/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2015, Joyent, Inc. All rights reserved.
*/
/*
* Dump an elf file.
*/
#include <stddef.h>
#include <sys/elf_386.h>
#include <sys/elf_amd64.h>
#include <sys/elf_SPARC.h>
#include <_libelf.h>
#include <dwarf.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <strings.h>
#include <debug.h>
#include <conv.h>
#include <msg.h>
#include <_elfdump.h>
/*
* VERSYM_STATE is used to maintain information about the VERSYM section
* in the object being analyzed. It is filled in by versions(), and used
* by init_symtbl_state() when displaying symbol information.
*
* There are three forms of symbol versioning known to us:
*
* 1) The original form, introduced with Solaris 2.5, in which
* the Versym contains indexes to Verdef records, and the
* Versym values for UNDEF symbols resolved by other objects
* are all set to 0.
* 2) The GNU form, which is backward compatible with the original
* Solaris form, but which adds several extensions:
* - The Versym also contains indexes to Verneed records, recording
* which object/version contributed the external symbol at
* link time. These indexes start with the next value following
* the final Verdef index. The index is written to the previously
* reserved vna_other field of the ELF Vernaux structure.
* - The top bit of the Versym value is no longer part of the index,
* but is used as a "hidden bit" to prevent binding to the symbol.
* - Multiple implementations of a given symbol, contained in varying
* versions are allowed, using special assembler pseudo ops,
* and encoded in the symbol name using '@' characters.
* 3) Modified Solaris form, in which we adopt the first GNU extension
* (Versym indexes to Verneed records), but not the others.
*
* elfdump can handle any of these cases. The presence of a DT_VERSYM
* dynamic element indicates a full GNU object. An object that lacks
* a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
* structures is a modified Solaris object. An object that has neither of
* these uses the original form.
*
* max_verndx contains the largest version index that can appear
* in a Versym entry. This can never be less than 1: In the case where
* there is no verdef/verneed sections, the [0] index is reserved
* for local symbols, and the [1] index for globals. If the original
* Solaris versioning rules are in effect and there is a verdef section,
* then max_verndex is the number of defined versions. If one of the
* other versioning forms is in effect, then:
* 1) If there is no verneed section, it is the same as for
* original Solaris versioning.
* 2) If there is a verneed section, the vna_other field of the
* Vernaux structs contain versions, and max_verndx is the
* largest such index.
*
* If gnu_full is True, the object uses the full GNU form of versioning.
* The value of the gnu_full field is based on the presence of
* a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
* Solaris ld does not.
*
* The gnu_needed field is True if the Versym contains indexes to
* Verneed records, as indicated by non-zero vna_other fields in the Verneed
* section. If gnu_full is True, then gnu_needed will always be true.
* However, gnu_needed can be true without gnu_full. This is the modified
* Solaris form.
*/
typedef struct {
Cache *cache; /* Pointer to cache entry for VERSYM */
Versym *data; /* Pointer to versym array */
int gnu_full; /* True if object uses GNU versioning rules */
int gnu_needed; /* True if object uses VERSYM indexes for */
/* VERNEED (subset of gnu_full) */
int max_verndx; /* largest versym index value */
} VERSYM_STATE;
/*
* SYMTBL_STATE is used to maintain information about a single symbol
* table section, for use by the routines that display symbol information.
*/
typedef struct {
const char *file; /* Name of file */
Ehdr *ehdr; /* ELF header for file */
Cache *cache; /* Cache of all section headers */
uchar_t osabi; /* OSABI to use */
Word shnum; /* # of sections in cache */
Cache *seccache; /* Cache of symbol table section hdr */
Word secndx; /* Index of symbol table section hdr */
const char *secname; /* Name of section */
uint_t flags; /* Command line option flags */
struct { /* Extended section index data */
int checked; /* TRUE if already checked for shxndx */
Word *data; /* NULL, or extended section index */
/* used for symbol table entries */
uint_t n; /* # items in shxndx.data */
} shxndx;
VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
Sym *sym; /* Array of symbols */
Word symn; /* # of symbols */
} SYMTBL_STATE;
/*
* A variable of this type is used to track information related to
* .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
*/
typedef struct {
Word frame_cnt; /* # .eh_frame sections seen */
Word frame_ndx; /* Section index of 1st .eh_frame */
Word hdr_cnt; /* # .eh_frame_hdr sections seen */
Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */
uint64_t frame_ptr; /* Value of FramePtr field from first */
/* .eh_frame_hdr section */
uint64_t frame_base; /* Data addr of 1st .eh_frame */
} gnu_eh_state_t;
/*
* C++ .exception_ranges entries make use of the signed ptrdiff_t
* type to record self-relative pointer values. We need a type
* for this that is matched to the ELFCLASS being processed.
*/
#if defined(_ELF64)
typedef int64_t PTRDIFF_T;
#else
typedef int32_t PTRDIFF_T;
#endif
/*
* The Sun C++ ABI uses this struct to define each .exception_ranges
* entry. From the ABI:
*
* The field ret_addr is a self relative pointer to the start of the address
* range. The name was chosen because in the current implementation the range
* typically starts at the return address for a call site.
*
* The field length is the difference, in bytes, between the pc of the last
* instruction covered by the exception range and the first. When only a
* single call site is represented without optimization, this will equal zero.
*
* The field handler_addr is a relative pointer which stores the difference
* between the start of the exception range and the address of all code to
* catch exceptions and perform the cleanup for stack unwinding.
*
* The field type_block is a relative pointer which stores the difference
* between the start of the exception range and the address of an array used
* for storing a list of the types of exceptions which can be caught within
* the exception range.
*/
typedef struct {
PTRDIFF_T ret_addr;
Xword length;
PTRDIFF_T handler_addr;
PTRDIFF_T type_block;
Xword reserved;
} exception_range_entry;
/*
* Focal point for verifying symbol names.
*/
static const char *
string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
{
/*
* If an error in this routine is due to a property of the string
* section, as opposed to a bad offset into the section (a property of
* the referencing section), then we will detect the same error on
* every call involving those sections. We use these static variables
* to retain the information needed to only issue each such error once.
*/
static Cache *last_refsec; /* Last referencing section seen */
static int strsec_err; /* True if error issued */
const char *strs;
Word strn;
if ((strsec->c_data == NULL) || (strsec->c_data->d_buf == NULL))
return (NULL);
strs = (char *)strsec->c_data->d_buf;
strn = strsec->c_data->d_size;
/*
* We only print a diagnostic regarding a bad string table once per
* input section being processed. If the refsec has changed, reset
* our retained error state.
*/
if (last_refsec != refsec) {
last_refsec = refsec;
strsec_err = 0;
}
/* Verify that strsec really is a string table */
if (strsec->c_shdr->sh_type != SHT_STRTAB) {
if (!strsec_err) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
file, strsec->c_ndx, refsec->c_ndx);
strsec_err = 1;
}
return (MSG_INTL(MSG_STR_UNKNOWN));
}
/*
* Is the string table offset within range of the available strings?
*/
if (name >= strn) {
/*
* Do we have a empty string table?
*/
if (strs == NULL) {
if (!strsec_err) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, strsec->c_name);
strsec_err = 1;
}
} else {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
EC_WORD(name), EC_WORD(strn - 1));
}
/*
* Return the empty string so that the calling function can
* continue it's output diagnostics.
*/
return (MSG_INTL(MSG_STR_UNKNOWN));
}
return (strs + name);
}
/*
* Relocations can reference section symbols and standard symbols. If the
* former, establish the section name.
*/
static const char *
relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
{
Sym *sym;
const char *name;
if (symndx >= symnum) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
file, EC_WORD(symndx), EC_WORD(relndx));
return (MSG_INTL(MSG_STR_UNKNOWN));
}
sym = (Sym *)(syms + symndx);
name = string(csec, symndx, strsec, file, sym->st_name);
/*
* If the symbol represents a section offset construct an appropriate
* string. Note, although section symbol table entries typically have
* a NULL name pointer, entries do exist that point into the string
* table to their own NULL strings.
*/
if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
((sym->st_name == 0) || (*name == '\0'))) {
(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
cache[sym->st_shndx].c_name);
return ((const char *)secstr);
}
return (name);
}
/*
* Focal point for establishing a string table section. Data such as the
* dynamic information simply points to a string table. Data such as
* relocations, reference a symbol table, which in turn is associated with a
* string table.
*/
static int
stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
Word *symnum, Cache **symsec, Cache **strsec)
{
Shdr *shdr = cache[ndx].c_shdr;
/*
* If symtab is non-zero, the ndx we are called with represents a
* shdr which links to a symbol table (which then links to a string
* table)
*/
if (symtab != 0) {
/*
* Validate the symbol table linkage.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
return (0);
}
/*
* Establish the symbol table index.
*/
ndx = shdr->sh_link;
shdr = cache[ndx].c_shdr;
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, cache[ndx].c_name);
return (0);
}
/*
* Obtain, and verify the symbol table data.
*/
if ((cache[ndx].c_data == NULL) ||
(cache[ndx].c_data->d_buf == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, cache[ndx].c_name);
return (0);
}
/*
* Return symbol table information.
*/
if (symnum)
*symnum = (shdr->sh_size / shdr->sh_entsize);
if (symsec)
*symsec = &cache[ndx];
}
/*
* Validate the string table linkage.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
return (0);
}
if (strsec)
*strsec = &cache[shdr->sh_link];
return (1);
}
/*
* Lookup a symbol and set Sym accordingly.
*
* entry:
* name - Name of symbol to lookup
* cache - Cache of all section headers
* shnum - # of sections in cache
* sym - Address of pointer to receive symbol
* target - NULL, or section to which the symbol must be associated.
* symtab - Symbol table to search for symbol
* file - Name of file
*
* exit:
* If the symbol is found, *sym is set to reference it, and True is
* returned. If target is non-NULL, the symbol must reference the given
* section --- otherwise the section is not checked.
*
* If no symbol is found, False is returned.
*/
static int
symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
Cache *target, Cache *symtab, const char *file)
{
Shdr *shdr;
Word symn, cnt;
Sym *syms;
if (symtab == 0)
return (0);
shdr = symtab->c_shdr;
/*
* Determine the symbol data and number.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, symtab->c_name);
return (0);
}
if ((symtab->c_data == NULL) || (symtab->c_data->d_buf == NULL))
return (0);
/* LINTED */
symn = (Word)(shdr->sh_size / shdr->sh_entsize);
syms = (Sym *)symtab->c_data->d_buf;
/*
* Get the associated string table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, symtab->c_name, EC_WORD(shdr->sh_link));
return (0);
}
/*
* Loop through the symbol table to find a match.
*/
*sym = NULL;
for (cnt = 0; cnt < symn; syms++, cnt++) {
const char *symname;
symname = string(symtab, cnt, &cache[shdr->sh_link], file,
syms->st_name);
if (symname && (strcmp(name, symname) == 0) &&
((target == NULL) || (target->c_ndx == syms->st_shndx))) {
/*
* It is possible, though rare, for a local and
* global symbol of the same name to exist, each
* contributed by a different input object. If the
* symbol just found is local, remember it, but
* continue looking.
*/
*sym = syms;
if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
break;
}
}
return (*sym != NULL);
}
/*
* Print section headers.
*/
static void
sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
{
size_t seccnt;
for (seccnt = 1; seccnt < shnum; seccnt++) {
Cache *_cache = &cache[seccnt];
Shdr *shdr = _cache->c_shdr;
const char *secname = _cache->c_name;
/*
* Although numerous section header entries can be zero, it's
* usually a sign of trouble if the type is zero.
*/
if (shdr->sh_type == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
file, secname, EC_WORD(shdr->sh_type));
}
if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
continue;
/*
* Identify any sections that are suspicious. A .got section
* shouldn't exist in a relocatable object.
*/
if (ehdr->e_type == ET_REL) {
if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
MSG_ELF_GOT_SIZE) == 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_GOT_UNEXPECTED), file,
secname);
}
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
Elf_shdr(0, osabi, ehdr->e_machine, shdr);
}
}
/*
* Obtain a specified Phdr entry.
*/
static Phdr *
getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
{
Word cnt, tcnt;
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return (NULL);
}
for (cnt = 0; cnt < phnum; phdr++, cnt++) {
for (tcnt = 0; tcnt < type_cnt; tcnt++) {
if (phdr->p_type == type_arr[tcnt])
return (phdr);
}
}
return (NULL);
}
/*
* Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
* sections.
*
* entry:
* cache - Cache of all section headers
* shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
* shnum - Total number of sections which exist
* uphdr - NULL, or unwind program header associated with
* the .eh_frame_hdr section.
* ehdr - ELF header for file
* eh_state - Data used across calls to this routine. The
* caller should zero it before the first call, and
* pass it on every call.
* osabi - OSABI to use in displaying information
* file - Name of file
* flags - Command line option flags
*/
static void
unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
{
#if defined(_ELF64)
#define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64
#define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64
#else
#define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32
#define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32
#endif
Cache *_cache = &cache[shndx];
Shdr *shdr = _cache->c_shdr;
uchar_t *data = (uchar_t *)(_cache->c_data->d_buf);
size_t datasize = _cache->c_data->d_size;
Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
uint64_t ndx, frame_ptr, fde_cnt, tabndx;
uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
uint64_t initloc, initloc0 = 0;
uint64_t gotaddr = 0;
int cnt;
for (cnt = 1; cnt < shnum; cnt++) {
if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
MSG_ELF_GOT_SIZE) == 0) {
gotaddr = cache[cnt].c_shdr->sh_addr;
break;
}
}
if ((data == NULL) || (datasize == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache ->c_name);
return;
}
/*
* Is this a .eh_frame_hdr?
*/
if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
(strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
MSG_SCN_FRMHDR_SIZE) == 0)) {
/*
* There can only be a single .eh_frame_hdr.
* Flag duplicates.
*/
if (++eh_state->hdr_cnt > 1)
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
file, EC_WORD(shndx), _cache->c_name);
dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
ndx = 0;
vers = data[ndx++];
frame_ptr_enc = data[ndx++];
fde_cnt_enc = data[ndx++];
table_enc = data[ndx++];
dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
switch (dwarf_ehe_extract(data, datasize, &ndx,
&frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE,
shdr->sh_addr, ndx, gotaddr)) {
case DW_OVERFLOW:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
file, _cache->c_name);
return;
case DW_BAD_ENCODING:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
file, _cache->c_name, frame_ptr_enc);
return;
case DW_SUCCESS:
break;
}
if (eh_state->hdr_cnt == 1) {
eh_state->hdr_ndx = shndx;
eh_state->frame_ptr = frame_ptr;
}
dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
EC_XWORD(frame_ptr));
switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt,
fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx,
gotaddr)) {
case DW_OVERFLOW:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
file, _cache->c_name);
return;
case DW_BAD_ENCODING:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
file, _cache->c_name, fde_cnt_enc);
return;
case DW_SUCCESS:
break;
}
dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
EC_XWORD(fde_cnt));
dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
uint64_t table;
switch (dwarf_ehe_extract(data, datasize, &ndx,
&initloc, table_enc, ehdr->e_ident, B_TRUE,
shdr->sh_addr, ndx, gotaddr)) {
case DW_OVERFLOW:
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DWOVRFLW), file,
_cache->c_name);
return;
case DW_BAD_ENCODING:
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DWBADENC), file,
_cache->c_name, table_enc);
return;
case DW_SUCCESS:
break;
}
if ((tabndx != 0) && (initloc0 > initloc))
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSORT), file,
_cache->c_name, EC_WORD(tabndx));
switch (dwarf_ehe_extract(data, datasize, &ndx, &table,
table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
ndx, gotaddr)) {
case DW_OVERFLOW:
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DWOVRFLW), file,
_cache->c_name);
return;
case DW_BAD_ENCODING:
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DWBADENC), file,
_cache->c_name, table_enc);
return;
case DW_SUCCESS:
break;
}
dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
EC_XWORD(initloc),
EC_XWORD(table));
initloc0 = initloc;
}
} else { /* Display the .eh_frame section */
eh_state->frame_cnt++;
if (eh_state->frame_cnt == 1) {
eh_state->frame_ndx = shndx;
eh_state->frame_base = shdr->sh_addr;
} else if ((eh_state->frame_cnt > 1) &&
(ehdr->e_type != ET_REL)) {
Conv_inv_buf_t inv_buf;
(void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
file, EC_WORD(shndx), _cache->c_name,
conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
}
dump_eh_frame(file, _cache->c_name, data, datasize,
shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr);
}
/*
* If we've seen the .eh_frame_hdr and the first .eh_frame section,
* compare the header frame_ptr to the address of the actual frame
* section to ensure the link-editor got this right. Note, this
* diagnostic is only produced when unwind information is explicitly
* asked for, as shared objects built with an older ld(1) may reveal
* this inconsistency. Although an inconsistency, it doesn't seem to
* have any adverse effect on existing tools.
*/
if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
(eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
(eh_state->frame_ptr != eh_state->frame_base))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
file, EC_WORD(eh_state->hdr_ndx),
cache[eh_state->hdr_ndx].c_name,
EC_XWORD(eh_state->frame_ptr),
EC_WORD(eh_state->frame_ndx),
cache[eh_state->frame_ndx].c_name,
EC_XWORD(eh_state->frame_base));
#undef MSG_UNW_BINSRTAB2
#undef MSG_UNW_BINSRTABENT
}
/*
* Convert a self relative pointer into an address. A self relative
* pointer adds the address where the pointer resides to the offset
* contained in the pointer. The benefit is that the value of the
* pointer does not require relocation.
*
* entry:
* base_addr - Address of the pointer.
* delta - Offset relative to base_addr giving desired address
*
* exit:
* The computed address is returned.
*
* note:
* base_addr is an unsigned value, while ret_addr is signed. This routine
* used explicit testing and casting to explicitly control type
* conversion, and ensure that we handle the maximum possible range.
*/
static Addr
srelptr(Addr base_addr, PTRDIFF_T delta)
{
if (delta < 0)
return (base_addr - (Addr) (-delta));
return (base_addr + (Addr) delta);
}
/*
* Byte swap a PTRDIFF_T value.
*/
static PTRDIFF_T
swap_ptrdiff(PTRDIFF_T value)
{
PTRDIFF_T r;
uchar_t *dst = (uchar_t *)&r;
uchar_t *src = (uchar_t *)&value;
UL_ASSIGN_BSWAP_XWORD(dst, src);
return (r);
}
/*
* Display exception_range_entry items from the .exception_ranges section
* of a Sun C++ object.
*/
static void
unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
{
/*
* Translate a PTRDIFF_T self-relative address field of
* an exception_range_entry struct into an address.
*
* entry:
* exc_addr - Address of base of exception_range_entry struct
* cur_ent - Pointer to data in the struct to be translated
*
* _f - Field of struct to be translated
*/
#define SRELPTR(_f) \
srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
#if defined(_ELF64)
#define MSG_EXR_TITLE MSG_EXR_TITLE_64
#define MSG_EXR_ENTRY MSG_EXR_ENTRY_64
#else
#define MSG_EXR_TITLE MSG_EXR_TITLE_32
#define MSG_EXR_ENTRY MSG_EXR_ENTRY_32
#endif
exception_range_entry scratch, *ent, *cur_ent = &scratch;
char index[MAXNDXSIZE];
Word i, nelts;
Addr addr, addr0 = 0, offset = 0;
Addr exc_addr = _cache->c_shdr->sh_addr;
dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
ent = (exception_range_entry *)(_cache->c_data->d_buf);
nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
for (i = 0; i < nelts; i++, ent++) {
if (do_swap) {
/*
* Copy byte swapped values into the scratch buffer.
* The reserved field is not used, so we skip it.
*/
scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
scratch.length = BSWAP_XWORD(ent->length);
scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
scratch.type_block = swap_ptrdiff(ent->type_block);
} else {
cur_ent = ent;
}
/*
* The table is required to be sorted by the address
* derived from ret_addr, to allow binary searching. Ensure
* that addresses grow monotonically.
*/
addr = SRELPTR(ret_addr);
if ((i != 0) && (addr0 > addr))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
file, _cache->c_name, EC_WORD(i));
(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
EC_XWORD(i));
dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
EC_ADDR(addr), EC_ADDR(cur_ent->length),
EC_ADDR(SRELPTR(handler_addr)),
EC_ADDR(SRELPTR(type_block)));
addr0 = addr;
exc_addr += sizeof (exception_range_entry);
offset += sizeof (exception_range_entry);
}
#undef SRELPTR
#undef MSG_EXR_TITLE
#undef MSG_EXR_ENTRY
}
/*
* Display information from unwind/exception sections:
*
* - GNU/amd64 .eh_frame and .eh_frame_hdr
* - Sun C++ .exception_ranges
*
*/
static void
unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
const char *file, Elf *elf, uint_t flags)
{
static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
Word cnt;
Phdr *uphdr = NULL;
gnu_eh_state_t eh_state;
/*
* Historical background: .eh_frame and .eh_frame_hdr sections
* come from the GNU compilers (particularly C++), and are used
* under all architectures. Their format is based on DWARF. When
* the amd64 ABI was defined, these sections were adopted wholesale
* from the existing practice.
*
* When amd64 support was added to Solaris, support for these
* sections was added, using the SHT_AMD64_UNWIND section type
* to identify them. At first, we ignored them in objects for
* non-amd64 targets, but later broadened our support to include
* other architectures in order to better support gcc-generated
* objects.
*
* .exception_ranges implement the same basic concepts, but
* were invented at Sun for the Sun C++ compiler.
*
* We match these sections by name, rather than section type,
* because they can come in as either SHT_AMD64_UNWIND, or as
* SHT_PROGBITS, and because the type isn't enough to determine
* how they should be interpreted.
*/
/* Find the program header for .eh_frame_hdr if present */
if (phnum)
uphdr = getphdr(phnum, phdr_types,
sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
/*
* eh_state is used to retain data used by unwind_eh_frame()
* across calls.
*/
bzero(&eh_state, sizeof (eh_state));
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
int is_exrange;
/*
* Skip sections of the wrong type. On amd64, they
* can be SHT_AMD64_UNWIND. On all platforms, they
* can be SHT_PROGBITS (including amd64, if using
* the GNU compilers).
*
* Skip anything other than these two types. The name
* test below will thin out the SHT_PROGBITS that don't apply.
*/
if ((shdr->sh_type != SHT_PROGBITS) &&
(shdr->sh_type != SHT_AMD64_UNWIND))
continue;
/*
* Only sections with certain well known names are of interest.
* These are:
*
* .eh_frame - amd64/GNU-compiler unwind sections
* .eh_frame_hdr - Sorted table referencing .eh_frame
* .exception_ranges - Sun C++ unwind sections
*
* We do a prefix comparison, allowing for naming conventions
* like .eh_frame.foo, hence the use of strncmp() rather than
* strcmp(). This means that we only really need to test for
* .eh_frame, as it's a prefix of .eh_frame_hdr.
*/
is_exrange = strncmp(_cache->c_name,
MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
if (is_exrange)
unwind_exception_ranges(_cache, file,
_elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
else
unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
&eh_state, osabi, file, flags);
}
}
/*
* Initialize a symbol table state structure
*
* entry:
* state - State structure to be initialized
* cache - Cache of all section headers
* shnum - # of sections in cache
* secndx - Index of symbol table section
* ehdr - ELF header for file
* versym - Information about versym section
* file - Name of file
* flags - Command line option flags
*/
static int
init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
uint_t flags)
{
Shdr *shdr;
state->file = file;
state->ehdr = ehdr;
state->cache = cache;
state->osabi = osabi;
state->shnum = shnum;
state->seccache = &cache[secndx];
state->secndx = secndx;
state->secname = state->seccache->c_name;
state->flags = flags;
state->shxndx.checked = 0;
state->shxndx.data = NULL;
state->shxndx.n = 0;
shdr = state->seccache->c_shdr;
/*
* Check the symbol data and per-item size.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, state->secname);
return (0);
}
if ((state->seccache->c_data == NULL) ||
(state->seccache->c_data->d_buf == NULL))
return (0);
/* LINTED */
state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
state->sym = (Sym *)state->seccache->c_data->d_buf;
/*
* Check associated string table section.
*/
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, state->secname, EC_WORD(shdr->sh_link));
return (0);
}
/*
* Determine if there is a associated Versym section
* with this Symbol Table.
*/
if (versym && versym->cache &&
(versym->cache->c_shdr->sh_link == state->secndx))
state->versym = versym;
else
state->versym = NULL;
return (1);
}
/*
* Determine the extended section index used for symbol tables entries.
*/
static void
symbols_getxindex(SYMTBL_STATE *state)
{
uint_t symn;
Word symcnt;
state->shxndx.checked = 1; /* Note that we've been called */
for (symcnt = 1; symcnt < state->shnum; symcnt++) {
Cache *_cache = &state->cache[symcnt];
Shdr *shdr = _cache->c_shdr;
if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
(shdr->sh_link != state->secndx))
continue;
if ((shdr->sh_entsize) &&
/* LINTED */
((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
continue;
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
state->shxndx.data = _cache->c_data->d_buf;
state->shxndx.n = symn;
return;
}
}
/*
* Produce a line of output for the given symbol
*
* entry:
* state - Symbol table state
* symndx - Index of symbol within the table
* info - Value of st_info (indicates local/global range)
* symndx_disp - Index to display. This may not be the same
* as symndx if the display is relative to the logical
* combination of the SUNW_ldynsym/dynsym tables.
* sym - Symbol to display
*/
static void
output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
Sym *sym)
{
/*
* Symbol types for which we check that the specified
* address/size land inside the target section.
*/
static const int addr_symtype[] = {
0, /* STT_NOTYPE */
1, /* STT_OBJECT */
1, /* STT_FUNC */
0, /* STT_SECTION */
0, /* STT_FILE */
1, /* STT_COMMON */
0, /* STT_TLS */
0, /* 7 */
0, /* 8 */
0, /* 9 */
0, /* 10 */
0, /* 11 */
0, /* 12 */
0, /* STT_SPARC_REGISTER */
0, /* 14 */
0, /* 15 */
};
#if STT_NUM != (STT_TLS + 1)
#error "STT_NUM has grown. Update addr_symtype[]"
#endif
char index[MAXNDXSIZE];
const char *symname, *sec;
Versym verndx;
int gnuver;
uchar_t type;
Shdr *tshdr;
Word shndx;
Conv_inv_buf_t inv_buf;
/* Ensure symbol index is in range */
if (symndx >= state->symn) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
state->file, state->secname, EC_WORD(symndx));
return;
}
/*
* If we are using extended symbol indexes, find the
* corresponding SHN_SYMTAB_SHNDX table.
*/
if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
symbols_getxindex(state);
/* LINTED */
symname = string(state->seccache, symndx,
&state->cache[state->seccache->c_shdr->sh_link], state->file,
sym->st_name);
tshdr = NULL;
sec = NULL;
if (state->ehdr->e_type == ET_CORE) {
sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
} else if (state->flags & FLG_CTL_FAKESHDR) {
/*
* If we are using fake section headers derived from
* the program headers, then the section indexes
* in the symbols do not correspond to these headers.
* The section names are not available, so all we can
* do is to display them in numeric form.
*/
sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
} else if ((sym->st_shndx < SHN_LORESERVE) &&
(sym->st_shndx < state->shnum)) {
shndx = sym->st_shndx;
tshdr = state->cache[shndx].c_shdr;
sec = state->cache[shndx].c_name;
} else if (sym->st_shndx == SHN_XINDEX) {
if (state->shxndx.data) {
Word _shxndx;
if (symndx > state->shxndx.n) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX1),
state->file, state->secname,
EC_WORD(symndx));
} else if ((_shxndx =
state->shxndx.data[symndx]) > state->shnum) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX2),
state->file, state->secname,
EC_WORD(symndx), EC_WORD(_shxndx));
} else {
shndx = _shxndx;
tshdr = state->cache[shndx].c_shdr;
sec = state->cache[shndx].c_name;
}
} else {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYMXINDEX3),
state->file, state->secname, EC_WORD(symndx));
}
} else if ((sym->st_shndx < SHN_LORESERVE) &&
(sym->st_shndx >= state->shnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM5), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), sym->st_shndx);
}
/*
* If versioning is available display the
* version index. If not, then use 0.
*/
if (state->versym) {
Versym test_verndx;
verndx = test_verndx = state->versym->data[symndx];
gnuver = state->versym->gnu_full;
/*
* Check to see if this is a defined symbol with a
* version index that is outside the valid range for
* the file. The interpretation of this depends on
* the style of versioning used by the object.
*
* Versions >= VER_NDX_LORESERVE have special meanings,
* and are exempt from this checking.
*
* GNU style version indexes use the top bit of the
* 16-bit index value (0x8000) as the "hidden bit".
* We must mask off this bit in order to compare
* the version against the maximum value.
*/
if (gnuver)
test_verndx &= ~0x8000;
if ((test_verndx > state->versym->max_verndx) &&
(verndx < VER_NDX_LORESERVE))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
state->file, state->secname, EC_WORD(symndx),
EC_HALF(test_verndx), state->versym->max_verndx);
} else {
verndx = 0;
gnuver = 0;
}
/*
* Error checking for TLS.
*/
type = ELF_ST_TYPE(sym->st_info);
if (type == STT_TLS) {
if (tshdr &&
(sym->st_shndx != SHN_UNDEF) &&
((tshdr->sh_flags & SHF_TLS) == 0)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM3), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags));
}
} else if ((type != STT_SECTION) && sym->st_size &&
tshdr && (tshdr->sh_flags & SHF_TLS)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM4), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags));
}
/*
* If a symbol with non-zero size has a type that
* specifies an address, then make sure the location
* it references is actually contained within the
* section. UNDEF symbols don't count in this case,
* so we ignore them.
*
* The meaning of the st_value field in a symbol
* depends on the type of object. For a relocatable
* object, it is the offset within the section.
* For sharable objects, it is the offset relative to
* the base of the object, and for other types, it is
* the virtual address. To get an offset within the
* section for non-ET_REL files, we subtract the
* base address of the section.
*/
if (addr_symtype[type] && (sym->st_size > 0) &&
(sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
(sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
Word v = sym->st_value;
if (state->ehdr->e_type != ET_REL)
v -= tshdr->sh_addr;
if (((v + sym->st_size) > tshdr->sh_size)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM6), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags),
EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
}
}
/*
* A typical symbol table uses the sh_info field to indicate one greater
* than the symbol table index of the last local symbol, STB_LOCAL.
* Therefore, symbol indexes less than sh_info should have local
* binding. Symbol indexes greater than, or equal to sh_info, should
* have global binding. Note, we exclude UNDEF/NOTY symbols with zero
* value and size, as these symbols may be the result of an mcs(1)
* section deletion.
*/
if (info) {
uchar_t bind = ELF_ST_BIND(sym->st_info);
if ((symndx < info) && (bind != STB_LOCAL)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM7), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), EC_XWORD(info));
} else if ((symndx >= info) && (bind == STB_LOCAL) &&
((sym->st_shndx != SHN_UNDEF) ||
(ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
(sym->st_size != 0) || (sym->st_value != 0))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM8), state->file,
state->secname, EC_WORD(symndx),
demangle(symname, state->flags), EC_XWORD(info));
}
}
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
}
/*
* Process a SHT_SUNW_cap capabilities section.
*/
static int
cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
uchar_t osabi, Ehdr *ehdr, uint_t flags)
{
SYMTBL_STATE state;
Word cnum, capnum, nulls, symcaps;
int descapndx, objcap, title;
Cap *cap = (Cap *)ccache->c_data->d_buf;
Shdr *cishdr, *cshdr = ccache->c_shdr;
Cache *cicache, *strcache;
Capinfo *capinfo = NULL;
Word capinfonum;
const char *strs = NULL;
size_t strs_size;
if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ccache->c_name);
return (0);
}
/*
* If this capabilities section is associated with symbols, then the
* sh_link field points to the associated capabilities information
* section. The sh_link field of the capabilities information section
* points to the associated symbol table.
*/
if (cshdr->sh_link) {
Cache *scache;
Shdr *sshdr;
/*
* Validate that the sh_link field points to a capabilities
* information section.
*/
if (cshdr->sh_link >= shnum) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, ccache->c_name, EC_WORD(cshdr->sh_link));
return (0);
}
cicache = &cache[cshdr->sh_link];
cishdr = cicache->c_shdr;
if (cishdr->sh_type != SHT_SUNW_capinfo) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
file, ccache->c_name, EC_WORD(cshdr->sh_link));
return (0);
}
capinfo = cicache->c_data->d_buf;
capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
/*
* Validate that the sh_link field of the capabilities
* information section points to a valid symbol table.
*/
if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cicache->c_name, EC_WORD(cishdr->sh_link));
return (0);
}
scache = &cache[cishdr->sh_link];
sshdr = scache->c_shdr;
if ((sshdr->sh_type != SHT_SYMTAB) &&
(sshdr->sh_type != SHT_DYNSYM)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
file, cicache->c_name, EC_WORD(cishdr->sh_link));
return (0);
}
if (!init_symtbl_state(&state, cache, shnum,
cishdr->sh_link, ehdr, osabi, NULL, file, flags))
return (0);
}
/*
* If this capabilities section contains capability string entries,
* then determine the associated string table. Capabilities entries
* that define names require that the capability section indicate
* which string table to use via sh_info.
*/
if (cshdr->sh_info) {
Shdr *strshdr;
/*
* Validate that the sh_info field points to a string table.
*/
if (cshdr->sh_info >= shnum) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, ccache->c_name, EC_WORD(cshdr->sh_info));
return (0);
}
strcache = &cache[cshdr->sh_info];
strshdr = strcache->c_shdr;
if (strshdr->sh_type != SHT_STRTAB) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
file, ccache->c_name, EC_WORD(cshdr->sh_info));
return (0);
}
strs = (const char *)strcache->c_data->d_buf;
strs_size = strcache->c_data->d_size;
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
nulls = symcaps = 0;
objcap = title = 1;
descapndx = -1;
/*
* Traverse the capabilities section printing each capability group.
* The first capabilities group defines any object capabilities. Any
* following groups define symbol capabilities. In the case where no
* object capabilities exist, but symbol capabilities do, a single
* CA_SUNW_NULL terminator for the object capabilities exists.
*/
for (cnum = 0; cnum < capnum; cap++, cnum++) {
if (cap->c_tag == CA_SUNW_NULL) {
/*
* A CA_SUNW_NULL tag terminates a capabilities group.
* If the first capabilities tag is CA_SUNW_NULL, then
* no object capabilities exist.
*/
if ((nulls++ == 0) && (cnum == 0))
objcap = 0;
title = 1;
} else {
if (title) {
if (nulls == 0) {
/*
* If this capabilities group represents
* the object capabilities (i.e., no
* CA_SUNW_NULL tag has been processed
* yet), then display an object
* capabilities title.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0,
MSG_INTL(MSG_OBJ_CAP_TITLE));
} else {
/*
* If this is a symbols capabilities
* group (i.e., a CA_SUNW_NULL tag has
* already be found that terminates
* the object capabilities group), then
* display a symbol capabilities title,
* and retain this capabilities index
* for later processing.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0,
MSG_INTL(MSG_SYM_CAP_TITLE));
descapndx = cnum;
}
Elf_cap_title(0);
title = 0;
}
/*
* Print the capabilities data.
*
* Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
* entries require a string table, which should have
* already been established.
*/
if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
(cap->c_tag == CA_SUNW_MACH) ||
(cap->c_tag == CA_SUNW_ID))) {
(void) fprintf(stderr,
MSG_INTL(MSG_WARN_INVCAP4), file,
EC_WORD(elf_ndxscn(ccache->c_scn)),
ccache->c_name, EC_WORD(cshdr->sh_info));
}
Elf_cap_entry(0, cap, cnum, strs, strs_size,
ehdr->e_machine);
}
/*
* If this CA_SUNW_NULL tag terminates a symbol capabilities
* group, determine the associated symbols.
*/
if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
(descapndx != -1)) {
Capinfo *cip;
Word inum;
symcaps++;
/*
* Make sure we've discovered a SHT_SUNW_capinfo table.
*/
if ((cip = capinfo) == NULL) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_INVCAP), file,
ccache->c_name, EC_WORD(cshdr->sh_link));
return (0);
}
/*
* Determine what symbols reference this capabilities
* group.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
for (inum = 1, cip++; inum < capinfonum;
inum++, cip++) {
Word gndx = (Word)ELF_C_GROUP(*cip);
if (gndx && (gndx == descapndx)) {
output_symbol(&state, inum, 0,
inum, state.sym + inum);
}
}
descapndx = -1;
continue;
}
/*
* An SF1_SUNW_ADDR32 software capability tag in a 32-bit
* object is suspicious as it has no effect.
*/
if ((cap->c_tag == CA_SUNW_SF_1) &&
(ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
(cap->c_un.c_val & SF1_SUNW_ADDR32)) {
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
file, ccache->c_name);
}
}
/*
* If this is a dynamic object, with symbol capabilities, then a
* .SUNW_capchain section should exist. This section contains a chain
* of symbol indexes for each capabilities family. This is the list
* that is searched by ld.so.1 to determine the best capabilities
* candidate.
*
* Note, more than one capabilities lead symbol can point to the same
* family chain. For example, a weak/global pair of symbols can both
* represent the same family of capabilities symbols. Therefore, to
* display all possible families we traverse the capabilities
* information section looking for CAPINFO_SUNW_GLOB lead symbols.
* From these we determine the associated capabilities chain to inspect.
*/
if (symcaps &&
((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
Capinfo *cip;
Capchain *chain;
Cache *chcache;
Shdr *chshdr;
Word chainnum, inum;
/*
* Validate that the sh_info field of the capabilities
* information section points to a capabilities chain section.
*/
if (cishdr->sh_info >= shnum) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, cicache->c_name, EC_WORD(cishdr->sh_info));
return (0);
}
chcache = &cache[cishdr->sh_info];
chshdr = chcache->c_shdr;
if (chshdr->sh_type != SHT_SUNW_capchain) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
file, cicache->c_name, EC_WORD(cishdr->sh_info));
return (0);
}
chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
chain = (Capchain *)chcache->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
/*
* Traverse the capabilities information section looking for
* CAPINFO_SUNW_GLOB lead capabilities symbols.
*/
cip = capinfo;
for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
const char *name;
Sym *sym;
Word sndx, cndx;
Word gndx = (Word)ELF_C_GROUP(*cip);
if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
continue;
/*
* Determine the symbol that is associated with this
* capability information entry, and use this to
* identify this capability family.
*/
sym = (Sym *)(state.sym + inum);
name = string(cicache, inum, strcache, file,
sym->st_name);
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
cndx = (Word)ELF_C_SYM(*cip);
/*
* Traverse this families chain and identify each
* family member.
*/
for (;;) {
char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
if (cndx >= chainnum) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_INVCAPINFO3), file,
cicache->c_name, EC_WORD(inum),
EC_WORD(cndx));
break;
}
if ((sndx = chain[cndx]) == 0)
break;
/*
* Determine this entries symbol reference.
*/
if (sndx > state.symn) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
EC_WORD(sndx), chcache->c_name,
EC_WORD(cndx));
name = MSG_INTL(MSG_STR_UNKNOWN);
} else {
sym = (Sym *)(state.sym + sndx);
name = string(chcache, sndx,
strcache, file, sym->st_name);
}
/*
* Display the family member.
*/
(void) snprintf(_chain, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INTEGER), cndx);
(void) snprintf(_symndx, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
_chain, _symndx, demangle(name, flags));
cndx++;
}
}
}
return (objcap);
}
/*
* Print the capabilities.
*
* A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
* capabilities groups. The first group defines the object capabilities.
* This group defines the minimum capability requirements of the entire
* object file. If this is a dynamic object, this group should be associated
* with a PT_SUNWCAP program header.
*
* Additional capabilities groups define the association of individual symbols
* to specific capabilities.
*/
static void
cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
uchar_t osabi, Elf *elf, uint_t flags)
{
Word cnt;
Shdr *cshdr = NULL;
Cache *ccache;
Off cphdr_off = 0;
Xword cphdr_sz;
/*
* Determine if a global capabilities header exists.
*/
if (phnum) {
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return;
}
for (cnt = 0; cnt < phnum; phdr++, cnt++) {
if (phdr->p_type == PT_SUNWCAP) {
cphdr_off = phdr->p_offset;
cphdr_sz = phdr->p_filesz;
break;
}
}
}
/*
* Determine if a capabilities section exists.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
/*
* Process any capabilities information.
*/
if (shdr->sh_type == SHT_SUNW_cap) {
if (cap_section(file, cache, shnum, _cache, osabi,
ehdr, flags)) {
/*
* If this section defined an object capability
* group, retain the section information for
* program header validation.
*/
ccache = _cache;
cshdr = shdr;
}
continue;
}
}
if ((cshdr == NULL) && (cphdr_off == 0))
return;
if (cphdr_off && (cshdr == NULL))
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
/*
* If this object is an executable or shared object, and it provided
* an object capabilities group, then the group should have an
* accompanying PT_SUNWCAP program header.
*/
if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
if (cphdr_off == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
file, EC_WORD(elf_ndxscn(ccache->c_scn)),
ccache->c_name);
} else if ((cphdr_off != cshdr->sh_offset) ||
(cphdr_sz != cshdr->sh_size)) {
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
file, EC_WORD(elf_ndxscn(ccache->c_scn)),
ccache->c_name);
}
}
}
/*
* Print the interpretor.
*/
static void
interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
{
static Word phdr_types[] = { PT_INTERP };
Word cnt;
Shdr *ishdr = NULL;
Cache *icache = NULL;
Off iphdr_off = 0;
Xword iphdr_fsz;
/*
* Determine if an interp header exists.
*/
if (phnum) {
Phdr *phdr;
phdr = getphdr(phnum, phdr_types,
sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
if (phdr != NULL) {
iphdr_off = phdr->p_offset;
iphdr_fsz = phdr->p_filesz;
}
}
if (iphdr_off == 0)
return;
/*
* Determine if an interp section exists.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
/*
* Scan sections to find a section which contains the PT_INTERP
* string. The target section can't be in a NOBITS section.
*/
if ((shdr->sh_type == SHT_NOBITS) ||
(iphdr_off < shdr->sh_offset) ||
(iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
continue;
icache = _cache;
ishdr = shdr;
break;
}
/*
* Print the interpreter string based on the offset defined in the
* program header, as this is the offset used by the kernel.
*/
if ((ishdr != NULL) &&
(icache != NULL) &&
(icache->c_data != NULL) &&
(icache->c_data->d_buf != NULL) &&
(icache->c_data->d_size > 0)) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
(char *)icache->c_data->d_buf +
(iphdr_off - ishdr->sh_offset));
} else
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
/*
* If there are any inconsistences between the program header and
* section information, flag them.
*/
if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
(iphdr_fsz != ishdr->sh_size))) {
(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
icache->c_name);
}
}
/*
* Print the syminfo section.
*/
static void
syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
{
Shdr *infoshdr;
Syminfo *info;
Sym *syms;
Dyn *dyns;
Word infonum, cnt, ndx, symnum, dynnum;
Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
Boolean *dynerr;
for (cnt = 1; cnt < shnum; cnt++) {
if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
infocache = &cache[cnt];
break;
}
}
if (infocache == NULL)
return;
infoshdr = infocache->c_shdr;
if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, infocache->c_name);
return;
}
if ((infocache->c_data == NULL) || (infocache->c_data->d_buf == NULL))
return;
infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
info = (Syminfo *)infocache->c_data->d_buf;
/*
* If there is no associated dynamic section, determine if one
* is needed, and if so issue a warning. If there is an
* associated dynamic section, validate it and get the data buffer
* for it.
*/
dyns = NULL;
dynnum = 0;
if (infoshdr->sh_info == 0) {
Syminfo *_info = info + 1;
for (ndx = 1; ndx < infonum; ndx++, _info++) {
if ((_info->si_flags == 0) && (_info->si_boundto == 0))
continue;
if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHINFO), file,
infocache->c_name,
EC_WORD(infoshdr->sh_info));
}
} else if ((infoshdr->sh_info >= shnum) ||
(cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
file, infocache->c_name, EC_WORD(infoshdr->sh_info));
} else {
dyncache = &cache[infoshdr->sh_info];
if ((dyncache->c_data == NULL) ||
((dyns = dyncache->c_data->d_buf) == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, dyncache->c_name);
}
if (dyns != NULL) {
if ((dyncache->c_shdr->sh_entsize == 0) ||
(dyncache->c_shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, dyncache->c_name);
return;
}
dynnum = dyncache->c_shdr->sh_size /
dyncache->c_shdr->sh_entsize;
/*
* We validate the type of dynamic elements referenced
* from the syminfo. This array is used report any
* bad dynamic entries.
*/
if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return;
}
}
}
/*
* Get the data buffer for the associated symbol table and string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = symsec->c_data->d_buf;
/*
* Loop through the syminfo entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
Elf_syminfo_title(0);
for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
Sym *sym;
const char *needed, *name;
Word expect_dt;
Word boundto = info->si_boundto;
if ((info->si_flags == 0) && (boundto == 0))
continue;
sym = &syms[ndx];
name = string(infocache, ndx, strsec, file, sym->st_name);
/* Is si_boundto set to one of the reserved values? */
if (boundto >= SYMINFO_BT_LOWRESERVE) {
Elf_syminfo_entry(0, ndx, info, name, NULL);
continue;
}
/*
* si_boundto is referencing a dynamic section. If we don't
* have one, an error was already issued above, so it suffices
* to display an empty string. If we are out of bounds, then
* report that and then display an empty string.
*/
if ((dyns == NULL) || (boundto >= dynnum)) {
if (dyns != NULL)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
infocache->c_ndx, infocache->c_name,
EC_WORD(ndx), EC_WORD(dynnum - 1),
EC_WORD(boundto));
Elf_syminfo_entry(0, ndx, info, name,
MSG_ORIG(MSG_STR_EMPTY));
continue;
}
/*
* The si_boundto reference expects a specific dynamic element
* type at the given index. The dynamic element is always a
* string that gives an object name. The specific type depends
* on the si_flags present. Ensure that we've got the right
* type.
*/
if (info->si_flags & SYMINFO_FLG_FILTER)
expect_dt = DT_SUNW_FILTER;
else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
expect_dt = DT_SUNW_AUXILIARY;
else if (info->si_flags & (SYMINFO_FLG_DIRECT |
SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
expect_dt = DT_NEEDED;
else
expect_dt = DT_NULL; /* means we ignore the type */
if ((dyns[boundto].d_tag != expect_dt) &&
(expect_dt != DT_NULL)) {
Conv_inv_buf_t buf1, buf2;
/* Only complain about each dynamic element once */
if (!dynerr[boundto]) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSIDYNTAG),
file, infocache->c_ndx, infocache->c_name,
EC_WORD(ndx), dyncache->c_ndx,
dyncache->c_name, EC_WORD(boundto),
conv_dyn_tag(expect_dt, osabi,
ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
conv_dyn_tag(dyns[boundto].d_tag, osabi,
ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
dynerr[boundto] = TRUE;
}
}
/*
* Whether or not the DT item we're pointing at is
* of the right type, if it's a type we recognize as
* providing a string, go ahead and show it. Otherwise
* an empty string.
*/
switch (dyns[boundto].d_tag) {
case DT_NEEDED:
case DT_SONAME:
case DT_RPATH:
case DT_RUNPATH:
case DT_CONFIG:
case DT_DEPAUDIT:
case DT_USED:
case DT_AUDIT:
case DT_SUNW_AUXILIARY:
case DT_SUNW_FILTER:
case DT_FILTER:
case DT_AUXILIARY:
needed = string(infocache, boundto,
strsec, file, dyns[boundto].d_un.d_val);
break;
default:
needed = MSG_ORIG(MSG_STR_EMPTY);
}
Elf_syminfo_entry(0, ndx, info, name, needed);
}
if (dyns != NULL)
free(dynerr);
}
/*
* Print version definition section entries.
*/
static void
version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
const char *file)
{
Word cnt;
char index[MAXNDXSIZE];
Elf_ver_def_title(0);
for (cnt = 1; cnt <= vdf_num; cnt++,
vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
Conv_ver_flags_buf_t ver_flags_buf;
const char *name, *dep;
Half vcnt = vdf->vd_cnt - 1;
Half ndx = vdf->vd_ndx;
Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
/*
* Obtain the name and first dependency (if any).
*/
name = string(vcache, cnt, scache, file, vdap->vda_name);
vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
if (vcnt)
dep = string(vcache, cnt, scache, file, vdap->vda_name);
else
dep = MSG_ORIG(MSG_STR_EMPTY);
(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
EC_XWORD(ndx));
Elf_ver_line_1(0, index, name, dep,
conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
/*
* Print any additional dependencies.
*/
if (vcnt) {
vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
for (vcnt--; vcnt; vcnt--,
vdap = (Verdaux *)((uintptr_t)vdap +
vdap->vda_next)) {
dep = string(vcache, cnt, scache, file,
vdap->vda_name);
Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
}
}
}
}
/*
* Print version needed section entries.
*
* entry:
* vnd - Address of verneed data
* vnd_num - # of Verneed entries
* vcache - Cache of verneed section being processed
* scache - Cache of associated string table section
* file - Name of object being processed.
* versym - Information about versym section
*
* exit:
* The versions have been printed. If GNU style versioning
* is in effect, versym->max_verndx has been updated to
* contain the largest version index seen.
*
* note:
* The versym section of an object that follows the original
* Solaris versioning rules only contains indexes into the verdef
* section. Symbols defined in other objects (UNDEF) are given
* a version of 0, indicating that they are not defined by
* this file, and the Verneed entries do not have associated version
* indexes. For these reasons, we do not display a version index
* for original-style Verneed sections.
*
* The GNU versioning extensions alter this: Symbols defined in other
* objects receive a version index in the range above those defined
* by the Verdef section, and the vna_other field of the Vernaux
* structs inside the Verneed section contain the version index for
* that item. We therefore display the index when showing the
* contents of a GNU style Verneed section. You should not
* necessarily expect these indexes to appear in sorted
* order --- it seems that the GNU ld assigns the versions as
* symbols are encountered during linking, and then the results
* are assembled into the Verneed section afterwards.
*/
static void
version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
const char *file, VERSYM_STATE *versym)
{
Word cnt;
char index[MAXNDXSIZE];
const char *index_str;
Elf_ver_need_title(0, versym->gnu_needed);
for (cnt = 1; cnt <= vnd_num; cnt++,
vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
Conv_ver_flags_buf_t ver_flags_buf;
const char *name, *dep;
Half vcnt = vnd->vn_cnt;
Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
/*
* Obtain the name of the needed file and the version name
* within it that we're dependent on. Note that the count
* should be at least one, otherwise this is a pretty bogus
* entry.
*/
name = string(vcache, cnt, scache, file, vnd->vn_file);
if (vcnt)
dep = string(vcache, cnt, scache, file, vnap->vna_name);
else
dep = MSG_INTL(MSG_STR_NULL);
if (vnap->vna_other == 0) { /* Traditional form */
index_str = MSG_ORIG(MSG_STR_EMPTY);
} else { /* GNU form */
index_str = index;
/* Format the version index value */
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
}
Elf_ver_line_1(0, index_str, name, dep,
conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
/*
* Print any additional version dependencies.
*/
if (vcnt) {
vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
for (vcnt--; vcnt; vcnt--,
vnap = (Vernaux *)((uintptr_t)vnap +
vnap->vna_next)) {
dep = string(vcache, cnt, scache, file,
vnap->vna_name);
if (vnap->vna_other > 0) {
/* Format the next index value */
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX),
EC_XWORD(vnap->vna_other));
Elf_ver_line_1(0, index,
MSG_ORIG(MSG_STR_EMPTY), dep,
conv_ver_flags(vnap->vna_flags,
0, &ver_flags_buf));
if (vnap->vna_other >
versym->max_verndx)
versym->max_verndx =
vnap->vna_other;
} else {
Elf_ver_line_3(0,
MSG_ORIG(MSG_STR_EMPTY), dep,
conv_ver_flags(vnap->vna_flags,
0, &ver_flags_buf));
}
}
}
}
}
/*
* Examine the Verneed section for information related to GNU
* style Versym indexing:
* - A non-zero vna_other field indicates that Versym indexes can
* reference Verneed records.
* - If the object uses GNU style Versym indexing, the
* maximum index value is needed to detect bad Versym entries.
*
* entry:
* vnd - Address of verneed data
* vnd_num - # of Verneed entries
* versym - Information about versym section
*
* exit:
* If a non-zero vna_other field is seen, versym->gnu_needed is set.
*
* versym->max_verndx has been updated to contain the largest
* version index seen.
*/
static void
update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
{
Word cnt;
for (cnt = 1; cnt <= vnd_num; cnt++,
vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
Half vcnt = vnd->vn_cnt;
Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
/*
* A non-zero value of vna_other indicates that this
* object references VERNEED items from the VERSYM
* array.
*/
if (vnap->vna_other != 0) {
versym->gnu_needed = 1;
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
}
/*
* Check any additional version dependencies.
*/
if (vcnt) {
vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
for (vcnt--; vcnt; vcnt--,
vnap = (Vernaux *)((uintptr_t)vnap +
vnap->vna_next)) {
if (vnap->vna_other == 0)
continue;
versym->gnu_needed = 1;
if (vnap->vna_other > versym->max_verndx)
versym->max_verndx = vnap->vna_other;
}
}
}
}
/*
* Display version section information if the flags require it.
* Return version information needed by other output.
*
* entry:
* cache - Cache of all section headers
* shnum - # of sections in cache
* file - Name of file
* flags - Command line option flags
* versym - VERSYM_STATE block to be filled in.
*/
static void
versions(Cache *cache, Word shnum, const char *file, uint_t flags,
VERSYM_STATE *versym)
{
GElf_Word cnt;
Cache *verdef_cache = NULL, *verneed_cache = NULL;
/* Gather information about the version sections */
versym->max_verndx = 1;
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
Dyn *dyn;
ulong_t numdyn;
switch (shdr->sh_type) {
case SHT_DYNAMIC:
/*
* The GNU ld puts a DT_VERSYM entry in the dynamic
* section so that the runtime linker can use it to
* implement their versioning rules. They allow multiple
* incompatible functions with the same name to exist
* in different versions. The Solaris ld does not
* support this mechanism, and as such, does not
* produce DT_VERSYM. We use this fact to determine
* which ld produced this object, and how to interpret
* the version values.
*/
if ((shdr->sh_entsize == 0) ||
(shdr->sh_size == 0) ||
(_cache->c_data == NULL) ||
(_cache->c_data->d_buf == NULL))
continue;
numdyn = shdr->sh_size / shdr->sh_entsize;
dyn = (Dyn *)_cache->c_data->d_buf;
for (; numdyn-- > 0; dyn++)
if (dyn->d_tag == DT_VERSYM) {
versym->gnu_full =
versym->gnu_needed = 1;
break;
}
break;
case SHT_SUNW_versym:
/* Record data address for later symbol processing */
if (_cache->c_data != NULL) {
versym->cache = _cache;
versym->data = _cache->c_data->d_buf;
continue;
}
break;
case SHT_SUNW_verdef:
case SHT_SUNW_verneed:
/*
* Ensure the data is non-NULL and the number
* of items is non-zero. Otherwise, we don't
* understand the section, and will not use it.
*/
if ((_cache->c_data == NULL) ||
(_cache->c_data->d_buf == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if (shdr->sh_info == 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHINFO),
file, _cache->c_name,
EC_WORD(shdr->sh_info));
continue;
}
/* Make sure the string table index is in range */
if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHLINK), file,
_cache->c_name, EC_WORD(shdr->sh_link));
continue;
}
/*
* The section is usable. Save the cache entry.
*/
if (shdr->sh_type == SHT_SUNW_verdef) {
verdef_cache = _cache;
/*
* Under Solaris rules, if there is a verdef
* section, the max versym index is number
* of version definitions it supplies.
*/
versym->max_verndx = shdr->sh_info;
} else {
verneed_cache = _cache;
}
break;
}
}
/*
* If there is a Verneed section, examine it for information
* related to GNU style versioning.
*/
if (verneed_cache != NULL)
update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
verneed_cache->c_shdr->sh_info, versym);
/*
* Now that all the information is available, display the
* Verdef and Verneed section contents, if requested.
*/
if ((flags & FLG_SHOW_VERSIONS) == 0)
return;
if (verdef_cache != NULL) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
verdef_cache->c_name);
version_def((Verdef *)verdef_cache->c_data->d_buf,
verdef_cache->c_shdr->sh_info, verdef_cache,
&cache[verdef_cache->c_shdr->sh_link], file);
}
if (verneed_cache != NULL) {
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
verneed_cache->c_name);
/*
* If GNU versioning applies to this object, version_need()
* will update versym->max_verndx, and it is not
* necessary to call update_gnu_verndx().
*/
version_need((Verneed *)verneed_cache->c_data->d_buf,
verneed_cache->c_shdr->sh_info, verneed_cache,
&cache[verneed_cache->c_shdr->sh_link], file, versym);
}
}
/*
* Search for and process any symbol tables.
*/
void
symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
VERSYM_STATE *versym, const char *file, uint_t flags)
{
SYMTBL_STATE state;
Cache *_cache;
Word secndx;
for (secndx = 1; secndx < shnum; secndx++) {
Word symcnt;
Shdr *shdr;
_cache = &cache[secndx];
shdr = _cache->c_shdr;
if ((shdr->sh_type != SHT_SYMTAB) &&
(shdr->sh_type != SHT_DYNSYM) &&
((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
(osabi != ELFOSABI_SOLARIS)))
continue;
if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
continue;
if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
osabi, versym, file, flags))
continue;
/*
* Loop through the symbol tables entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
for (symcnt = 0; symcnt < state.symn; symcnt++)
output_symbol(&state, symcnt, shdr->sh_info, symcnt,
state.sym + symcnt);
}
}
/*
* Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
* These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
*/
static void
sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
VERSYM_STATE *versym, const char *file, uint_t flags)
{
SYMTBL_STATE ldynsym_state, dynsym_state;
Cache *sortcache, *symcache;
Shdr *sortshdr, *symshdr;
Word sortsecndx, symsecndx;
Word ldynsym_cnt;
Word *ndx;
Word ndxn;
int output_cnt = 0;
Conv_inv_buf_t inv_buf;
for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
sortcache = &cache[sortsecndx];
sortshdr = sortcache->c_shdr;
if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
(sortshdr->sh_type != SHT_SUNW_tlssort))
continue;
if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
sortshdr->sh_type))
continue;
/*
* If the section references a SUNW_ldynsym, then we
* expect to see the associated .dynsym immediately
* following. If it references a .dynsym, there is no
* SUNW_ldynsym. If it is any other type, then we don't
* know what to do with it.
*/
if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, sortcache->c_name,
EC_WORD(sortshdr->sh_link));
continue;
}
symcache = &cache[sortshdr->sh_link];
symshdr = symcache->c_shdr;
symsecndx = sortshdr->sh_link;
ldynsym_cnt = 0;
switch (symshdr->sh_type) {
case SHT_SUNW_LDYNSYM:
if (!init_symtbl_state(&ldynsym_state, cache, shnum,
symsecndx, ehdr, osabi, versym, file, flags))
continue;
ldynsym_cnt = ldynsym_state.symn;
/*
* We know that the dynsym follows immediately
* after the SUNW_ldynsym, and so, should be at
* (sortshdr->sh_link + 1). However, elfdump is a
* diagnostic tool, so we do the full paranoid
* search instead.
*/
for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
symcache = &cache[symsecndx];
symshdr = symcache->c_shdr;
if (symshdr->sh_type == SHT_DYNSYM)
break;
}
if (symsecndx >= shnum) { /* Dynsym not found! */
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_NODYNSYM),
file, sortcache->c_name);
continue;
}
/* Fallthrough to process associated dynsym */
/* FALLTHROUGH */
case SHT_DYNSYM:
if (!init_symtbl_state(&dynsym_state, cache, shnum,
symsecndx, ehdr, osabi, versym, file, flags))
continue;
break;
default:
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
file, sortcache->c_name,
conv_sec_type(osabi, ehdr->e_machine,
symshdr->sh_type, 0, &inv_buf));
continue;
}
/*
* Output header
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
if (ldynsym_cnt > 0) {
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
sortcache->c_name, ldynsym_state.secname,
dynsym_state.secname);
/*
* The data for .SUNW_ldynsym and dynsym sections
* is supposed to be adjacent with SUNW_ldynsym coming
* first. Check, and issue a warning if it isn't so.
*/
if (((ldynsym_state.sym + ldynsym_state.symn)
!= dynsym_state.sym) &&
((flags & FLG_CTL_FAKESHDR) == 0))
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
ldynsym_state.secname,
dynsym_state.secname);
} else {
dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
sortcache->c_name, dynsym_state.secname);
}
Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
/* If not first one, insert a line of white space */
if (output_cnt++ > 0)
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
/*
* SUNW_dynsymsort and SUNW_dyntlssort are arrays of
* symbol indices. Iterate over the array entries,
* dispaying the referenced symbols.
*/
ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
ndx = (Word *)sortcache->c_data->d_buf;
for (; ndxn-- > 0; ndx++) {
if (*ndx >= ldynsym_cnt) {
Word sec_ndx = *ndx - ldynsym_cnt;
output_symbol(&dynsym_state, sec_ndx, 0,
*ndx, dynsym_state.sym + sec_ndx);
} else {
output_symbol(&ldynsym_state, *ndx, 0,
*ndx, ldynsym_state.sym + *ndx);
}
}
}
}
/*
* Search for and process any relocation sections.
*/
static void
reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
{
Word cnt;
for (cnt = 1; cnt < shnum; cnt++) {
Word type, symnum;
Xword relndx, relnum, relsize;
void *rels;
Sym *syms;
Cache *symsec, *strsec;
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
char *relname = _cache->c_name;
Conv_inv_buf_t inv_buf;
if (((type = shdr->sh_type) != SHT_RELA) &&
(type != SHT_REL))
continue;
if (!match(MATCH_F_ALL, relname, cnt, type))
continue;
/*
* Decide entry size.
*/
if (((relsize = shdr->sh_entsize) == 0) ||
(relsize > shdr->sh_size)) {
if (type == SHT_RELA)
relsize = sizeof (Rela);
else
relsize = sizeof (Rel);
}
/*
* Determine the number of relocations available.
*/
if (shdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, relname);
continue;
}
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
rels = _cache->c_data->d_buf;
relnum = shdr->sh_size / relsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
continue;
syms = symsec->c_data->d_buf;
/*
* Loop through the relocation entries.
*/
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
for (relndx = 0; relndx < relnum; relndx++,
rels = (void *)((char *)rels + relsize)) {
Half mach = ehdr->e_machine;
char section[BUFSIZ];
const char *symname;
Word symndx, reltype;
Rela *rela;
Rel *rel;
/*
* Unravel the relocation and determine the symbol with
* which this relocation is associated.
*/
if (type == SHT_RELA) {
rela = (Rela *)rels;
symndx = ELF_R_SYM(rela->r_info);
reltype = ELF_R_TYPE(rela->r_info, mach);
} else {
rel = (Rel *)rels;
symndx = ELF_R_SYM(rel->r_info);
reltype = ELF_R_TYPE(rel->r_info, mach);
}
symname = relsymname(cache, _cache, strsec, symndx,
symnum, relndx, syms, section, BUFSIZ, file);
/*
* A zero symbol index is only valid for a few
* relocations.
*/
if (symndx == 0) {
int badrel = 0;
if ((mach == EM_SPARC) ||
(mach == EM_SPARC32PLUS) ||
(mach == EM_SPARCV9)) {
if ((reltype != R_SPARC_NONE) &&
(reltype != R_SPARC_REGISTER) &&
(reltype != R_SPARC_RELATIVE))
badrel++;
} else if (mach == EM_386) {
if ((reltype != R_386_NONE) &&
(reltype != R_386_RELATIVE))
badrel++;
} else if (mach == EM_AMD64) {
if ((reltype != R_AMD64_NONE) &&
(reltype != R_AMD64_RELATIVE))
badrel++;
}
if (badrel) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADREL1), file,
conv_reloc_type(mach, reltype,
0, &inv_buf));
}
}
Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
rels, relname, symname, 0);
}
}
}
/*
* This value controls which test dyn_test() performs.
*/
typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
/*
* Used by dynamic() to compare the value of a dynamic element against
* the starting address of the section it references.
*
* entry:
* test_type - Specify which dyn item is being tested.
* sh_type - SHT_* type value for required section.
* sec_cache - Cache entry for section, or NULL if the object lacks
* a section of this type.
* dyn - Dyn entry to be tested
* dynsec_cnt - # of dynamic section being examined. The first
* dynamic section is 1, the next is 2, and so on...
* ehdr - ELF header for file
* file - Name of file
*/
static void
dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
{
Conv_inv_buf_t buf1, buf2;
/*
* These tests are based around the implicit assumption that
* there is only one dynamic section in an object, and also only
* one of the sections it references. We have therefore gathered
* all of the necessary information to test this in a single pass
* over the section headers, which is very efficient. We are not
* aware of any case where more than one dynamic section would
* be meaningful in an ELF object, so this is a reasonable solution.
*
* To test multiple dynamic sections correctly would be more
* expensive in code and time. We would have to build a data structure
* containing all the dynamic elements. Then, we would use the address
* to locate the section it references and ensure the section is of
* the right type and that the address in the dynamic element is
* to the start of the section. Then, we could check the size and
* entsize values against those same sections. This is O(n^2), and
* also complicated.
*
* In the highly unlikely case that there is more than one dynamic
* section, we only test the first one, and simply allow the values
* of the subsequent one to be displayed unchallenged.
*/
if (dynsec_cnt != 1)
return;
/*
* A DT_ item that references a section address should always find
* the section in the file.
*/
if (sec_cache == NULL) {
const char *name;
/*
* Supply section names instead of section types for
* things that reference progbits so that the error
* message will make more sense.
*/
switch (dyn->d_tag) {
case DT_INIT:
name = MSG_ORIG(MSG_ELF_INIT);
break;
case DT_FINI:
name = MSG_ORIG(MSG_ELF_FINI);
break;
default:
name = conv_sec_type(osabi, ehdr->e_machine,
sh_type, 0, &buf1);
break;
}
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
CONV_FMT_ALT_CF, &buf2));
return;
}
switch (test_type) {
case DYN_TEST_ADDR:
/* The section address should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADADDR), file,
conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
sec_cache->c_ndx, sec_cache->c_name,
EC_ADDR(sec_cache->c_shdr->sh_addr));
break;
case DYN_TEST_SIZE:
/* The section size should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADSIZE), file,
conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
sec_cache->c_ndx, sec_cache->c_name,
EC_XWORD(sec_cache->c_shdr->sh_size));
break;
case DYN_TEST_ENTSIZE:
/* The sh_entsize value should match the DT_ item value */
if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
sec_cache->c_ndx, sec_cache->c_name,
EC_XWORD(sec_cache->c_shdr->sh_entsize));
break;
}
}
/*
* There are some DT_ entries that have corresponding symbols
* (e.g. DT_INIT and _init). It is expected that these items will
* both have the same value if both are present. This routine
* examines the well known symbol tables for such symbols and
* issues warnings for any that don't match.
*
* entry:
* dyn - Dyn entry to be tested
* symname - Name of symbol that corresponds to dyn
* symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
* target_cache - Section the symname section is expected to be
* associated with.
* cache - Cache of all section headers
* shnum - # of sections in cache
* ehdr - ELF header for file
* osabi - OSABI to apply when interpreting object
* file - Name of file
*/
static void
dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
{
Conv_inv_buf_t buf;
int i;
Sym *sym;
Cache *_cache;
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
_cache = symtab_cache;
break;
case 1:
_cache = dynsym_cache;
break;
case 2:
_cache = ldynsym_cache;
break;
}
if ((_cache != NULL) &&
symlookup(symname, cache, shnum, &sym, target_cache,
_cache, file) && (sym->st_value != dyn->d_un.d_val))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
symname, EC_ADDR(sym->st_value));
}
}
/*
* Search for and process a .dynamic section.
*/
static void
dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
{
struct {
Cache *symtab;
Cache *dynstr;
Cache *dynsym;
Cache *hash;
Cache *fini;
Cache *fini_array;
Cache *init;
Cache *init_array;
Cache *preinit_array;
Cache *rel;
Cache *rela;
Cache *sunw_cap;
Cache *sunw_capinfo;
Cache *sunw_capchain;
Cache *sunw_ldynsym;
Cache *sunw_move;
Cache *sunw_syminfo;
Cache *sunw_symsort;
Cache *sunw_tlssort;
Cache *sunw_verdef;
Cache *sunw_verneed;
Cache *sunw_versym;
} sec;
Word dynsec_ndx;
Word dynsec_num;
int dynsec_cnt;
Word cnt;
int osabi_solaris = osabi == ELFOSABI_SOLARIS;
/*
* Make a pass over all the sections, gathering section information
* we'll need below.
*/
dynsec_num = 0;
bzero(&sec, sizeof (sec));
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
switch (_cache->c_shdr->sh_type) {
case SHT_DYNAMIC:
if (dynsec_num == 0) {
dynsec_ndx = cnt;
/* Does it have a valid string table? */
(void) stringtbl(cache, 0, cnt, shnum, file,
0, 0, &sec.dynstr);
}
dynsec_num++;
break;
case SHT_PROGBITS:
/*
* We want to detect the .init and .fini sections,
* if present. These are SHT_PROGBITS, so all we
* have to go on is the section name. Normally comparing
* names is a bad idea, but there are some special
* names (i.e. .init/.fini/.interp) that are very
* difficult to use in any other context, and for
* these symbols, we do the heuristic match.
*/
if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_INIT)) == 0) {
if (sec.init == NULL)
sec.init = _cache;
} else if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_FINI)) == 0) {
if (sec.fini == NULL)
sec.fini = _cache;
}
break;
case SHT_REL:
/*
* We want the SHT_REL section with the lowest
* offset. The linker gathers them together,
* and puts the address of the first one
* into the DT_REL dynamic element.
*/
if ((sec.rel == NULL) ||
(_cache->c_shdr->sh_offset <
sec.rel->c_shdr->sh_offset))
sec.rel = _cache;
break;
case SHT_RELA:
/* RELA is handled just like RELA above */
if ((sec.rela == NULL) ||
(_cache->c_shdr->sh_offset <
sec.rela->c_shdr->sh_offset))
sec.rela = _cache;
break;
/*
* The GRAB macro is used for the simple case in which
* we simply grab the first section of the desired type.
*/
#define GRAB(_sec_type, _sec_field) \
case _sec_type: \
if (sec._sec_field == NULL) \
sec._sec_field = _cache; \
break
GRAB(SHT_SYMTAB, symtab);
GRAB(SHT_DYNSYM, dynsym);
GRAB(SHT_FINI_ARRAY, fini_array);
GRAB(SHT_HASH, hash);
GRAB(SHT_INIT_ARRAY, init_array);
GRAB(SHT_SUNW_move, sunw_move);
GRAB(SHT_PREINIT_ARRAY, preinit_array);
GRAB(SHT_SUNW_cap, sunw_cap);
GRAB(SHT_SUNW_capinfo, sunw_capinfo);
GRAB(SHT_SUNW_capchain, sunw_capchain);
GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
GRAB(SHT_SUNW_syminfo, sunw_syminfo);
GRAB(SHT_SUNW_symsort, sunw_symsort);
GRAB(SHT_SUNW_tlssort, sunw_tlssort);
GRAB(SHT_SUNW_verdef, sunw_verdef);
GRAB(SHT_SUNW_verneed, sunw_verneed);
GRAB(SHT_SUNW_versym, sunw_versym);
#undef GRAB
}
}
/*
* If no dynamic section, return immediately. If more than one
* dynamic section, then something odd is going on and an error
* is in order, but then continue on and display them all.
*/
if (dynsec_num == 0)
return;
if (dynsec_num > 1)
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
file, EC_WORD(dynsec_num));
dynsec_cnt = 0;
for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
cnt++) {
Dyn *dyn;
ulong_t numdyn;
int ndx, end_ndx;
Cache *_cache = &cache[cnt], *strsec;
Shdr *shdr = _cache->c_shdr;
int dumped = 0;
if (shdr->sh_type != SHT_DYNAMIC)
continue;
dynsec_cnt++;
/*
* Verify the associated string table section.
*/
if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
continue;
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
numdyn = shdr->sh_size / shdr->sh_entsize;
dyn = (Dyn *)_cache->c_data->d_buf;
/*
* We expect the REL/RELA entries to reference the reloc
* section with the lowest address. However, this is
* not true for dumped objects. Detect if this object has
* been dumped so that we can skip the reloc address test
* in that case.
*/
for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
if (dyn->d_tag == DT_FLAGS_1) {
dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
break;
}
}
dyn = (Dyn *)_cache->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
Elf_dyn_title(0);
for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
union {
Conv_inv_buf_t inv;
Conv_dyn_flag_buf_t flag;
Conv_dyn_flag1_buf_t flag1;
Conv_dyn_posflag1_buf_t posflag1;
Conv_dyn_feature1_buf_t feature1;
} c_buf;
const char *name = NULL;
/*
* Print the information numerically, and if possible
* as a string. If a string is available, name is
* set to reference it.
*
* Also, take this opportunity to sanity check
* the values of DT elements. In the code above,
* we gathered information on sections that are
* referenced by the dynamic section. Here, we
* compare the attributes of those sections to
* the DT_ items that reference them and report
* on inconsistencies.
*
* Things not currently tested that could be improved
* in later revisions include:
* - We don't check PLT or GOT related items
* - We don't handle computing the lengths of
* relocation arrays. To handle this
* requires examining data that spans
* across sections, in a contiguous span
* within a single segment.
* - DT_VERDEFNUM and DT_VERNEEDNUM can't be
* verified without parsing the sections.
* - We don't handle DT_SUNW_SYMSZ, which would
* be the sum of the lengths of .dynsym and
* .SUNW_ldynsym
* - DT_SUNW_STRPAD can't be verified other than
* to check that it's not larger than
* the string table.
* - Some items come in "all or none" clusters
* that give an address, element size,
* and data length in bytes. We don't
* verify that there are no missing items
* in such groups.
*/
switch (dyn->d_tag) {
case DT_NULL:
/*
* Special case: DT_NULLs can come in groups
* that we prefer to reduce to a single line.
*/
end_ndx = ndx;
while ((end_ndx < (numdyn - 1)) &&
((dyn + 1)->d_tag == DT_NULL)) {
dyn++;
end_ndx++;
}
Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
ndx = end_ndx;
continue;
/*
* String items all reference the dynstr. The string()
* function does the necessary sanity checking.
*/
case DT_NEEDED:
case DT_SONAME:
case DT_FILTER:
case DT_AUXILIARY:
case DT_CONFIG:
case DT_RPATH:
case DT_RUNPATH:
case DT_USED:
case DT_DEPAUDIT:
case DT_AUDIT:
name = string(_cache, ndx, strsec,
file, dyn->d_un.d_ptr);
break;
case DT_SUNW_AUXILIARY:
case DT_SUNW_FILTER:
if (osabi_solaris)
name = string(_cache, ndx, strsec,
file, dyn->d_un.d_ptr);
break;
case DT_FLAGS:
name = conv_dyn_flag(dyn->d_un.d_val,
0, &c_buf.flag);
break;
case DT_FLAGS_1:
name = conv_dyn_flag1(dyn->d_un.d_val, 0,
&c_buf.flag1);
break;
case DT_POSFLAG_1:
name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
&c_buf.posflag1);
break;
case DT_FEATURE_1:
name = conv_dyn_feature1(dyn->d_un.d_val, 0,
&c_buf.feature1);
break;
case DT_DEPRECATED_SPARC_REGISTER:
name = MSG_INTL(MSG_STR_DEPRECATED);
break;
case DT_SUNW_LDMACH:
if (!osabi_solaris)
break;
name = conv_ehdr_mach((Half)dyn->d_un.d_val,
0, &c_buf.inv);
break;
/*
* Cases below this point are strictly sanity checking,
* and do not generate a name string. The TEST_ macros
* are used to hide the boiler plate arguments neeeded
* by dyn_test().
*/
#define TEST_ADDR(_sh_type, _sec_field) \
dyn_test(DYN_TEST_ADDR, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, \
osabi, file)
#define TEST_SIZE(_sh_type, _sec_field) \
dyn_test(DYN_TEST_SIZE, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, \
osabi, file)
#define TEST_ENTSIZE(_sh_type, _sec_field) \
dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
sec._sec_field, dyn, dynsec_cnt, ehdr, \
osabi, file)
case DT_FINI:
dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
sec.symtab, sec.dynsym, sec.sunw_ldynsym,
sec.fini, cache, shnum, ehdr, osabi, file);
TEST_ADDR(SHT_PROGBITS, fini);
break;
case DT_FINI_ARRAY:
TEST_ADDR(SHT_FINI_ARRAY, fini_array);
break;
case DT_FINI_ARRAYSZ:
TEST_SIZE(SHT_FINI_ARRAY, fini_array);
break;
case DT_HASH:
TEST_ADDR(SHT_HASH, hash);
break;
case DT_INIT:
dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
sec.symtab, sec.dynsym, sec.sunw_ldynsym,
sec.init, cache, shnum, ehdr, osabi, file);
TEST_ADDR(SHT_PROGBITS, init);
break;
case DT_INIT_ARRAY:
TEST_ADDR(SHT_INIT_ARRAY, init_array);
break;
case DT_INIT_ARRAYSZ:
TEST_SIZE(SHT_INIT_ARRAY, init_array);
break;
case DT_MOVEENT:
TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
break;
case DT_MOVESZ:
TEST_SIZE(SHT_SUNW_move, sunw_move);
break;
case DT_MOVETAB:
TEST_ADDR(SHT_SUNW_move, sunw_move);
break;
case DT_PREINIT_ARRAY:
TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
break;
case DT_PREINIT_ARRAYSZ:
TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
break;
case DT_REL:
if (!dumped)
TEST_ADDR(SHT_REL, rel);
break;
case DT_RELENT:
TEST_ENTSIZE(SHT_REL, rel);
break;
case DT_RELA:
if (!dumped)
TEST_ADDR(SHT_RELA, rela);
break;
case DT_RELAENT:
TEST_ENTSIZE(SHT_RELA, rela);
break;
case DT_STRTAB:
TEST_ADDR(SHT_STRTAB, dynstr);
break;
case DT_STRSZ:
TEST_SIZE(SHT_STRTAB, dynstr);
break;
case DT_SUNW_CAP:
if (osabi_solaris)
TEST_ADDR(SHT_SUNW_cap, sunw_cap);
break;
case DT_SUNW_CAPINFO:
if (osabi_solaris)
TEST_ADDR(SHT_SUNW_capinfo,
sunw_capinfo);
break;
case DT_SUNW_CAPCHAIN:
if (osabi_solaris)
TEST_ADDR(SHT_SUNW_capchain,
sunw_capchain);
break;
case DT_SUNW_SYMTAB:
TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
break;
case DT_SYMENT:
TEST_ENTSIZE(SHT_DYNSYM, dynsym);
break;
case DT_SYMINENT:
TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMINFO:
TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMINSZ:
TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
break;
case DT_SYMTAB:
TEST_ADDR(SHT_DYNSYM, dynsym);
break;
case DT_SUNW_SORTENT:
/*
* This entry is related to both the symsort and
* tlssort sections.
*/
if (osabi_solaris) {
int test_tls =
(sec.sunw_tlssort != NULL);
int test_sym =
(sec.sunw_symsort != NULL) ||
!test_tls;
if (test_sym)
TEST_ENTSIZE(SHT_SUNW_symsort,
sunw_symsort);
if (test_tls)
TEST_ENTSIZE(SHT_SUNW_tlssort,
sunw_tlssort);
}
break;
case DT_SUNW_SYMSORT:
if (osabi_solaris)
TEST_ADDR(SHT_SUNW_symsort,
sunw_symsort);
break;
case DT_SUNW_SYMSORTSZ:
if (osabi_solaris)
TEST_SIZE(SHT_SUNW_symsort,
sunw_symsort);
break;
case DT_SUNW_TLSSORT:
if (osabi_solaris)
TEST_ADDR(SHT_SUNW_tlssort,
sunw_tlssort);
break;
case DT_SUNW_TLSSORTSZ:
if (osabi_solaris)
TEST_SIZE(SHT_SUNW_tlssort,
sunw_tlssort);
break;
case DT_VERDEF:
TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
break;
case DT_VERNEED:
TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
break;
case DT_VERSYM:
TEST_ADDR(SHT_SUNW_versym, sunw_versym);
break;
#undef TEST_ADDR
#undef TEST_SIZE
#undef TEST_ENTSIZE
}
if (name == NULL)
name = MSG_ORIG(MSG_STR_EMPTY);
Elf_dyn_entry(0, dyn, ndx, name,
osabi, ehdr->e_machine);
}
}
}
/*
* Search for and process a MOVE section.
*/
static void
move(Cache *cache, Word shnum, const char *file, uint_t flags)
{
Word cnt;
const char *fmt = NULL;
for (cnt = 1; cnt < shnum; cnt++) {
Word movenum, symnum, ndx;
Sym *syms;
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
Cache *symsec, *strsec;
Move *move;
if (shdr->sh_type != SHT_SUNW_move)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
/*
* Determine the move data and number.
*/
if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
move = (Move *)_cache->c_data->d_buf;
movenum = shdr->sh_size / shdr->sh_entsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = (Sym *)symsec->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
if (fmt == NULL)
fmt = MSG_INTL(MSG_MOVE_ENTRY);
for (ndx = 0; ndx < movenum; move++, ndx++) {
const char *symname;
char index[MAXNDXSIZE], section[BUFSIZ];
Word symndx, shndx;
Sym *sym;
/*
* Check for null entries
*/
if ((move->m_info == 0) && (move->m_value == 0) &&
(move->m_poffset == 0) && (move->m_repeat == 0) &&
(move->m_stride == 0)) {
dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
EC_XWORD(move->m_poffset), 0, 0, 0,
EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
continue;
}
if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
(symndx >= symnum)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADMINFO), file,
_cache->c_name, EC_XWORD(move->m_info));
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
dbg_print(0, fmt, index,
EC_XWORD(move->m_poffset),
ELF_M_SIZE(move->m_info), move->m_repeat,
move->m_stride, move->m_value,
MSG_INTL(MSG_STR_UNKNOWN));
continue;
}
symname = relsymname(cache, _cache, strsec,
symndx, symnum, ndx, syms, section, BUFSIZ, file);
sym = (Sym *)(syms + symndx);
/*
* Additional sanity check.
*/
shndx = sym->st_shndx;
if (!((shndx == SHN_COMMON) ||
(((shndx >= 1) && (shndx <= shnum)) &&
(cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSYM2), file,
_cache->c_name, EC_WORD(symndx),
demangle(symname, flags));
}
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
ELF_M_SIZE(move->m_info), move->m_repeat,
move->m_stride, move->m_value,
demangle(symname, flags));
}
}
}
/*
* parse_note_t is used to track the state used by parse_note_entry()
* between calls, and also to return the results of each call.
*/
typedef struct {
/* pns_ fields track progress through the data */
const char *pns_file; /* File name */
Cache *pns_cache; /* Note section cache entry */
size_t pns_size; /* # unprocessed data bytes */
Word *pns_data; /* # to next unused data byte */
/* pn_ fields return the results for a single call */
Word pn_namesz; /* Value of note namesz field */
Word pn_descsz; /* Value of note descsz field */
Word pn_type; /* Value of note type field */
const char *pn_name; /* if (namesz > 0) ptr to name bytes */
const char *pn_desc; /* if (descsx > 0) ptr to data bytes */
} parse_note_t;
/*
* Extract the various sub-parts of a note entry, and advance the
* data pointer past it.
*
* entry:
* The state pns_ fields contain current values for the Note section
*
* exit:
* On success, True (1) is returned, the state pns_ fields have been
* advanced to point at the start of the next entry, and the information
* for the recovered note entry is found in the state pn_ fields.
*
* On failure, False (0) is returned. The values contained in state
* are undefined.
*/
static int
parse_note_entry(parse_note_t *state)
{
size_t pad, noteoff;
noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
/*
* Make sure we can at least reference the 3 initial entries
* (4-byte words) of the note information block.
*/
if (state->pns_size >= (sizeof (Word) * 3)) {
state->pns_size -= (sizeof (Word) * 3);
} else {
(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
state->pns_file, state->pns_cache->c_name,
EC_WORD(noteoff));
return (0);
}
/*
* Make sure any specified name string can be referenced.
*/
if ((state->pn_namesz = *state->pns_data++) != 0) {
if (state->pns_size >= state->pn_namesz) {
state->pns_size -= state->pn_namesz;
} else {
(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
state->pns_file, state->pns_cache->c_name,
EC_WORD(noteoff), EC_WORD(state->pn_namesz));
return (0);
}
}
/*
* Make sure any specified descriptor can be referenced.
*/
if ((state->pn_descsz = *state->pns_data++) != 0) {
/*
* If namesz isn't a 4-byte multiple, account for any
* padding that must exist before the descriptor.
*/
if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
pad = sizeof (Word) - pad;
state->pns_size -= pad;
}
if (state->pns_size >= state->pn_descsz) {
state->pns_size -= state->pn_descsz;
} else {
(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
state->pns_file, state->pns_cache->c_name,
EC_WORD(noteoff), EC_WORD(state->pn_namesz));
return (0);
}
}
state->pn_type = *state->pns_data++;
/* Name */
if (state->pn_namesz) {
state->pn_name = (char *)state->pns_data;
pad = (state->pn_namesz +
(sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
/* LINTED */
state->pns_data = (Word *)(state->pn_name + pad);
}
/*
* If multiple information blocks exist within a .note section
* account for any padding that must exist before the next
* information block.
*/
if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
pad = sizeof (Word) - pad;
if (state->pns_size > pad)
state->pns_size -= pad;
}
/* Data */
if (state->pn_descsz) {
state->pn_desc = (const char *)state->pns_data;
/* LINTED */
state->pns_data = (Word *)(state->pn_desc +
state->pn_descsz + pad);
}
return (1);
}
/*
* Callback function for use with conv_str_to_c_literal() below.
*/
/*ARGSUSED2*/
static void
c_literal_cb(const void *ptr, size_t size, void *uvalue)
{
(void) fwrite(ptr, size, 1, stdout);
}
/*
* Traverse a note section analyzing each note information block.
* The data buffers size is used to validate references before they are made,
* and is decremented as each element is processed.
*/
void
note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
{
int cnt = 0;
int is_corenote;
int do_swap;
Conv_inv_buf_t inv_buf;
parse_note_t pnstate;
pnstate.pns_file = file;
pnstate.pns_cache = cache;
pnstate.pns_size = size;
pnstate.pns_data = data;
do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
/*
* Print out a single `note' information block.
*/
while (pnstate.pns_size > 0) {
if (parse_note_entry(&pnstate) == 0)
return;
/*
* Is this a Solaris core note? Such notes all have
* the name "CORE".
*/
is_corenote = (ehdr->e_type == ET_CORE) &&
(pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
(strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
MSG_STR_CORE_SIZE + 1) == 0);
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
cnt++;
dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
EC_WORD(pnstate.pn_namesz));
dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
EC_WORD(pnstate.pn_descsz));
if (is_corenote)
dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
else
dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
EC_WORD(pnstate.pn_type));
if (pnstate.pn_namesz) {
dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
/*
* The name string can contain embedded 'null'
* bytes and/or unprintable characters. Also,
* the final NULL is documented in the ELF ABI
* as being included in the namesz. So, display
* the name using C literal string notation, and
* include the terminating NULL in the output.
* We don't show surrounding double quotes, as
* that implies the termination that we are showing
* explicitly.
*/
(void) fwrite(MSG_ORIG(MSG_STR_8SP),
MSG_STR_8SP_SIZE, 1, stdout);
conv_str_to_c_literal(pnstate.pn_name,
pnstate.pn_namesz, c_literal_cb, NULL);
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
}
if (pnstate.pn_descsz) {
int hexdump = 1;
/*
* If this is a core note, let the corenote()
* function handle it.
*/
if (is_corenote) {
/* We only issue the bad arch error once */
static int badnote_done = 0;
corenote_ret_t corenote_ret;
corenote_ret = corenote(ehdr->e_machine,
do_swap, pnstate.pn_type, pnstate.pn_desc,
pnstate.pn_descsz);
switch (corenote_ret) {
case CORENOTE_R_OK_DUMP:
hexdump = 1;
break;
case CORENOTE_R_OK:
hexdump = 0;
break;
case CORENOTE_R_BADDATA:
(void) fprintf(stderr,
MSG_INTL(MSG_NOTE_BADCOREDATA),
file);
break;
case CORENOTE_R_BADARCH:
if (badnote_done)
break;
(void) fprintf(stderr,
MSG_INTL(MSG_NOTE_BADCOREARCH),
file,
conv_ehdr_mach(ehdr->e_machine,
0, &inv_buf));
break;
case CORENOTE_R_BADTYPE:
(void) fprintf(stderr,
MSG_INTL(MSG_NOTE_BADCORETYPE),
file,
EC_WORD(pnstate.pn_type));
break;
}
}
/*
* The default thing when we don't understand
* the note data is to display it as hex bytes.
*/
if (hexdump) {
dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
dump_hex_bytes(pnstate.pn_desc,
pnstate.pn_descsz, 8, 4, 4);
}
}
}
}
/*
* Search for and process .note sections.
*
* Returns the number of note sections seen.
*/
static Word
note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
{
Word cnt, note_cnt = 0;
/*
* Otherwise look for any .note sections.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
if (shdr->sh_type != SHT_NOTE)
continue;
note_cnt++;
if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
continue;
/*
* As these sections are often hand rolled, make sure they're
* properly aligned before proceeding, and issue an error
* as necessary.
*
* Note that we will continue on to display the note even
* if it has bad alignment. We can do this safely, because
* libelf knows the alignment required for SHT_NOTE, and
* takes steps to deliver a properly aligned buffer to us
* even if the actual file is misaligned.
*/
if (shdr->sh_offset & (sizeof (Word) - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
file, _cache->c_name);
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
note_entry(_cache, (Word *)_cache->c_data->d_buf,
/* LINTED */
(Word)_cache->c_data->d_size, ehdr, file);
}
return (note_cnt);
}
/*
* The Linux Standard Base defines a special note named .note.ABI-tag
* that is used to maintain Linux ABI information. Presence of this section
* is a strong indication that the object should be considered to be
* ELFOSABI_LINUX.
*
* This function returns True (1) if such a note is seen, and False (0)
* otherwise.
*/
static int
has_linux_abi_note(Cache *cache, Word shnum, const char *file)
{
Word cnt;
for (cnt = 1; cnt < shnum; cnt++) {
parse_note_t pnstate;
Cache *_cache = &cache[cnt];
Shdr *shdr = _cache->c_shdr;
/*
* Section must be SHT_NOTE, must have the name
* .note.ABI-tag, and must have data.
*/
if ((shdr->sh_type != SHT_NOTE) ||
(strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
_cache->c_name) != 0) ||
(_cache->c_data == NULL) ||
(_cache->c_data->d_buf == NULL))
continue;
pnstate.pns_file = file;
pnstate.pns_cache = _cache;
pnstate.pns_size = _cache->c_data->d_size;
pnstate.pns_data = (Word *)_cache->c_data->d_buf;
while (pnstate.pns_size > 0) {
Word *w;
if (parse_note_entry(&pnstate) == 0)
break;
/*
* The type must be 1, and the name must be "GNU".
* The descsz must be at least 16 bytes.
*/
if ((pnstate.pn_type != 1) ||
(pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
(strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
MSG_STR_CORE_SIZE + 1) != 0) ||
(pnstate.pn_descsz < 16))
continue;
/*
* desc contains 4 32-bit fields. Field 0 must be 0,
* indicating Linux. The second, third, and fourth
* fields represent the earliest Linux kernel
* version compatible with this object.
*/
/*LINTED*/
w = (Word *) pnstate.pn_desc;
if (*w == 0)
return (1);
}
}
return (0);
}
/*
* Determine an individual hash entry. This may be the initial hash entry,
* or an associated chain entry.
*/
static void
hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
uint_t flags, int chain)
{
Sym *sym;
const char *symname, *str;
char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
ulong_t nbkt, nhash;
if (symndx > symn) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
EC_WORD(symndx), EC_WORD(hashndx));
symname = MSG_INTL(MSG_STR_UNKNOWN);
} else {
sym = (Sym *)(syms + symndx);
symname = string(refsec, symndx, strsec, file, sym->st_name);
}
if (chain == 0) {
(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
hashndx);
str = (const char *)_bucket;
} else
str = MSG_ORIG(MSG_STR_EMPTY);
(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
EC_WORD(symndx));
dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
demangle(symname, flags));
/*
* Determine if this string is in the correct bucket.
*/
nhash = elf_hash(symname);
nbkt = nhash % bkts;
if (nbkt != hashndx) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
hsecname, symname, EC_WORD(hashndx), nbkt);
}
}
#define MAXCOUNT 500
static void
hash(Cache *cache, Word shnum, const char *file, uint_t flags)
{
static int count[MAXCOUNT];
Word cnt;
Word ndx, bkts, nchain;
char number[MAXNDXSIZE];
for (cnt = 1; cnt < shnum; cnt++) {
Word *hash, *chain;
Cache *_cache = &cache[cnt];
Shdr *sshdr, *hshdr = _cache->c_shdr;
char *ssecname, *hsecname = _cache->c_name;
Sym *syms;
Word symn;
if (hshdr->sh_type != SHT_HASH)
continue;
/*
* Check the hash table data and size.
*/
if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, hsecname);
continue;
}
if ((_cache->c_data == NULL) ||
(_cache->c_data->d_buf == NULL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, hsecname);
continue;
}
hash = (Word *)_cache->c_data->d_buf;
bkts = *hash++;
nchain = *hash++;
chain = hash + bkts;
/*
* The section holds the sizes in addition to the buckets and
* chains.
*/
if (_cache->c_data->d_size <
(bkts + nchain + 2) * sizeof (uint_t)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, hsecname);
continue;
}
/*
* Get the data buffer for the associated symbol table.
*/
if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, hsecname, EC_WORD(hshdr->sh_link));
continue;
}
_cache = &cache[hshdr->sh_link];
ssecname = _cache->c_name;
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ssecname);
continue;
}
sshdr = _cache->c_shdr;
if ((sshdr->sh_entsize == 0) || (sshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ssecname);
continue;
}
/* LINTED */
symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
/*
* Check that there is a chain for each symbol.
*/
if (symn > nchain) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, ssecname);
continue;
}
/*
* Get the associated string table section.
*/
if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
file, ssecname, EC_WORD(sshdr->sh_link));
continue;
}
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
/*
* Loop through the hash buckets, printing the appropriate
* symbols.
*/
for (ndx = 0; ndx < bkts; ndx++, hash++) {
Word _ndx, _cnt;
if (*hash == 0) {
count[0]++;
continue;
}
/*
* Each hash bucket must contain to a valid chain index.
* Because the symbol table is checked to be the same
* length as the chain array, this also implicitly
* checks those bounds.
*/
if (*hash > nchain) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADCHAINIDX), file,
ssecname, EC_WORD(*hash), EC_WORD(ndx),
EC_WORD(nchain));
continue;
}
hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
ndx, *hash, symn, syms, file, bkts, flags, 0);
/*
* Determine if any other symbols are chained to this
* bucket.
*/
_ndx = chain[*hash];
_cnt = 1;
while (_ndx) {
if (_ndx > nchain) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADCHAINIDX), file,
ssecname, EC_WORD(_ndx),
EC_WORD(ndx), EC_WORD(nchain));
break;
}
hash_entry(_cache, &cache[sshdr->sh_link],
hsecname, ndx, _ndx, symn, syms, file,
bkts, flags, 1);
_ndx = chain[_ndx];
_cnt++;
}
if (_cnt >= MAXCOUNT) {
(void) fprintf(stderr,
MSG_INTL(MSG_HASH_OVERFLW), file,
_cache->c_name, EC_WORD(ndx),
EC_WORD(_cnt));
} else
count[_cnt]++;
}
break;
}
/*
* Print out the count information.
*/
bkts = cnt = 0;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
for (ndx = 0; ndx < MAXCOUNT; ndx++) {
Word _cnt;
if ((_cnt = count[ndx]) == 0)
continue;
(void) snprintf(number, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INTEGER), _cnt);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
EC_WORD(ndx));
bkts += _cnt;
cnt += (Word)(ndx * _cnt);
}
if (cnt) {
(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
bkts);
dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
EC_WORD(cnt));
}
}
static void
group(Cache *cache, Word shnum, const char *file, uint_t flags)
{
Word scnt;
for (scnt = 1; scnt < shnum; scnt++) {
Cache *_cache = &cache[scnt];
Shdr *shdr = _cache->c_shdr;
Word *grpdata, gcnt, grpcnt, symnum, unknown;
Cache *symsec, *strsec;
Sym *syms, *sym;
char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
const char *grpnam;
if (shdr->sh_type != SHT_GROUP)
continue;
if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
continue;
if ((_cache->c_data == NULL) ||
((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
continue;
grpcnt = shdr->sh_size / sizeof (Word);
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, scnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
return;
syms = symsec->c_data->d_buf;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
/*
* The first element of the group defines the group. The
* associated symbol is defined by the sh_link field.
*/
if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
file, _cache->c_name, EC_WORD(shdr->sh_info));
return;
}
(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
if (grpdata[0] & GRP_COMDAT) {
(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
}
if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
size_t len = strlen(flgstrbuf);
(void) snprintf(&flgstrbuf[len],
(MSG_GRP_COMDAT_SIZE + 10 - len),
MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
}
(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
sym = (Sym *)(syms + shdr->sh_info);
/*
* The GNU assembler can use section symbols as the signature
* symbol as described by this comment in the gold linker
* (found via google):
*
* It seems that some versions of gas will create a
* section group associated with a section symbol, and
* then fail to give a name to the section symbol. In
* such a case, use the name of the section.
*
* In order to support such objects, we do the same.
*/
grpnam = string(_cache, 0, strsec, file, sym->st_name);
if (((sym->st_name == 0) || (*grpnam == '\0')) &&
(ELF_ST_TYPE(sym->st_info) == STT_SECTION))
grpnam = cache[sym->st_shndx].c_name;
dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
demangle(grpnam, flags));
for (gcnt = 1; gcnt < grpcnt; gcnt++) {
char index[MAXNDXSIZE];
const char *name;
(void) snprintf(index, MAXNDXSIZE,
MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
if (grpdata[gcnt] >= shnum)
name = MSG_INTL(MSG_GRP_INVALSCN);
else
name = cache[grpdata[gcnt]].c_name;
(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
EC_XWORD(grpdata[gcnt]));
}
}
}
static void
got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
{
Cache *gotcache = NULL, *symtab = NULL;
Addr gotbgn, gotend;
Shdr *gotshdr;
Word cnt, gotents, gotndx;
size_t gentsize;
Got_info *gottable;
char *gotdata;
Sym *gotsym;
Xword gotsymaddr;
uint_t sys_encoding;
/*
* First, find the got.
*/
for (cnt = 1; cnt < shnum; cnt++) {
if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
MSG_ELF_GOT_SIZE) == 0) {
gotcache = &cache[cnt];
break;
}
}
if (gotcache == NULL)
return;
/*
* A got section within a relocatable object is suspicious.
*/
if (ehdr->e_type == ET_REL) {
(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
gotcache->c_name);
}
gotshdr = gotcache->c_shdr;
if (gotshdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, gotcache->c_name);
return;
}
gotbgn = gotshdr->sh_addr;
gotend = gotbgn + gotshdr->sh_size;
/*
* Some architectures don't properly set the sh_entsize for the GOT
* table. If it's not set, default to a size of a pointer.
*/
if ((gentsize = gotshdr->sh_entsize) == 0)
gentsize = sizeof (Xword);
if ((gotcache->c_data == NULL) || (gotcache->c_data->d_buf == NULL))
return;
/* LINTED */
gotents = (Word)(gotshdr->sh_size / gentsize);
gotdata = gotcache->c_data->d_buf;
if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
strerror(err));
return;
}
/*
* Now we scan through all the sections looking for any relocations
* that may be against the GOT. Since these may not be isolated to a
* .rel[a].got section we check them all.
* While scanning sections save the symbol table entry (a symtab
* overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
*/
for (cnt = 1; cnt < shnum; cnt++) {
Word type, symnum;
Xword relndx, relnum, relsize;
void *rels;
Sym *syms;
Cache *symsec, *strsec;
Cache *_cache = &cache[cnt];
Shdr *shdr;
shdr = _cache->c_shdr;
type = shdr->sh_type;
if ((symtab == 0) && (type == SHT_DYNSYM)) {
symtab = _cache;
continue;
}
if (type == SHT_SYMTAB) {
symtab = _cache;
continue;
}
if ((type != SHT_RELA) && (type != SHT_REL))
continue;
/*
* Decide entry size.
*/
if (((relsize = shdr->sh_entsize) == 0) ||
(relsize > shdr->sh_size)) {
if (type == SHT_RELA)
relsize = sizeof (Rela);
else
relsize = sizeof (Rel);
}
/*
* Determine the number of relocations available.
*/
if (shdr->sh_size == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, _cache->c_name);
continue;
}
if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
continue;
rels = _cache->c_data->d_buf;
relnum = shdr->sh_size / relsize;
/*
* Get the data buffer for the associated symbol table and
* string table.
*/
if (stringtbl(cache, 1, cnt, shnum, file,
&symnum, &symsec, &strsec) == 0)
continue;
syms = symsec->c_data->d_buf;
/*
* Loop through the relocation entries.
*/
for (relndx = 0; relndx < relnum; relndx++,
rels = (void *)((char *)rels + relsize)) {
char section[BUFSIZ];
Addr offset;
Got_info *gip;
Word symndx, reltype;
Rela *rela;
Rel *rel;
/*
* Unravel the relocation.
*/
if (type == SHT_RELA) {
rela = (Rela *)rels;
symndx = ELF_R_SYM(rela->r_info);
reltype = ELF_R_TYPE(rela->r_info,
ehdr->e_machine);
offset = rela->r_offset;
} else {
rel = (Rel *)rels;
symndx = ELF_R_SYM(rel->r_info);
reltype = ELF_R_TYPE(rel->r_info,
ehdr->e_machine);
offset = rel->r_offset;
}
/*
* Only pay attention to relocations against the GOT.
*/
if ((offset < gotbgn) || (offset >= gotend))
continue;
if ((gotshdr->sh_entsize == 0) ||
(gotshdr->sh_size == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
file, gotcache->c_name);
continue;
}
/* LINTED */
gotndx = (Word)((offset - gotbgn) /
gotshdr->sh_entsize);
gip = &gottable[gotndx];
if (gip->g_reltype != 0) {
(void) fprintf(stderr,
MSG_INTL(MSG_GOT_MULTIPLE), file,
EC_WORD(gotndx), EC_ADDR(offset));
continue;
}
if (symndx)
gip->g_symname = relsymname(cache, _cache,
strsec, symndx, symnum, relndx, syms,
section, BUFSIZ, file);
gip->g_reltype = reltype;
gip->g_rel = rels;
}
}
if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
symtab, file))
gotsymaddr = gotsym->st_value;
else
gotsymaddr = gotbgn;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
Elf_got_title(0);
sys_encoding = _elf_sys_encoding();
for (gotndx = 0; gotndx < gotents; gotndx++) {
Got_info *gip;
Sword gindex;
Addr gaddr;
Xword gotentry;
gip = &gottable[gotndx];
gaddr = gotbgn + (gotndx * gentsize);
gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
if (gentsize == sizeof (Word))
/* LINTED */
gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
else
/* LINTED */
gotentry = *((Xword *)(gotdata) + gotndx);
Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
ehdr->e_ident[EI_DATA], sys_encoding,
gip->g_reltype, gip->g_rel, gip->g_symname);
}
free(gottable);
}
void
checksum(Elf *elf)
{
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
}
/*
* This variable is used by regular() to communicate the address of
* the section header cache to sort_shdr_ndx_arr(). Unfortunately,
* the qsort() interface does not include a userdata argument by which
* such arbitrary data can be passed, so we are stuck using global data.
*/
static Cache *sort_shdr_ndx_arr_cache;
/*
* Used with qsort() to sort the section indices so that they can be
* used to access the section headers in order of increasing data offset.
*
* entry:
* sort_shdr_ndx_arr_cache - Contains address of
* section header cache.
* v1, v2 - Point at elements of sort_shdr_bits array to be compared.
*
* exit:
* Returns -1 (less than), 0 (equal) or 1 (greater than).
*/
static int
sort_shdr_ndx_arr(const void *v1, const void *v2)
{
Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
return (-1);
if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
return (1);
return (0);
}
static int
shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
size_t shnum, Cache **cache_ret, Word flags)
{
Elf_Scn *scn;
Elf_Data *data;
size_t ndx;
Shdr *nameshdr;
char *names = NULL;
Cache *cache, *_cache;
size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
/*
* Obtain the .shstrtab data buffer to provide the required section
* name strings.
*/
if (shstrndx == SHN_UNDEF) {
/*
* It is rare, but legal, for an object to lack a
* header string table section.
*/
names = NULL;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSCN));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
EC_XWORD(shstrndx));
} else if ((data = elf_getdata(scn, NULL)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETDATA));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
EC_XWORD(shstrndx));
} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
EC_WORD(elf_ndxscn(scn)));
} else if ((names = data->d_buf) == NULL)
(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
/*
* Allocate a cache to maintain a descriptor for each section.
*/
if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
*cache = cache_init;
_cache = cache;
_cache++;
/*
* Allocate an array that will hold the section index for
* each section that has data in the ELF file:
*
* - Is not a NOBITS section
* - Data has non-zero length
*
* Note that shnum is an upper bound on the size required. It
* is likely that we won't use a few of these array elements.
* Allocating a modest amount of extra memory in this case means
* that we can avoid an extra loop to count the number of needed
* items, and can fill this array immediately in the first loop
* below.
*/
if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
shdr_ndx_arr_cnt = 0;
/*
* Traverse the sections of the file. This gathering of data is
* carried out in two passes. First, the section headers are captured
* and the section header names are evaluated. A verification pass is
* then carried out over the section information. Files have been
* known to exhibit overlapping (and hence erroneous) section header
* information.
*
* Finally, the data for each section is obtained. This processing is
* carried out after section verification because should any section
* header overlap occur, and a file needs translating (ie. xlate'ing
* information from a non-native architecture file), then the process
* of translation can corrupt the section header information. Of
* course, if there is any section overlap, the data related to the
* sections is going to be compromised. However, it is the translation
* of this data that has caused problems with elfdump()'s ability to
* extract the data.
*/
for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
ndx++, _cache++) {
char scnndxnm[100];
_cache->c_ndx = ndx;
_cache->c_scn = scn;
if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
EC_WORD(elf_ndxscn(scn)));
}
/*
* If this section has data in the file, include it in
* the array of sections to check for address overlap.
*/
if ((_cache->c_shdr->sh_size != 0) &&
(_cache->c_shdr->sh_type != SHT_NOBITS))
shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
/*
* If a shstrtab exists, assign the section name.
*/
if (names && _cache->c_shdr) {
if (_cache->c_shdr->sh_name &&
/* LINTED */
(nameshdr->sh_size > _cache->c_shdr->sh_name)) {
const char *symname;
char *secname;
secname = names + _cache->c_shdr->sh_name;
/*
* A SUN naming convention employs a "%" within
* a section name to indicate a section/symbol
* name. This originated from the compilers
* -xF option, that places functions into their
* own sections. This convention (which has no
* formal standard) has also been followed for
* COMDAT sections. To demangle the symbol
* name, the name must be separated from the
* section name.
*/
if (((flags & FLG_CTL_DEMANGLE) == 0) ||
((symname = strchr(secname, '%')) == NULL))
_cache->c_name = secname;
else {
size_t secsz = ++symname - secname;
size_t strsz;
symname = demangle(symname, flags);
strsz = secsz + strlen(symname) + 1;
if ((_cache->c_name =
malloc(strsz)) == NULL) {
int err = errno;
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
(void) snprintf(_cache->c_name, strsz,
MSG_ORIG(MSG_FMT_SECSYM),
EC_WORD(secsz), secname, symname);
}
continue;
}
/*
* Generate an error if the section name index is zero
* or exceeds the shstrtab data. Fall through to
* fabricate a section name.
*/
if ((_cache->c_shdr->sh_name == 0) ||
/* LINTED */
(nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_BADSHNAME), file,
EC_WORD(ndx),
EC_XWORD(_cache->c_shdr->sh_name));
}
}
/*
* If there exists no shstrtab data, or a section header has no
* name (an invalid index of 0), then compose a name for the
* section.
*/
(void) snprintf(scnndxnm, sizeof (scnndxnm),
MSG_INTL(MSG_FMT_SCNNDX), ndx);
if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
file, strerror(err));
return (0);
}
(void) strcpy(_cache->c_name, scnndxnm);
}
/*
* Having collected all the sections, validate their address range.
* Cases have existed where the section information has been invalid.
* This can lead to all sorts of other, hard to diagnose errors, as
* each section is processed individually (ie. with elf_getdata()).
* Here, we carry out some address comparisons to catch a family of
* overlapping memory issues we have observed (likely, there are others
* that we have yet to discover).
*
* Note, should any memory overlap occur, obtaining any additional
* data from the file is questionable. However, it might still be
* possible to inspect the ELF header, Programs headers, or individual
* sections, so rather than bailing on an error condition, continue
* processing to see if any data can be salvaged.
*/
if (shdr_ndx_arr_cnt > 1) {
sort_shdr_ndx_arr_cache = cache;
qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
}
for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
Cache *_cache = cache + shdr_ndx_arr[ndx];
Shdr *shdr = _cache->c_shdr;
Off bgn1, bgn = shdr->sh_offset;
Off end1, end = shdr->sh_offset + shdr->sh_size;
size_t ndx1;
/*
* Check the section against all following ones, reporting
* any overlaps. Since we've sorted the sections by offset,
* we can stop after the first comparison that fails. There
* are no overlaps in a properly formed ELF file, in which
* case this algorithm runs in O(n) time. This will degenerate
* to O(n^2) for a completely broken file. Such a file is
* (1) highly unlikely, and (2) unusable, so it is reasonable
* for the analysis to take longer.
*/
for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
Shdr *shdr1 = _cache1->c_shdr;
bgn1 = shdr1->sh_offset;
end1 = shdr1->sh_offset + shdr1->sh_size;
if (((bgn1 <= bgn) && (end1 > bgn)) ||
((bgn1 < end) && (end1 >= end))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_SECMEMOVER), file,
EC_WORD(elf_ndxscn(_cache->c_scn)),
_cache->c_name, EC_OFF(bgn), EC_OFF(end),
EC_WORD(elf_ndxscn(_cache1->c_scn)),
_cache1->c_name, EC_OFF(bgn1),
EC_OFF(end1));
} else { /* No overlap, so can stop */
break;
}
}
/*
* In addition to checking for sections overlapping
* each other (done above), we should also make sure
* the section doesn't overlap the section header array.
*/
bgn1 = ehdr->e_shoff;
end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
if (((bgn1 <= bgn) && (end1 > bgn)) ||
((bgn1 < end) && (end1 >= end))) {
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
EC_OFF(end1),
EC_WORD(elf_ndxscn(_cache->c_scn)),
_cache->c_name, EC_OFF(bgn), EC_OFF(end));
}
}
/*
* Obtain the data for each section.
*/
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
Elf_Scn *scn = _cache->c_scn;
if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETDATA));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
EC_WORD(elf_ndxscn(scn)));
}
/*
* If a string table, verify that it has NULL first and
* final bytes.
*/
if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
(_cache->c_data != NULL) &&
(_cache->c_data->d_buf != NULL) &&
(_cache->c_data->d_size > 0)) {
const char *s = _cache->c_data->d_buf;
if ((*s != '\0') ||
(*(s + _cache->c_data->d_size - 1) != '\0'))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
file, _cache->c_name);
}
}
return (1);
}
/*
* Generate a cache of section headers and related information
* for use by the rest of elfdump. If requested (or the file
* contains no section headers), we generate a fake set of
* headers from the information accessible from the program headers.
* Otherwise, we use the real section headers contained in the file.
*/
static int
create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
size_t shstrndx, size_t *shnum, uint_t *flags)
{
/*
* If there are no section headers, then resort to synthesizing
* section headers from the program headers. This is normally
* only done by explicit request, but in this case there's no
* reason not to go ahead, since the alternative is simply to quit.
*/
if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
*flags |= FLG_CTL_FAKESHDR;
}
if (*flags & FLG_CTL_FAKESHDR) {
if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
return (0);
} else {
if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
cache, *flags) == 0)
return (0);
}
return (1);
}
int
regular(const char *file, int fd, Elf *elf, uint_t flags,
const char *wname, int wfd, uchar_t osabi)
{
enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
Elf_Scn *scn;
Ehdr *ehdr;
size_t ndx, shstrndx, shnum, phnum;
Shdr *shdr;
Cache *cache;
VERSYM_STATE versym = { 0 };
int ret = 0;
int addr_align;
if ((ehdr = elf_getehdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
return (ret);
}
if (elf_getshdrnum(elf, &shnum) == -1) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
return (ret);
}
if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
return (ret);
}
if (elf_getphdrnum(elf, &phnum) == -1) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
return (ret);
}
/*
* If the user requested section headers derived from the
* program headers (-P option) and this file doesn't have
* any program headers (i.e. ET_REL), then we can't do it.
*/
if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
return (ret);
}
if ((scn = elf_getscn(elf, 0)) != NULL) {
if ((shdr = elf_getshdr(scn)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
return (ret);
}
} else
shdr = NULL;
/*
* Print the elf header.
*/
if (flags & FLG_SHOW_EHDR)
Elf_ehdr(0, ehdr, shdr);
/*
* If the section headers or program headers have inadequate
* alignment for the class of object, print a warning. libelf
* can handle such files, but programs that use them can crash
* when they dereference unaligned items.
*
* Note that the AMD64 ABI, although it is a 64-bit architecture,
* allows access to data types smaller than 128-bits to be on
* word alignment.
*/
if (ehdr->e_machine == EM_AMD64)
addr_align = sizeof (Word);
else
addr_align = sizeof (Addr);
if (ehdr->e_phoff & (addr_align - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
if (ehdr->e_shoff & (addr_align - 1))
(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
/*
* Determine the Operating System ABI (osabi) we will use to
* interpret the object.
*/
if (flags & FLG_CTL_OSABI) {
/*
* If the user explicitly specifies '-O none', we need
* to display a completely generic view of the file.
* However, libconv is written to assume that ELFOSABI_NONE
* is equivalent to ELFOSABI_SOLARIS. To get the desired
* effect, we use an osabi that libconv has no knowledge of.
*/
if (osabi == ELFOSABI_NONE)
osabi = ELFOSABI_UNKNOWN4;
} else {
/* Determine osabi from file */
osabi = ehdr->e_ident[EI_OSABI];
if (osabi == ELFOSABI_NONE) {
/*
* Chicken/Egg scenario:
*
* Ideally, we wait to create the section header cache
* until after the program headers are printed. If we
* only output program headers, we can skip building
* the cache entirely.
*
* Proper interpretation of program headers requires
* the osabi, which is supposed to be in the ELF header.
* However, many systems (Solaris and Linux included)
* have a history of setting the osabi to the generic
* SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
* in such cases, but would like to check the object
* to see if it has a Linux .note.ABI-tag section,
* which implies ELFOSABI_LINUX. This requires a
* section header cache.
*
* To break the cycle, we create section headers now
* if osabi is ELFOSABI_NONE, and later otherwise.
* If it succeeds, we use them, if not, we defer
* exiting until after the program headers are out.
*/
if (create_cache(file, fd, elf, ehdr, &cache,
shstrndx, &shnum, &flags) == 0) {
cache_state = CACHE_FAIL;
} else {
cache_state = CACHE_OK;
if (has_linux_abi_note(cache, shnum, file)) {
Conv_inv_buf_t ibuf1, ibuf2;
(void) fprintf(stderr,
MSG_INTL(MSG_INFO_LINUXOSABI), file,
conv_ehdr_osabi(osabi, 0, &ibuf1),
conv_ehdr_osabi(ELFOSABI_LINUX,
0, &ibuf2));
osabi = ELFOSABI_LINUX;
}
}
}
/*
* We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
* Mapping NONE to SOLARIS simplifies the required test.
*/
if (osabi == ELFOSABI_NONE)
osabi = ELFOSABI_SOLARIS;
}
/*
* Print the program headers.
*/
if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
Phdr *phdr;
if ((phdr = elf_getphdr(elf)) == NULL) {
failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
return (ret);
}
for (ndx = 0; ndx < phnum; phdr++, ndx++) {
if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
NULL, ndx, phdr->p_type))
continue;
dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
Elf_phdr(0, osabi, ehdr->e_machine, phdr);
}
}
/*
* If we have flag bits set that explicitly require a show or calc
* operation, but none of them require the section headers, then
* we are done and can return now.
*/
if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
return (ret);
/*
* Everything from this point on requires section headers.
* If we have no section headers, there is no reason to continue.
*
* If we tried above to create the section header cache and failed,
* it is time to exit. Otherwise, create it if needed.
*/
switch (cache_state) {
case CACHE_NEEDED:
if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
&shnum, &flags) == 0)
return (ret);
break;
case CACHE_OK:
break;
case CACHE_FAIL:
return (ret);
}
if (shnum <= 1)
goto done;
/*
* If -w was specified, find and write out the section(s) data.
*/
if (wfd) {
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
ndx, _cache->c_shdr->sh_type) &&
_cache->c_data && _cache->c_data->d_buf) {
if (write(wfd, _cache->c_data->d_buf,
_cache->c_data->d_size) !=
_cache->c_data->d_size) {
int err = errno;
(void) fprintf(stderr,
MSG_INTL(MSG_ERR_WRITE), wname,
strerror(err));
/*
* Return an exit status of 1, because
* the failure is not related to the
* ELF file, but by system resources.
*/
ret = 1;
goto done;
}
}
}
}
/*
* If we have no flag bits set that explicitly require a show or calc
* operation, but match options (-I, -N, -T) were used, then run
* through the section headers and see if we can't deduce show flags
* from the match options given.
*
* We don't do this if -w was specified, because (-I, -N, -T) used
* with -w in lieu of some other option is supposed to be quiet.
*/
if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
for (ndx = 1; ndx < shnum; ndx++) {
Cache *_cache = &cache[ndx];
if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
ndx, _cache->c_shdr->sh_type))
continue;
switch (_cache->c_shdr->sh_type) {
case SHT_PROGBITS:
/*
* Heuristic time: It is usually bad form
* to assume the meaning/format of a PROGBITS
* section based on its name. However, there
* are ABI mandated exceptions. Check for
* these special names.
*/
/* The ELF ABI specifies .interp and .got */
if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_INTERP)) == 0) {
flags |= FLG_SHOW_INTERP;
break;
}
if (strcmp(_cache->c_name,
MSG_ORIG(MSG_ELF_GOT)) == 0) {
flags |= FLG_SHOW_GOT;
break;
}
/*
* The GNU compilers, and amd64 ABI, define
* .eh_frame and .eh_frame_hdr. The Sun
* C++ ABI defines .exception_ranges.
*/
if ((strncmp(_cache->c_name,
MSG_ORIG(MSG_SCN_FRM),
MSG_SCN_FRM_SIZE) == 0) ||
(strncmp(_cache->c_name,
MSG_ORIG(MSG_SCN_EXRANGE),
MSG_SCN_EXRANGE_SIZE) == 0)) {
flags |= FLG_SHOW_UNWIND;
break;
}
break;
case SHT_SYMTAB:
case SHT_DYNSYM:
case SHT_SUNW_LDYNSYM:
case SHT_SUNW_versym:
case SHT_SYMTAB_SHNDX:
flags |= FLG_SHOW_SYMBOLS;
break;
case SHT_RELA:
case SHT_REL:
flags |= FLG_SHOW_RELOC;
break;
case SHT_HASH:
flags |= FLG_SHOW_HASH;
break;
case SHT_DYNAMIC:
flags |= FLG_SHOW_DYNAMIC;
break;
case SHT_NOTE:
flags |= FLG_SHOW_NOTE;
break;
case SHT_GROUP:
flags |= FLG_SHOW_GROUP;
break;
case SHT_SUNW_symsort:
case SHT_SUNW_tlssort:
flags |= FLG_SHOW_SORT;
break;
case SHT_SUNW_cap:
flags |= FLG_SHOW_CAP;
break;
case SHT_SUNW_move:
flags |= FLG_SHOW_MOVE;
break;
case SHT_SUNW_syminfo:
flags |= FLG_SHOW_SYMINFO;
break;
case SHT_SUNW_verdef:
case SHT_SUNW_verneed:
flags |= FLG_SHOW_VERSIONS;
break;
case SHT_AMD64_UNWIND:
flags |= FLG_SHOW_UNWIND;
break;
}
}
}
if (flags & FLG_SHOW_SHDR)
sections(file, cache, shnum, ehdr, osabi);
if (flags & FLG_SHOW_INTERP)
interp(file, cache, shnum, phnum, elf);
if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
versions(cache, shnum, file, flags, &versym);
if (flags & FLG_SHOW_SYMBOLS)
symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
if (flags & FLG_SHOW_HASH)
hash(cache, shnum, file, flags);
if (flags & FLG_SHOW_GOT)
got(cache, shnum, ehdr, file);
if (flags & FLG_SHOW_GROUP)
group(cache, shnum, file, flags);
if (flags & FLG_SHOW_SYMINFO)
syminfo(cache, shnum, ehdr, osabi, file);
if (flags & FLG_SHOW_RELOC)
reloc(cache, shnum, ehdr, file);
if (flags & FLG_SHOW_DYNAMIC)
dynamic(cache, shnum, ehdr, osabi, file);
if (flags & FLG_SHOW_NOTE) {
Word note_cnt;
size_t note_shnum;
Cache *note_cache;
note_cnt = note(cache, shnum, ehdr, file);
/*
* Solaris core files have section headers, but these
* headers do not include SHT_NOTE sections that reference
* the core note sections. This means that note() won't
* find the core notes. Fake section headers (-P option)
* recover these sections, but it is inconvenient to require
* users to specify -P in this situation. If the following
* are all true:
*
* - No note sections were found
* - This is a core file
* - We are not already using fake section headers
*
* then we will automatically generate fake section headers
* and then process them in a second call to note().
*/
if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
!(flags & FLG_CTL_FAKESHDR) &&
(fake_shdr_cache(file, fd, elf, ehdr,
&note_cache, &note_shnum) != 0)) {
(void) note(note_cache, note_shnum, ehdr, file);
fake_shdr_cache_free(note_cache, note_shnum);
}
}
if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
move(cache, shnum, file, flags);
if (flags & FLG_CALC_CHECKSUM)
checksum(elf);
if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
if ((flags & FLG_SHOW_UNWIND) &&
((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
/* Release the memory used to cache section headers */
done:
if (flags & FLG_CTL_FAKESHDR)
fake_shdr_cache_free(cache, shnum);
else
free(cache);
return (ret);
}