx, syms, section, BUFSIZ, file,
flags);
sym = (Sym *)(syms + symndx);
/*
* Additional sanity check.
*/
shndx = sym->st_shndx;
if (!((shndx == SHN_COMMON) ||
(((shndx >= 1) && (shndx <= shnum)) &&
(cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM2), file,
_cache->c_name, EC_WORD(symndx),
demangle(symname, flags));
}
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
ELF_M_SIZE(move->m_info), move->m_repeat,
move->m_stride, move->m_value,
demangle(symname, flags));
}
}
}
/*
* Traverse a note section analyzing each note information block.
* The data buffers size is used to validate references before they are made,
* and is decremented as each element is processed.
*/
void
note_entry(Cache *cache, Word *data, size_t size, const char *file)
{
size_t bsize = size;
/*
* Print out a single `note' information block.
*/
while (size > 0) {
size_t namesz, descsz, type, pad, noteoff;
noteoff = bsize - size;
/*
* Make sure we can at least reference the 3 initial entries
* (4-byte words) of the note information block.
*/
if (size >= (sizeof (Word) * 3))
size -= (sizeof (Word) * 3);
else {
(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
file, cache->c_name, EC_WORD(noteoff));
return;
}
/*
* Make sure any specified name string can be referenced.
*/
if ((namesz = *data++) != 0) {
if (size >= namesz)
size -= namesz;
else {
(void) fprintf(stderr,
MSG_INTL(MSG_NOTE_BADNMSZ), file,
cache->c_name, EC_WORD(noteoff),
EC_WORD(namesz));
return;
}
}
/*
* Make sure any specified descriptor can be referenced.
*/
if ((descsz = *data++) != 0) {
/*
* If namesz isn't a 4-byte multiple, account for any
* padding that must exist before the descriptor.
*/
if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
pad = sizeof (Word) - pad;
size -= pad;
}
if (size >= descsz)
size -= descsz;
else {
(void) fprintf(stderr,
MSG_INTL(MSG_NOTE_BADDESZ), file,
cache->c_name, EC_WORD(noteoff),
EC_WORD(namesz));
return;
}
}
type = *data++;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
if (namesz) {
char *name = (char *)data;
/*
* Since the name string may have 'null' bytes
* in it (ia32 .string) - we just write the
* whole stream in a single fwrite.
*/
(void) fwrite(name, namesz, 1, stdout);
name = name + ((namesz + (sizeof (Word) - 1)) &
~(sizeof (Word) - 1));
/* LINTED */
data = (Word *)name;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
}
/*
* If multiple information blocks exist within a .note section
* account for any padding that must exist before the next
* information block.
*/
if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
pad = sizeof (Word) - pad;
if (size > pad)
size -= pad;
}
dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
if (descsz) {
int ndx, byte, word;
char string[58], *str = string;
uchar_t *desc = (uchar_t *)data;
/*
* Dump descriptor bytes.
*/
for (ndx = byte = word = 0; descsz; descsz--, desc++) {
int tok = *desc;
(void) snprintf(str, 58, MSG_ORIG(MSG_NOTE_TOK),
tok);
str += 3;
if (++byte == 4) {
*str++ = ' ', *str++ = ' ';
word++;
byte = 0;
}
if (word == 4) {
*str = '\0';
dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
ndx, string);
word = 0;
ndx += 16;
str = string;
}
}
if (byte || word) {
*str = '\0';
dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
ndx, string);
}
desc += pad;
/* LINTED */
data = (Word *)desc;
}
}
}
/*
* Search for and process a .note section.
*/
static void
note(Cache *cache, Word shnum, const char *file)
{
Word cnt;
/*
* Otherwise look for any .note sections.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
if (shdr->sh_type != SHT_NOTE)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
/*
* As these sections are often hand rolled, make sure they're
* properly aligned before proceeding, and issue an error
* as necessary.
*
* Note that we will continue on to display the note even
* if it has bad alignment. We can do this safely, because
* libelf knows the alignment required for SHT_NOTE, and
* takes steps to deliver a properly aligned buffer to us
* even if the actual file is misaligned.
*/
if (shdr->sh_offset & (sizeof (Word) - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
file, _cache->c_name);
if (_cache->c_data == NULL)
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
note_entry(_cache, (Word *)_cache->c_data->d_buf,
/* LINTED */
(Word)_cache->c_data->d_size, file);
}
}
/*
* Determine an individual hash entry. This may be the initial hash entry,
* or an associated chain entry.
*/
static void
hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
uint_t flags, int chain)
{
Sym *sym;
const char *symname, *str;
char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
ulong_t nbkt, nhash;
if (symndx > symn) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
EC_WORD(symndx), EC_WORD(hashndx));
symname = MSG_INTL(MSG_STR_UNKNOWN);
} else {
sym = (Sym *)(syms + symndx);
symname = string(refsec, symndx, strsec, file, sym->st_name);
}
if (chain == 0) {
(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
hashndx);
str = (const char *)_bucket;
} else
str = MSG_ORIG(MSG_STR_EMPTY);
(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
EC_WORD(symndx));
dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
demangle(symname, flags));
/*
* Determine if this string is in the correct bucket.
*/
nhash = elf_hash(symname);
nbkt = nhash % bkts;
if (nbkt != hashndx) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
hsecname, symname, EC_WORD(hashndx), nbkt);
}
}
#define MAXCOUNT 500
static void
hash(Cache *cache, Word shnum, const char *file, uint_t flags)
{
static int count[MAXCOUNT];
Word cnt;
ulong_t ndx, bkts;
char number[MAXNDXSIZE];
for (cnt = 1; cnt < shnum; cnt++) {
uint_t *hash, *chain;
Cache *_cache = &cache[cnt];
Shdr *sshdr, *hshdr = _cache->c_shdr;
char *ssecname, *hsecname = _cache->c_name;
Sym *syms;
Word symn;
if (hshdr->sh_type != SHT_HASH)
continue;
/*
* Determine the hash table data and size.
*/
if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, hsecname);
continue;
}
if (_cache->c_data == NULL)
continue;
hash = (uint_t *)_cache->c_data->d_buf;
bkts = *hash;
chain = hash + 2 + bkts;
hash += 2;
/*
* Get the data buffer for the associated symbol table.
*/
if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, hsecname, EC_WORD(hshdr->sh_link));
continue;
}
_cache = &cache[hshdr->sh_link];
ssecname = _cache->c_name;
if (_cache->c_data == NULL)
continue;
if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ssecname);
continue;
}
sshdr = _cache->c_shdr;
/* LINTED */
symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
/*
* Get the associated string table section.
*/
if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, ssecname, EC_WORD(sshdr->sh_link));
continue;
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
/*
* Loop through the hash buckets, printing the appropriate
* symbols.
*/
for (ndx = 0; ndx < bkts; ndx++, hash++) {
Word _ndx, _cnt;
if (*hash == 0) {
count[0]++;
continue;
}
hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
ndx, *hash, symn, syms, file, bkts, flags, 0);
/*
* Determine if any other symbols are chained to this
* bucket.
*/
_ndx = chain[*hash];
_cnt = 1;
while (_ndx) {
hash_entry(_cache, &cache[sshdr->sh_link],
hsecname, ndx, _ndx, symn, syms, file,
bkts, flags, 1);
_ndx = chain[_ndx];
_cnt++;
}
if (_cnt >= MAXCOUNT) {
(void) fprintf(stderr,
MSG_INTL(MSG_HASH_OVERFLW), file,
_cache->c_name, EC_WORD(ndx),
EC_WORD(_cnt));
} else
count[_cnt]++;
}
break;
}
/*
* Print out the count information.
*/
bkts = cnt = 0;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
for (ndx = 0; ndx < MAXCOUNT; ndx++) {
Word _cnt;
if ((_cnt = count[ndx]) == 0)
continue;
(void) snprintf(number, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INTEGER), _cnt);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
EC_WORD(ndx));
bkts += _cnt;
cnt += (Word)(ndx * _cnt);
}
if (cnt) {
(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
bkts);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
EC_WORD(cnt));
}
}
static void
group(Cache *cache, Word shnum, const char *file, uint_t flags)
{
Word scnt;
for (scnt = 1; scnt < shnum; scnt++) {
Cache *_cache = &cache[scnt];
Shdr *shdr = _cache->c_shdr;
Word *grpdata, gcnt, grpcnt, symnum, unknown;
Cache *symsec, *strsec;
Sym *syms, *sym;
char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
if (shdr->sh_type != SHT_GROUP)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
continue;
if ((_cache->c_data == NULL) ||
((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
continue;
grpcnt = shdr->sh_size / sizeof (Word);
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, scnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = symsec->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
/*
* The first element of the group defines the group. The
* associated symbol is defined by the sh_link field.
*/
if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
file, _cache->c_name, EC_WORD(shdr->sh_info));
return;
}
(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
if (grpdata[0] & GRP_COMDAT) {
(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
}
if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
size_t len = strlen(flgstrbuf);
(void) snprintf(&flgstrbuf[len],
(MSG_GRP_COMDAT_SIZE + 10 - len),
MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
}
(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
sym = (Sym *)(syms + shdr->sh_info);
dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
demangle(string(_cache, 0, strsec, file, sym->st_name),
flags));
for (gcnt = 1; gcnt < grpcnt; gcnt++) {
char index[MAXNDXSIZE];
const char *name;
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
if (grpdata[gcnt] >= shnum)
name = MSG_INTL(MSG_GRP_INVALSCN);
else
name = cache[grpdata[gcnt]].c_name;
(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
EC_XWORD(grpdata[gcnt]));
}
}
}
static void
got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file, uint_t flags)
{
Cache *gotcache = NULL, *symtab = NULL;
Addr gotbgn, gotend;
Shdr *gotshdr;
Word cnt, gotents, gotndx;
size_t gentsize;
Got_info *gottable;
char *gotdata;
Sym *gotsym;
Xword gotsymaddr;
uint_t sys_encoding;
/*
* First, find the got.
*/
for (cnt = 1; cnt < shnum; cnt++) {
if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
MSG_ELF_GOT_SIZE) == 0) {
gotcache = &cache[cnt];
break;
}
}
if (gotcache == NULL)
return;
/*
* A got section within a relocatable object is suspicious.
*/
if (ehdr->e_type == ET_REL) {
(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
gotcache->c_name);
}
gotshdr = gotcache->c_shdr;
if (gotshdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, gotcache->c_name);
return;
}
gotbgn = gotshdr->sh_addr;
gotend = gotbgn + gotshdr->sh_size;
/*
* Some architectures don't properly set the sh_entsize for the GOT
* table. If it's not set, default to a size of a pointer.
*/
if ((gentsize = gotshdr->sh_entsize) == 0)
gentsize = sizeof (Xword);
if (gotcache->c_data == NULL)
return;
/* LINTED */
gotents = (Word)(gotshdr->sh_size / gentsize);
gotdata = gotcache->c_data->d_buf;
if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
strerror(err));
return;
}
/*
* Now we scan through all the sections looking for any relocations
* that may be against the GOT. Since these may not be isolated to a
* .rel[a].got section we check them all.
* While scanning sections save the symbol table entry (a symtab
* overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Word type, symnum;
Xword relndx, relnum, relsize;
void *rels;
Sym *syms;
Cache *symsec, *strsec;
Cache *_cache = &cache[cnt];
Shdr *shdr;
shdr = _cache->c_shdr;
type = shdr->sh_type;
if ((symtab == 0) && (type == SHT_DYNSYM)) {
symtab = _cache;
continue;
}
if (type == SHT_SYMTAB) {
symtab = _cache;
continue;
}
if ((type != SHT_RELA) && (type != SHT_REL))
continue;
/*
* Decide entry size.
*/
if (((relsize = shdr->sh_entsize) == 0) ||
(relsize > shdr->sh_size)) {
if (type == SHT_RELA)
relsize = sizeof (Rela);
else
relsize = sizeof (Rel);
}
/*
* Determine the number of relocations available.
*/
if (shdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if (_cache->c_data == NULL)
continue;
rels = _cache->c_data->d_buf;
relnum = shdr->sh_size / relsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
continue;
syms = symsec->c_data->d_buf;
/*
* Loop through the relocation entries.
*/
for (relndx = 0; relndx < relnum; relndx++,
rels = (void *)((char *)rels + relsize)) {
char section[BUFSIZ];
Addr offset;
Got_info *gip;
Word symndx, reltype;
Rela *rela;
Rel *rel;
/*
* Unravel the relocation.
*/
if (type == SHT_RELA) {
rela = (Rela *)rels;
symndx = ELF_R_SYM(rela->r_info);
reltype = ELF_R_TYPE(rela->r_info,
ehdr->e_machine);
offset = rela->r_offset;
} else {
rel = (Rel *)rels;
symndx = ELF_R_SYM(rel->r_info);
reltype = ELF_R_TYPE(rel->r_info,
ehdr->e_machine);
offset = rel->r_offset;
}
/*
* Only pay attention to relocations against the GOT.
*/
if ((offset < gotbgn) || (offset >= gotend))
continue;
/* LINTED */
gotndx = (Word)((offset - gotbgn) /
gotshdr->sh_entsize);
gip = &gottable[gotndx];
if (gip->g_reltype != 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_GOT_MULTIPLE), file,
EC_WORD(gotndx), EC_ADDR(offset));
continue;
}
if (symndx)
gip->g_symname = relsymname(cache, _cache,
strsec, symndx, symnum, relndx, syms,
section, BUFSIZ, file, flags);
gip->g_reltype = reltype;
gip->g_rel = rels;
}
}
if (symlookup(MSG_ORIG(MSG_GOT_SYM), cache, shnum, &gotsym, symtab,
file))
gotsymaddr = gotsym->st_value;
else
gotsymaddr = gotbgn;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
Elf_got_title(0);
sys_encoding = _elf_sys_encoding();
for (gotndx = 0; gotndx < gotents; gotndx++) {
Got_info *gip;
Sword gindex;
Addr gaddr;
Xword gotentry;
gip = &gottable[gotndx];
gaddr = gotbgn + (gotndx * gentsize);
gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
if (gentsize == sizeof (Word))
/* LINTED */
gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
else
/* LINTED */
gotentry = *((Xword *)(gotdata) + gotndx);
Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
ehdr->e_ident[EI_DATA], sys_encoding,
gip->g_reltype, gip->g_rel, gip->g_symname);
}
free(gottable);
}
void
checksum(Elf *elf)
{
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
}
/*
* This variable is used by regular() to communicate the address of
* the section header cache to sort_shdr_ndx_arr(). Unfortunately,
* the qsort() interface does not include a userdata argument by which
* such arbitrary data can be passed, so we are stuck using global data.
*/
static Cache *sort_shdr_ndx_arr_cache;
/*
* Used with qsort() to sort the section indices so that they can be
* used to access the section headers in order of increasing data offset.
*
* entry:
* sort_shdr_ndx_arr_cache - Contains address of
* section header cache.
* v1, v2 - Point at elements of sort_shdr_bits array to be compared.
*
* exit:
* Returns -1 (less than), 0 (equal) or 1 (greater than).
*/
static int
sort_shdr_ndx_arr(const void *v1, const void *v2)
{
Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
return (-1);
if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
return (1);
return (0);
}
static int
shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
size_t shnum, Cache **cache_ret)
{
Elf_Scn *scn;
Elf_Data *data;
size_t ndx;
Shdr *nameshdr;
char *names = 0;
Cache *cache, *_cache;
size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
/*
* Obtain the .shstrtab data buffer to provide the required section
* name strings.
*/
if (shstrndx == SHN_UNDEF) {
/*
* It is rare, but legal, for an object to lack a
* header string table section.
*/
names = NULL;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSCN));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
EC_XWORD(shstrndx));
} else if ((data = elf_getdata(scn, NULL)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETDATA));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
EC_XWORD(shstrndx));
} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
EC_WORD(elf_ndxscn(scn)));
} else if ((names = data->d_buf) == 0)
(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
/*
* Allocate a cache to maintain a descriptor for each section.
*/
if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
*cache = cache_init;
_cache = cache;
_cache++;
/*
* Allocate an array that will hold the section index for
* each section that has data in the ELF file:
*
* - Is not a NOBITS section
* - Data has non-zero length
*
* Note that shnum is an upper bound on the size required. It
* is likely that we won't use a few of these array elements.
* Allocating a modest amount of extra memory in this case means
* that we can avoid an extra loop to count the number of needed
* items, and can fill this array immediately in the first loop
* below.
*/
if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
shdr_ndx_arr_cnt = 0;
/*
* Traverse the sections of the file. This gathering of data is
* carried out in two passes. First, the section headers are captured
* and the section header names are evaluated. A verification pass is
* then carried out over the section information. Files have been
* known to exhibit overlapping (and hence erroneous) section header
* information.
*
* Finally, the data for each section is obtained. This processing is
* carried out after section verification because should any section
* header overlap occur, and a file needs translating (ie. xlate'ing
* information from a non-native architecture file), then the process
* of translation can corrupt the section header information. Of
* course, if there is any section overlap, the data related to the
* sections is going to be compromised. However, it is the translation
* of this data that has caused problems with elfdump()'s ability to
* extract the data.
*/
for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
ndx++, _cache++) {
char scnndxnm[100];
_cache->c_ndx = ndx;
_cache->c_scn = scn;
if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
EC_WORD(elf_ndxscn(scn)));
}
/*
* If this section has data in the file, include it in
* the array of sections to check for address overlap.
*/
if ((_cache->c_shdr->sh_size != 0) &&
(_cache->c_shdr->sh_type != SHT_NOBITS))
shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
/*
* If a shstrtab exists, assign the section name.
*/
if (names && _cache->c_shdr) {
if (_cache->c_shdr->sh_name &&
/* LINTED */
(nameshdr->sh_size > _cache->c_shdr->sh_name)) {
_cache->c_name =
names + _cache->c_shdr->sh_name;
continue;
}
/*
* Generate an error if the section name index is zero
* or exceeds the shstrtab data. Fall through to
* fabricate a section name.
*/
if ((_cache->c_shdr->sh_name == 0) ||
/* LINTED */
(nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHNAME), file,
EC_WORD(ndx),
EC_XWORD(_cache->c_shdr->sh_name));
}
}
/*
* If there exists no shstrtab data, or a section header has no
* name (an invalid index of 0), then compose a name for the
* section.
*/
(void) snprintf(scnndxnm, sizeof (scnndxnm),
MSG_INTL(MSG_FMT_SCNNDX), ndx);
if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
(void) strcpy(_cache->c_name, scnndxnm);
}
/*
* Having collected all the sections, validate their address range.
* Cases have existed where the section information has been invalid.
* This can lead to all sorts of other, hard to diagnose errors, as
* each section is processed individually (ie. with elf_getdata()).
* Here, we carry out some address comparisons to catch a family of
* overlapping memory issues we have observed (likely, there are others
* that we have yet to discover).
*
* Note, should any memory overlap occur, obtaining any additional
* data from the file is questionable. However, it might still be
* possible to inspect the ELF header, Programs headers, or individual
* sections, so rather than bailing on an error condition, continue
* processing to see if any data can be salvaged.
*/
if (shdr_ndx_arr_cnt > 1) {
sort_shdr_ndx_arr_cache = cache;
qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
}
for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
Cache *_cache = cache + shdr_ndx_arr[ndx];
Shdr *shdr = _cache->c_shdr;
Off bgn1, bgn = shdr->sh_offset;
Off end1, end = shdr->sh_offset + shdr->sh_size;
size_t ndx1;
/*
* Check the section against all following ones, reporting
* any overlaps. Since we've sorted the sections by offset,
* we can stop after the first comparison that fails. There
* are no overlaps in a properly formed ELF file, in which
* case this algorithm runs in O(n) time. This will degenerate
* to O(n^2) for a completely broken file. Such a file is
* (1) highly unlikely, and (2) unusable, so it is reasonable
* for the analysis to take longer.
*/
for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
Shdr *shdr1 = _cache1->c_shdr;
bgn1 = shdr1->sh_offset;
end1 = shdr1->sh_offset + shdr1->sh_size;
if (((bgn1 <= bgn) && (end1 > bgn)) ||
((bgn1 < end) && (end1 >= end))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_SECMEMOVER), file,
EC_WORD(elf_ndxscn(_cache->c_scn)),
_cache->c_name, EC_OFF(bgn), EC_OFF(end),
EC_WORD(elf_ndxscn(_cache1->c_scn)),
_cache1->c_name, EC_OFF(bgn1),
EC_OFF(end1));
} else { /* No overlap, so can stop */
break;
}
}
/*
* In addition to checking for sections overlapping
* each other (done above), we should also make sure
* the section doesn't overlap the section header array.
*/
bgn1 = ehdr->e_shoff;
end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
if (((bgn1 <= bgn) && (end1 > bgn)) ||
((bgn1 < end) && (end1 >= end))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
EC_OFF(end1),
EC_WORD(elf_ndxscn(_cache->c_scn)),
_cache->c_name, EC_OFF(bgn), EC_OFF(end));
}
}
/*
* Obtain the data for each section.
*/
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
Elf_Scn *scn = _cache->c_scn;
if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETDATA));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
EC_WORD(elf_ndxscn(scn)));
}
}
return (1);
}
int
regular(const char *file, int fd, Elf *elf, uint_t flags,
const char *wname, int wfd)
{
Elf_Scn *scn;
Ehdr *ehdr;
size_t ndx, shstrndx, shnum, phnum;
Shdr *shdr;
Cache *cache;
VERSYM_STATE versym;
int ret = 0;
int addr_align;
if ((ehdr = elf_getehdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
return (ret);
}
if (elf_getshnum(elf, &shnum) == 0) {
failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
return (ret);
}
if (elf_getshstrndx(elf, &shstrndx) == 0) {
failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
return (ret);
}
if (elf_getphnum(elf, &phnum) == 0) {
failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
return (ret);
}
/*
* If the user requested section headers derived from the
* program headers (-P option) and this file doesn't have
* any program headers (i.e. ET_REL), then we can't do it.
*/
if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
return (ret);
}
if ((scn = elf_getscn(elf, 0)) != NULL) {
if ((shdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
return (ret);
}
} else
shdr = 0;
/*
* Print the elf header.
*/
if (flags & FLG_SHOW_EHDR)
Elf_ehdr(0, ehdr, shdr);
/*
* If the section headers or program headers have inadequate
* alignment for the class of object, print a warning. libelf
* can handle such files, but programs that use them can crash
* when they dereference unaligned items.
*
* Note that the AMD64 ABI, although it is a 64-bit architecture,
* allows access to data types smaller than 128-bits to be on
* word alignment.
*/
if (ehdr->e_machine == EM_AMD64)
addr_align = sizeof (Word);
else
addr_align = sizeof (Addr);
if (ehdr->e_phoff & (addr_align - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
if (ehdr->e_shoff & (addr_align - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
/*
* Print the program headers.
*/
if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return (ret);
}
for (ndx = 0; ndx < phnum; phdr++, ndx++) {
if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
NULL, ndx, phdr->p_type))
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
Elf_phdr(0, ehdr->e_machine, phdr);
}
}
/*
* If we have flag bits set that explicitly require a show or calc
* operation, but none of them require the section headers, then
* we are done and can return now.
*/
if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
return (ret);
/*
* If there are no section headers, then resort to synthesizing
* section headers from the program headers. This is normally
* only done by explicit request, but in this case there's no
* reason not to go ahead, since the alternative is simply to quit.
*/
if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
flags |= FLG_CTL_FAKESHDR;
}
/*
* Generate a cache of section headers and related information
* for use by the rest of elfdump. If requested (or the file
* contains no section headers), we generate a fake set of
* headers from the information accessible from the program headers.
* Otherwise, we use the real section headers contained in the file.
*/
if (flags & FLG_CTL_FAKESHDR) {
if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
return (ret);
} else {
if (shdr_cache(file, elf, ehdr, shstrndx, shnum, &cache) == 0)
return (ret);
}
/*
* Everything from this point on requires section headers.
* If we have no section headers, there is no reason to continue.
*/
if (shnum <= 1)
goto done;
/*
* If -w was specified, find and write out the section(s) data.
*/
if (wfd) {
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
ndx, _cache->c_shdr->sh_type) &&
_cache->c_data && _cache->c_data->d_buf) {
if (write(wfd, _cache->c_data->d_buf,
_cache->c_data->d_size) !=
_cache->c_data->d_size) {
int err = errno;
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_WRITE), wname,
strerror(err));
/*
* Return an exit status of 1, because
* the failure is not related to the
* ELF file, but by system resources.
*/
ret = 1;
goto done;
}
}
}
}
/*
* If we have no flag bits set that explicitly require a show or calc
* operation, but match options (-I, -N, -T) were used, then run
* through the section headers and see if we can't deduce show flags
* from the match options given.
*
* We don't do this if -w was specified, because (-I, -N, -T) used
* with -w in lieu of some other option is supposed to be quiet.
*/
if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
ndx, _cache->c_shdr->sh_type))
continue;
switch (_cache->c_shdr->sh_type) {
case SHT_PROGBITS:
/*
* Heuristic time: It is usually bad form
* to assume that specific section names
* have a given meaning. However, the
* ELF ABI does specify a few such names. Try
* to match them:
*/
if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_INTERP)) == 0)
flags |= FLG_SHOW_INTERP;
else if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_GOT)) == 0)
flags |= FLG_SHOW_GOT;
break;
case SHT_SYMTAB:
case SHT_DYNSYM:
case SHT_SUNW_LDYNSYM:
case SHT_SUNW_versym:
case SHT_SYMTAB_SHNDX:
flags |= FLG_SHOW_SYMBOLS;
break;
case SHT_RELA:
case SHT_REL:
flags |= FLG_SHOW_RELOC;
break;
case SHT_HASH:
flags |= FLG_SHOW_HASH;
break;
case SHT_DYNAMIC:
flags |= FLG_SHOW_DYNAMIC;
break;
case SHT_NOTE:
flags |= FLG_SHOW_NOTE;
break;
case SHT_GROUP:
flags |= FLG_SHOW_GROUP;
break;
case SHT_SUNW_symsort:
case SHT_SUNW_tlssort:
flags |= FLG_SHOW_SORT;
break;
case SHT_SUNW_cap:
flags |= FLG_SHOW_CAP;
break;
case SHT_SUNW_move:
flags |= FLG_SHOW_MOVE;
break;
case SHT_SUNW_syminfo:
flags |= FLG_SHOW_SYMINFO;
break;
case SHT_SUNW_verdef:
case SHT_SUNW_verneed:
flags |= FLG_SHOW_VERSIONS;
break;
case SHT_AMD64_UNWIND:
flags |= FLG_SHOW_UNWIND;
break;
}
}
}
if (flags & FLG_SHOW_SHDR)
sections(file, cache, shnum, ehdr);
if (flags & FLG_SHOW_INTERP)
interp(file, cache, shnum, phnum, elf);
versions(cache, shnum, file, flags, &versym);
if (flags & FLG_SHOW_SYMBOLS)
symbols(cache, shnum, ehdr, &versym, file, flags);
if (flags & FLG_SHOW_SORT)
sunw_sort(cache, shnum, ehdr, &versym, file, flags);
if (flags & FLG_SHOW_HASH)
hash(cache, shnum, file, flags);
if (flags & FLG_SHOW_GOT)
got(cache, shnum, ehdr, file, flags);
if (flags & FLG_SHOW_GROUP)
group(cache, shnum, file, flags);
if (flags & FLG_SHOW_SYMINFO)
syminfo(cache, shnum, file);
if (flags & FLG_SHOW_RELOC)
reloc(cache, shnum, ehdr, file, flags);
if (flags & FLG_SHOW_DYNAMIC)
dynamic(cache, shnum, ehdr, file);
if (flags & FLG_SHOW_NOTE)
note(cache, shnum, file);
if (flags & FLG_SHOW_MOVE)
move(cache, shnum, file, flags);
if (flags & FLG_CALC_CHECKSUM)
checksum(elf);
if (flags & FLG_SHOW_CAP)
cap(file, cache, shnum, phnum, ehdr, elf);
if (flags & FLG_SHOW_UNWIND)
unwind(cache, shnum, phnum, ehdr, file, elf);
/* Release the memory used to cache section headers */
done:
if (flags & FLG_CTL_FAKESHDR)
fake_shdr_cache_free(cache, shnum);
else
free(cache);
return (ret);
}