/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997, 1998
* Sleepycat Software. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995, 1996
* Keith Bostic. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Olson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#ifndef lint
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <errno.h>
#include <string.h>
#endif
#include "db_int.h"
#include "db_page.h"
#include "btree.h"
/*
* __bam_search --
* Search a btree for a key.
*
* PUBLIC: int __bam_search __P((DBC *,
* PUBLIC: const DBT *, u_int32_t, int, db_recno_t *, int *));
*/
int
{
BTREE *t;
PAGE *h;
recno = 0;
BT_STK_CLR(cp);
/*
* There are several ways we search a btree tree. The flags argument
* specifies if we're acquiring read or write locks, if we position
* to the first or last item in a set of duplicates, if we return
* deleted items, and if we are locking pairs of pages. In addition,
* if we're modifying record numbers, we have to lock the entire tree
* regardless. See btree.h for more details.
*
* If write-locking pages, we need to know whether or not to acquire a
* write lock on a page before getting it. This depends on how deep it
* is in tree, which we don't know until we acquire the root page. So,
* if we need to lock the root page we may have to upgrade it later,
* because we won't get the correct lock initially.
*
* Retrieve the root page.
*/
return (ret);
return (ret);
}
/*
* Decide if we need to save this page; if we do, write lock it.
* We deliberately don't lock-couple on this call. If the tree
* is tiny, i.e., one page, and two threads are busily updating
* the root page, we're almost guaranteed deadlocks galore, as
* each one gets a read lock and then blocks the other's attempt
* for a write lock.
*/
if (!stack &&
return (ret);
return (ret);
}
stack = 1;
}
for (;;) {
/*
* Do a binary search on the current page. If we're searching
* a leaf page, we have to manipulate the indices in groups of
* two. If we're searching an internal page, they're an index
* per page item. If we find an exact match on a leaf page,
* we're done.
*/
for (base = 0,
if ((cmp =
goto match;
goto next;
}
if (cmp > 0) {
--lim;
}
}
/*
* No match found. Base is the smallest index greater than
* key and may be zero or a last + O_INDX index.
*
* If it's a leaf page, return base as the "found" value.
* Delete only deletes exact matches.
*/
*exactp = 0;
goto notfound;
/*
* !!!
* Possibly returning a deleted record -- DB_SET_RANGE,
* DB_KEYFIRST and DB_KEYLAST don't require an exact
* match, and we don't want to walk multiple pages here
* to find an undeleted record. This is handled in the
* __bam_c_search() routine.
*/
return (ret);
}
/*
* If it's not a leaf page, record the internal page (which is
* a parent page for the key). Decrement the base by 1 if it's
* non-zero so that if a split later occurs, the inserted page
* will be to the right of the saved page.
*/
/*
* If we're trying to calculate the record number, sum up
* all the record numbers on this page up to the indx point.
*/
for (i = 0; i < indx; ++i)
if (stack) {
/* Return if this is the lowest page wanted. */
return (ret);
}
if (ret != 0)
goto err;
if ((ret =
goto err;
} else {
/*
* Decide if we want to return a reference to the next
* page in the return stack. If so, lock it and never
* unlock it.
*/
stack = 1;
if ((ret =
goto err;
}
goto err;
}
/* NOTREACHED */
/*
* If we're trying to calculate the record number, add in the
* offset on this page and correct for the fact that records
* in the tree are 0-based.
*/
/*
* If we got here, we know that we have a btree leaf page.
*
* safe because we know that we're not going to leave the page,
* all duplicate sets that are not on overflow pages exist on a
* single leaf page.
*/
else
while (indx > 0 &&
/*
* Now check if we are allowed to return deleted items; if not
* find the next (or previous) non-deleted item.
*/
indx > 0 &&
else
goto notfound;
}
return (ret);
ret = DB_NOTFOUND;
BT_STK_POP(cp);
__bam_stkrel(dbc, 0);
}
return (ret);
}
/*
* __bam_stkrel --
* Release all pages currently held in the stack.
*
* PUBLIC: int __bam_stkrel __P((DBC *, int));
*/
int
int nolocks;
{
/* Release inner pages first. */
if (nolocks)
else
}
/* Clear the stack, all pages have been released. */
BT_STK_CLR(cp);
return (0);
}
/*
* __bam_stkgrow --
* Grow the stack.
*
* PUBLIC: int __bam_stkgrow __P((CURSOR *));
*/
int
{
EPG *p;
int ret;
return (ret);
return (0);
}