/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* rcapd is a long-running daemon enforcing project-based resource caps (see
* rcapd(1M)). Each instance of a process aggregate (project or, generically,
* "collection") may have a memory cap. A single thread monitors the resource
* utilization of capped collections, enforces caps when they are exceeded (and
* other conditions are met), and incorporates changes in configuration or
* caps. Each of these actions occurs not more frequently than the rate
* specified with rcapadm(1M).
*/
#include <sys/priocntl.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sysinfo.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/time.h>
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <kstat.h>
#include <libintl.h>
#include <limits.h>
#include <locale.h>
#include <priv.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <libscf.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <zone.h>
#include <assert.h>
#include <sys/vm_usage.h>
#include "rcapd.h"
#include "rcapd_mapping.h"
#include "rcapd_rfd.h"
#include "rcapd_stat.h"
#include "utils.h"
#define POSITIVE_MIN(x, y) \
(((x) <= 0) ? (y) : ((y) <= 0) ? (x) : MIN(x, y))
#define NEXT_EVENT_TIME(base, seconds) \
(((int)seconds > 0) ? (base + (hrtime_t)seconds * (hrtime_t)NANOSEC) \
: (hrtime_t)0)
#define NEXT_REPORT_EVENT_TIME(base, seconds) \
((rcfg.rcfg_stat_file[0] != 0) ? \
NEXT_EVENT_TIME(gethrtime(), seconds) : (hrtime_t)0)
#define EVENT_TIME(time, eventtime) \
(((time) > (eventtime)) && (eventtime) != 0)
#define STAT_TEMPLATE_SUFFIX ".XXXXXX" /* suffix of mkstemp() arg */
#define DAEMON_UID 1 /* uid to use */
#define CAPPED_PROJECT 0x01
#define CAPPED_ZONE 0x02
typedef struct soft_scan_arg {
uint64_t ssa_sum_excess;
int64_t ssa_scan_goal;
boolean_t ssa_project_over_cap;
} soft_scan_arg_t;
typedef struct sample_col_arg {
boolean_t sca_any_over_cap;
boolean_t sca_project_over_cap;
} sample_col_arg_t;
static int debug_mode = 0; /* debug mode flag */
static pid_t rcapd_pid; /* rcapd's pid to ensure it's not */
/* scanned */
static kstat_ctl_t *kctl; /* kstat chain */
static int memory_pressure = 0; /* physical memory utilization (%) */
static int memory_pressure_sample = 0; /* count of samples */
static long page_size_kb = 0; /* system page size in KB */
static size_t nvmu_vals = 0; /* # of kernel RSS/swap vals in array */
static size_t vmu_vals_len = 0; /* size of RSS/swap vals array */
static vmusage_t *vmu_vals = NULL; /* snapshot of kernel RSS/swap values */
static hrtime_t next_report; /* time of next report */
static int termination_signal = 0; /* terminating signal */
static zoneid_t my_zoneid = (zoneid_t)-1;
static lcollection_t *gz_col; /* global zone collection */
rcfg_t rcfg;
/*
* Updated when we re-read the collection configurations if this rcapd instance
* is running in the global zone and the global zone is capped.
*/
boolean_t gz_capped = B_FALSE;
/*
* Flags.
*/
static int ever_ran;
int should_run;
static int should_reconfigure;
static int verify_statistics(void);
static int update_statistics(void);
/*
* Checks if a process is marked 'system'. Returns FALSE only when it is not.
*/
static boolean_t
proc_issystem(pid_t pid)
{
char pc_clname[PC_CLNMSZ];
if (priocntl(P_PID, pid, PC_GETXPARMS, NULL, PC_KY_CLNAME, pc_clname,
PC_KY_NULL) != -1) {
return (strcmp(pc_clname, "SYS") == 0);
} else {
debug("cannot get class-specific scheduling parameters; "
"assuming system process\n");
return (B_TRUE);
}
}
static void
lprocess_insert_mark(psinfo_t *psinfop)
{
pid_t pid = psinfop->pr_pid;
/* flag indicating whether the process should be scanned. */
int unscannable = psinfop->pr_nlwp == 0;
rcid_t colid;
lcollection_t *lcol;
lprocess_t *lproc;
/*
* Determine which collection to put this process into. We only have
* to worry about tracking both zone and project capped processes if
* this rcapd instance is running in the global zone, since we'll only
* see processes in our own projects in a non-global zone. In the
* global zone, if the process belongs to a non-global zone, we only
* need to track it for the capped non-global zone collection. For
* global zone processes, we first attempt to put the process into a
* capped project collection. On the second pass into this function
* the projid will be cleared so we will just track the process for the
* global zone collection as a whole.
*/
if (psinfop->pr_zoneid == my_zoneid && psinfop->pr_projid != -1) {
colid.rcid_type = RCIDT_PROJECT;
colid.rcid_val = psinfop->pr_projid;
} else {
/* try to add to zone collection */
colid.rcid_type = RCIDT_ZONE;
colid.rcid_val = psinfop->pr_zoneid;
}
if ((lcol = lcollection_find(&colid)) == NULL)
return;
/*
* If the process is already being tracked, update the unscannable flag,
* as determined by the caller, from the process's psinfo.
*/
lproc = lcol->lcol_lprocess;
while (lproc != NULL) {
if (lproc->lpc_pid == pid) {
lproc->lpc_mark = 1;
if (unscannable != 0 && lproc->lpc_unscannable == 0) {
debug("process %d: became unscannable\n",
(int)lproc->lpc_pid);
lproc->lpc_unscannable = 1;
}
return;
}
lproc = lproc->lpc_next;
}
/*
* We've fallen off the list without finding our current process;
* insert it at the list head.
*/
if ((lproc = malloc(sizeof (*lproc))) == NULL)
debug("insufficient memory to track new process %d", (int)pid);
else {
(void) bzero(lproc, sizeof (*lproc));
lproc->lpc_pid = pid;
lproc->lpc_mark = 1;
lproc->lpc_collection = lcol;
lproc->lpc_psinfo_fd = -1;
lproc->lpc_pgdata_fd = -1;
lproc->lpc_xmap_fd = -1;
/*
* If the caller didn't flag this process as unscannable
* already, do some more checking.
*/
lproc->lpc_unscannable = unscannable || proc_issystem(pid);
#ifdef DEBUG
/*
* Verify the sanity of lprocess. It should not contain the
* process we are about to prepend.
*/
if (lcollection_member(lcol, lproc)) {
lprocess_t *cur = lcol->lcol_lprocess;
debug("The collection %lld already has these members, "
"including me, %d!\n",
(long long)lcol->lcol_id.rcid_val,
(int)lproc->lpc_pid);
while (cur != NULL) {
debug("\t%d\n", (int)cur->lpc_pid);
cur = cur->lpc_next;
}
info(gettext("process already on lprocess\n"));
abort();
}
#endif /* DEBUG */
lproc->lpc_next = lcol->lcol_lprocess;
if (lproc->lpc_next != NULL)
lproc->lpc_next->lpc_prev = lproc;
lproc->lpc_prev = NULL;
lcol->lcol_lprocess = lproc;
debug("tracking %s %ld %d %s%s\n",
(colid.rcid_type == RCIDT_PROJECT ? "project" : "zone"),
(long)colid.rcid_val,
(int)pid, psinfop->pr_psargs,
(lproc->lpc_unscannable != 0) ? " (not scannable)" : "");
lcol->lcol_stat.lcols_proc_in++;
}
}
static int
list_walk_process_cb(lcollection_t *lcol, void *arg)
{
int (*cb)(lcollection_t *, lprocess_t *) =
(int(*)(lcollection_t *, lprocess_t *))arg;
lprocess_t *member;
lprocess_t *next;
member = lcol->lcol_lprocess;
while (member != NULL) {
pid_t pid = member->lpc_pid;
next = member->lpc_next;
debug_high("list_walk_all lpc %d\n", (int)pid);
if (cb(lcol, member) != 0) {
debug_high("list_walk_all aborted at lpc %d\n",
(int)pid);
return (1);
}
member = next;
}
return (0);
}
/*
* Invoke the given callback for each process in each collection. Callbacks
* are allowed to change the linkage of the process on which they act.
*/
static void
list_walk_all(int (*cb)(lcollection_t *, lprocess_t *))
{
list_walk_collection(list_walk_process_cb, (void *)cb);
}
static void
revoke_psinfo(rfd_t *rfd)
{
lprocess_t *lpc = (lprocess_t *)rfd->rfd_data;
if (lpc != NULL) {
debug("revoking psinfo fd for process %d\n", (int)lpc->lpc_pid);
ASSERT(lpc->lpc_psinfo_fd != -1);
lpc->lpc_psinfo_fd = -1;
} else
debug("revoking psinfo fd for unknown process\n");
}
/*
* Retrieve a process's psinfo via an already-opened or new file descriptor.
* The supplied descriptor will be closed on failure. An optional callback
* will be invoked with the last descriptor tried, and a supplied callback
* argument, as its arguments, such that the new descriptor may be cached, or
* an old one may be invalidated. If the result of the callback is zero, the
* the caller is to assume responsibility for the file descriptor, to close it
* with rfd_close().
*
* On failure, a nonzero value is returned.
*/
int
get_psinfo(pid_t pid, psinfo_t *psinfo, int cached_fd,
int(*fd_update_cb)(void *, int), void *arg, lprocess_t *lpc)
{
int fd;
int can_try_uncached;
ASSERT(!(cached_fd > 0 && fd_update_cb == NULL));
do {
if (cached_fd >= 0) {
fd = cached_fd;
can_try_uncached = 1;
debug_high("%d/psinfo, trying cached fd %d\n",
(int)pid, fd);
} else {
char pathbuf[PROC_PATH_MAX];
can_try_uncached = 0;
(void) snprintf(pathbuf, sizeof (pathbuf),
"/proc/%d/psinfo", (int)pid);
if ((fd = rfd_open(pathbuf, 1, RFD_PSINFO,
revoke_psinfo, lpc, O_RDONLY, 0000)) < 0) {
debug("cannot open %s", pathbuf);
break;
} else
debug_high("opened %s, fd %d\n", pathbuf, fd);
}
if (pread(fd, psinfo, sizeof (*psinfo), 0) ==
sizeof (*psinfo) && psinfo->pr_pid == pid)
break;
else {
debug_high("closed fd %d\n", fd);
if (rfd_close(fd) != 0)
debug("could not close fd %d", fd);
fd = cached_fd = -1;
}
} while (can_try_uncached == 1);
if (fd_update_cb == NULL || fd_update_cb(arg, fd) != 0)
if (fd >= 0) {
debug_high("closed %s fd %d\n", fd_update_cb == NULL ?
"uncached" : "cached", fd);
if (rfd_close(fd) != 0)
debug("could not close fd %d", fd);
}
debug_high("get_psinfo ret %d, fd %d, %s\n", ((fd >= 0) ? 0 : -1), fd,
fd_update_cb != NULL ? "cached" : "uncached");
return ((fd >= 0) ? 0 : -1);
}
/*
* Retrieve the collection membership of all processes and update the psinfo of
* those non-system, non-zombie ones in collections. For global zone processes,
* we first attempt to put the process into a capped project collection. We
* also want to track the process for the global zone collection as a whole.
*/
static void
proc_cb(const pid_t pid)
{
psinfo_t psinfo;
if (get_psinfo(pid, &psinfo, -1, NULL, NULL, NULL) == 0) {
lprocess_insert_mark(&psinfo);
if (gz_capped && psinfo.pr_zoneid == GLOBAL_ZONEID) {
/*
* We also want to track this process for the global
* zone as a whole so add it to the global zone
* collection as well.
*/
psinfo.pr_projid = -1;
lprocess_insert_mark(&psinfo);
}
}
}
/*
* Cache the process' psinfo fd, taking responsibility for freeing it.
*/
int
lprocess_update_psinfo_fd_cb(void *arg, int fd)
{
lprocess_t *lpc = arg;
lpc->lpc_psinfo_fd = fd;
return (0);
}
/*
* Get the system pagesize.
*/
static void
get_page_size(void)
{
page_size_kb = sysconf(_SC_PAGESIZE) / 1024;
debug("physical page size: %luKB\n", page_size_kb);
}
static void
tm_fmt(char *msg, hrtime_t t1, hrtime_t t2)
{
hrtime_t diff = t2 - t1;
if (diff < MILLISEC)
debug("%s: %lld nanoseconds\n", msg, diff);
else if (diff < MICROSEC)
debug("%s: %.2f microseconds\n", msg, (float)diff / MILLISEC);
else if (diff < NANOSEC)
debug("%s: %.2f milliseconds\n", msg, (float)diff / MICROSEC);
else
debug("%s: %.2f seconds\n", msg, (float)diff / NANOSEC);
}
/*
* Get the zone's & project's RSS from the kernel.
*/
static void
rss_sample(boolean_t my_zone_only, uint_t col_types)
{
size_t nres;
size_t i;
uint_t flags;
hrtime_t t1, t2;
if (my_zone_only) {
flags = VMUSAGE_ZONE;
} else {
flags = 0;
if (col_types & CAPPED_PROJECT)
flags |= VMUSAGE_PROJECTS;
if (col_types & CAPPED_ZONE && my_zoneid == GLOBAL_ZONEID)
flags |= VMUSAGE_ALL_ZONES;
}
debug("vmusage sample flags 0x%x\n", flags);
if (flags == 0)
return;
again:
/* try the current buffer to see if the list will fit */
nres = vmu_vals_len;
t1 = gethrtime();
if (getvmusage(flags, my_zone_only ? 0 : rcfg.rcfg_rss_sample_interval,
vmu_vals, &nres) != 0) {
if (errno != EOVERFLOW) {
warn(gettext("can't read RSS from kernel\n"));
return;
}
}
t2 = gethrtime();
tm_fmt("getvmusage time", t1, t2);
debug("kernel nres %lu\n", (ulong_t)nres);
if (nres > vmu_vals_len) {
/* array size is now too small, increase it and try again */
free(vmu_vals);
if ((vmu_vals = (vmusage_t *)calloc(nres,
sizeof (vmusage_t))) == NULL) {
warn(gettext("out of memory: could not read RSS from "
"kernel\n"));
vmu_vals_len = nvmu_vals = 0;
return;
}
vmu_vals_len = nres;
goto again;
}
nvmu_vals = nres;
debug("vmusage_sample\n");
for (i = 0; i < nvmu_vals; i++) {
debug("%d: id: %d, type: 0x%x, rss_all: %llu (%lluKB), "
"swap: %llu\n", (int)i, (int)vmu_vals[i].vmu_id,
vmu_vals[i].vmu_type,
(unsigned long long)vmu_vals[i].vmu_rss_all,
(unsigned long long)vmu_vals[i].vmu_rss_all / 1024,
(unsigned long long)vmu_vals[i].vmu_swap_all);
}
}
static void
update_col_rss(lcollection_t *lcol)
{
int i;
lcol->lcol_rss = 0;
lcol->lcol_image_size = 0;
for (i = 0; i < nvmu_vals; i++) {
if (vmu_vals[i].vmu_id != lcol->lcol_id.rcid_val)
continue;
if (vmu_vals[i].vmu_type == VMUSAGE_ZONE &&
lcol->lcol_id.rcid_type != RCIDT_ZONE)
continue;
if (vmu_vals[i].vmu_type == VMUSAGE_PROJECTS &&
lcol->lcol_id.rcid_type != RCIDT_PROJECT)
continue;
/* we found the right RSS entry, update the collection vals */
lcol->lcol_rss = vmu_vals[i].vmu_rss_all / 1024;
lcol->lcol_image_size = vmu_vals[i].vmu_swap_all / 1024;
break;
}
}
/*
* Sample the collection RSS, updating the collection's statistics with the
* results. Also, sum the rss of all capped projects & return true if
* the collection is over cap.
*/
static int
rss_sample_col_cb(lcollection_t *lcol, void *arg)
{
int64_t excess;
uint64_t rss;
sample_col_arg_t *col_argp = (sample_col_arg_t *)arg;
update_col_rss(lcol);
lcol->lcol_stat.lcols_rss_sample++;
rss = lcol->lcol_rss;
excess = rss - lcol->lcol_rss_cap;
if (excess > 0) {
lcol->lcol_stat.lcols_rss_act_sum += rss;
col_argp->sca_any_over_cap = B_TRUE;
if (lcol->lcol_id.rcid_type == RCIDT_PROJECT)
col_argp->sca_project_over_cap = B_TRUE;
}
lcol->lcol_stat.lcols_rss_sum += rss;
if (lcol->lcol_stat.lcols_min_rss > rss)
lcol->lcol_stat.lcols_min_rss = rss;
if (lcol->lcol_stat.lcols_max_rss < rss)
lcol->lcol_stat.lcols_max_rss = rss;
return (0);
}
/*
* Determine if we have capped projects, capped zones or both.
*/
static int
col_type_cb(lcollection_t *lcol, void *arg)
{
uint_t *col_type = (uint_t *)arg;
/* skip uncapped collections */
if (lcol->lcol_rss_cap == 0)
return (1);
if (lcol->lcol_id.rcid_type == RCIDT_PROJECT)
*col_type |= CAPPED_PROJECT;
else
*col_type |= CAPPED_ZONE;
/* once we know everything is capped, we can stop looking */
if ((*col_type & CAPPED_ZONE) && (*col_type & CAPPED_PROJECT))
return (1);
return (0);
}
/*
* Open /proc and walk entries.
*/
static void
proc_walk_all(void (*cb)(const pid_t))
{
DIR *pdir;
struct dirent *dirent;
pid_t pid;
(void) rfd_reserve(1);
if ((pdir = opendir("/proc")) == NULL)
die(gettext("couldn't open /proc!"));
while ((dirent = readdir(pdir)) != NULL) {
if (strcmp(".", dirent->d_name) == 0 ||
strcmp("..", dirent->d_name) == 0)
continue;
pid = atoi(dirent->d_name);
ASSERT(pid != 0 || strcmp(dirent->d_name, "0") == 0);
if (pid == rcapd_pid)
continue;
else
cb(pid);
}
(void) closedir(pdir);
}
/*
* Clear unmarked callback.
*/
/*ARGSUSED*/
static int
sweep_process_cb(lcollection_t *lcol, lprocess_t *lpc)
{
if (lpc->lpc_mark) {
lpc->lpc_mark = 0;
} else {
debug("process %d finished\n", (int)lpc->lpc_pid);
lprocess_free(lpc);
}
return (0);
}
/*
* Print, for debugging purposes, a collection's recently-sampled RSS and
* excess.
*/
/*ARGSUSED*/
static int
excess_print_cb(lcollection_t *lcol, void *arg)
{
int64_t excess = lcol->lcol_rss - lcol->lcol_rss_cap;
debug("%s %s rss/cap: %llu/%llu, excess = %lld kB\n",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ? "project" : "zone"),
lcol->lcol_name,
(unsigned long long)lcol->lcol_rss,
(unsigned long long)lcol->lcol_rss_cap,
(long long)excess);
return (0);
}
/*
* Scan those collections which have exceeded their caps.
*
* If we're running in the global zone it might have a cap. We don't want to
* do any capping for the global zone yet since we might get under the cap by
* just capping the projects in the global zone.
*/
/*ARGSUSED*/
static int
scan_cb(lcollection_t *lcol, void *arg)
{
int64_t excess;
/* skip over global zone collection for now but keep track for later */
if (lcol->lcol_id.rcid_type == RCIDT_ZONE &&
lcol->lcol_id.rcid_val == GLOBAL_ZONEID) {
gz_col = lcol;
return (0);
}
if ((excess = lcol->lcol_rss - lcol->lcol_rss_cap) > 0) {
scan(lcol, excess);
lcol->lcol_stat.lcols_scan++;
}
return (0);
}
/*
* Scan the global zone collection and see if it still exceeds its cap.
* We take into account the effects of capping any global zone projects here.
*/
static void
scan_gz(lcollection_t *lcol, boolean_t project_over_cap)
{
int64_t excess;
/*
* If we had projects over their cap and the global zone was also over
* its cap then we need to get the up-to-date global zone rss to
* determine if we are still over the global zone cap. We might have
* gone under while we scanned the capped projects. If there were no
* projects over cap then we can use the rss value we already have for
* the global zone.
*/
excess = lcol->lcol_rss - lcol->lcol_rss_cap;
if (project_over_cap && excess > 0) {
rss_sample(B_TRUE, CAPPED_ZONE);
update_col_rss(lcol);
excess = lcol->lcol_rss - lcol->lcol_rss_cap;
}
if (excess > 0) {
debug("global zone excess %lldKB\n", (long long)excess);
scan(lcol, excess);
lcol->lcol_stat.lcols_scan++;
}
}
/*
* Do a soft scan of those collections which have excesses. A soft scan is one
* in which the cap enforcement pressure is taken into account. The difference
* between the utilized physical memory and the cap enforcement pressure will
* be scanned-for, and each collection will be scanned proportionally by their
* present excesses.
*/
static int
soft_scan_cb(lcollection_t *lcol, void *a)
{
int64_t excess;
soft_scan_arg_t *arg = a;
/* skip over global zone collection for now but keep track for later */
if (lcol->lcol_id.rcid_type == RCIDT_ZONE &&
lcol->lcol_id.rcid_val == GLOBAL_ZONEID) {
gz_col = lcol;
return (0);
}
if ((excess = lcol->lcol_rss - lcol->lcol_rss_cap) > 0) {
int64_t adjusted_excess =
excess * arg->ssa_scan_goal / arg->ssa_sum_excess;
debug("%s %ld excess %lld scan_goal %lld sum_excess %llu, "
"scanning %lld\n",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ?
"project" : "zone"),
(long)lcol->lcol_id.rcid_val,
(long long)excess, (long long)arg->ssa_scan_goal,
(unsigned long long)arg->ssa_sum_excess,
(long long)adjusted_excess);
scan(lcol, adjusted_excess);
lcol->lcol_stat.lcols_scan++;
}
return (0);
}
static void
soft_scan_gz(lcollection_t *lcol, void *a)
{
int64_t excess;
soft_scan_arg_t *arg = a;
/*
* If we had projects over their cap and the global zone was also over
* its cap then we need to get the up-to-date global zone rss to
* determine if we are still over the global zone cap. We might have
* gone under while we scanned the capped projects. If there were no
* projects over cap then we can use the rss value we already have for
* the global zone.
*/
excess = lcol->lcol_rss - lcol->lcol_rss_cap;
if (arg->ssa_project_over_cap && excess > 0) {
rss_sample(B_TRUE, CAPPED_ZONE);
update_col_rss(lcol);
excess = lcol->lcol_rss - lcol->lcol_rss_cap;
}
if (excess > 0) {
int64_t adjusted_excess =
excess * arg->ssa_scan_goal / arg->ssa_sum_excess;
debug("%s %ld excess %lld scan_goal %lld sum_excess %llu, "
"scanning %lld\n",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ?
"project" : "zone"),
(long)lcol->lcol_id.rcid_val,
(long long)excess, (long long)arg->ssa_scan_goal,
(unsigned long long)arg->ssa_sum_excess,
(long long)adjusted_excess);
scan(lcol, adjusted_excess);
lcol->lcol_stat.lcols_scan++;
}
}
/*
* When a scan could happen, but caps aren't enforced tick the
* lcols_unenforced_cap counter.
*/
/*ARGSUSED*/
static int
unenforced_cap_cb(lcollection_t *lcol, void *arg)
{
lcol->lcol_stat.lcols_unenforced_cap++;
return (0);
}
/*
* Update the count of physically installed memory.
*/
static void
update_phys_total(void)
{
uint64_t old_phys_total;
old_phys_total = phys_total;
phys_total = (uint64_t)sysconf(_SC_PHYS_PAGES) * page_size_kb;
if (phys_total != old_phys_total)
debug("physical memory%s: %lluM\n", (old_phys_total == 0 ?
"" : " adjusted"), (unsigned long long)(phys_total / 1024));
}
/*
* Unlink a process from its collection, updating relevant statistics, and
* freeing its associated memory.
*/
void
lprocess_free(lprocess_t *lpc)
{
pid_t pid;
lpc->lpc_collection->lcol_stat.lcols_proc_out++;
if (lpc->lpc_prev != NULL)
lpc->lpc_prev->lpc_next = lpc->lpc_next;
if (lpc->lpc_next != NULL)
lpc->lpc_next->lpc_prev = lpc->lpc_prev;
if (lpc->lpc_collection->lcol_lprocess == lpc)
lpc->lpc_collection->lcol_lprocess = (lpc->lpc_next !=
lpc ? lpc->lpc_next : NULL);
lpc->lpc_next = lpc->lpc_prev = NULL;
if (lpc->lpc_prpageheader != NULL)
free(lpc->lpc_prpageheader);
if (lpc->lpc_xmap != NULL)
free(lpc->lpc_xmap);
if (lpc->lpc_psinfo_fd >= 0) {
if (rfd_close(lpc->lpc_psinfo_fd) != 0)
debug("could not close %d lpc_psinfo_fd %d",
(int)lpc->lpc_pid, lpc->lpc_psinfo_fd);
lpc->lpc_psinfo_fd = -1;
}
if (lpc->lpc_pgdata_fd >= 0) {
if (rfd_close(lpc->lpc_pgdata_fd) != 0)
debug("could not close %d lpc_pgdata_fd %d",
(int)lpc->lpc_pid, lpc->lpc_pgdata_fd);
lpc->lpc_pgdata_fd = -1;
}
if (lpc->lpc_xmap_fd >= 0) {
if (rfd_close(lpc->lpc_xmap_fd) != 0)
debug("could not close %d lpc_xmap_fd %d",
(int)lpc->lpc_pid, lpc->lpc_xmap_fd);
lpc->lpc_xmap_fd = -1;
}
if (lpc->lpc_ignore != NULL)
lmapping_free(&lpc->lpc_ignore);
pid = lpc->lpc_pid;
free(lpc);
debug_high("process %d freed\n", (int)pid);
}
/*
* Collection clear callback.
*/
/*ARGSUSED*/
static int
collection_clear_cb(lcollection_t *lcol, void *arg)
{
lcol->lcol_mark = 0;
return (0);
}
/*
* Respond to a terminating signal by setting a termination flag.
*/
/*ARGSUSED*/
static void
terminate_signal(int signal)
{
if (termination_signal == 0)
termination_signal = signal;
should_run = 0;
}
/*
* Handle any synchronous or asynchronous signals that would ordinarily cause a
* process to abort.
*/
/*ARGSUSED*/
static void
abort_signal(int signal)
{
/*
* Allow the scanner to make a last-ditch effort to resume any stopped
* processes.
*/
scan_abort();
abort();
}
/*
* Clean up collections which have been removed due to configuration. Unlink
* the collection from lcollection and free it.
*/
/*ARGSUSED*/
static int
collection_sweep_cb(lcollection_t *lcol, void *arg)
{
if (lcol->lcol_mark == 0) {
debug("freeing %s %s\n",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ?
"project" : "zone"), lcol->lcol_name);
lcollection_free(lcol);
}
return (0);
}
/*
* Set those variables which depend on the global configuration.
*/
static void
finish_configuration(void)
{
/*
* Warn that any lnode (or non-project) mode specification (by an SRM
* 1.3 configuration file, for example) is ignored.
*/
if (strcmp(rcfg.rcfg_mode_name, "project") != 0) {
warn(gettext("%s mode specification ignored -- using project"
" mode\n"), rcfg.rcfg_mode_name);
rcfg.rcfg_mode_name = "project";
rcfg.rcfg_mode = rctype_project;
}
}
/*
* Cause the configuration to be reread and applied.
*/
static void
reread_configuration(void)
{
rcfg_t rcfg_new;
if (rcfg_read(&rcfg_new, update_statistics) != E_SUCCESS) {
warn(gettext("can't reread configuration \n"));
exit(SMF_EXIT_ERR_CONFIG);
} else {
/*
* Done reading configuration. Remove existing
* collections in case there is a change in collection type.
*/
if (rcfg.rcfg_mode != rcfg_new.rcfg_mode) {
list_walk_collection(collection_clear_cb, NULL);
list_walk_collection(collection_sweep_cb, NULL);
}
/*
* Make the newly-read configuration the global one, and update
* any variables that depend on it.
*/
rcfg = rcfg_new;
finish_configuration();
}
}
/*
* First, examine changes, additions, and deletions to cap definitions.
* Then, set the next event time.
*/
static void
reconfigure(hrtime_t now, hrtime_t *next_configuration,
hrtime_t *next_proc_walk, hrtime_t *next_rss_sample)
{
debug("reconfigure...\n");
/*
* Walk the lcollection, marking active collections so inactive ones
* can be freed.
*/
list_walk_collection(collection_clear_cb, NULL);
lcollection_update(LCU_ACTIVE_ONLY); /* mark */
list_walk_collection(collection_sweep_cb, NULL);
*next_configuration = NEXT_EVENT_TIME(now,
rcfg.rcfg_reconfiguration_interval);
/*
* Reset each event time to the shorter of the previous and new
* intervals.
*/
if (next_report == 0 && rcfg.rcfg_report_interval > 0)
next_report = now;
else
next_report = POSITIVE_MIN(next_report,
NEXT_REPORT_EVENT_TIME(now, rcfg.rcfg_report_interval));
if (*next_proc_walk == 0 && rcfg.rcfg_proc_walk_interval > 0)
*next_proc_walk = now;
else
*next_proc_walk = POSITIVE_MIN(*next_proc_walk,
NEXT_EVENT_TIME(now, rcfg.rcfg_proc_walk_interval));
if (*next_rss_sample == 0 && rcfg.rcfg_rss_sample_interval > 0)
*next_rss_sample = now;
else
*next_rss_sample = POSITIVE_MIN(*next_rss_sample,
NEXT_EVENT_TIME(now, rcfg.rcfg_rss_sample_interval));
}
/*
* Respond to SIGHUP by triggering the rereading the configuration and cap
* definitions.
*/
/*ARGSUSED*/
static void
sighup(int signal)
{
should_reconfigure = 1;
}
/*
* Print, for debugging purposes, each collection's interval statistics.
*/
/*ARGSUSED*/
static int
simple_report_collection_cb(lcollection_t *lcol, void *arg)
{
#define DELTA(field) \
(unsigned long long)( \
(lcol->lcol_stat.field - lcol->lcol_stat_old.field))
debug("%s %s status: succeeded/attempted (k): %llu/%llu, "
"ineffective/scans/unenforced/samplings: %llu/%llu/%llu/%llu, RSS "
"min/max (k): %llu/%llu, cap %llu kB, processes/thpt: %llu/%llu, "
"%llu scans over %llu ms\n",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ? "project" : "zone"),
lcol->lcol_name,
DELTA(lcols_pg_eff), DELTA(lcols_pg_att),
DELTA(lcols_scan_ineffective), DELTA(lcols_scan),
DELTA(lcols_unenforced_cap), DELTA(lcols_rss_sample),
(unsigned long long)lcol->lcol_stat.lcols_min_rss,
(unsigned long long)lcol->lcol_stat.lcols_max_rss,
(unsigned long long)lcol->lcol_rss_cap,
(unsigned long long)(lcol->lcol_stat.lcols_proc_in -
lcol->lcol_stat.lcols_proc_out), DELTA(lcols_proc_out),
DELTA(lcols_scan_count),
NSEC2MSEC(DELTA(lcols_scan_time_complete)));
#undef DELTA
return (0);
}
/*
* Record each collection's interval statistics in the statistics file.
*/
static int
report_collection_cb(lcollection_t *lcol, void *arg)
{
lcollection_report_t dc;
int fd = (intptr_t)arg;
/*
* Copy the relevant fields to the collection's record.
*/
bzero(&dc, sizeof (dc));
dc.lcol_id = lcol->lcol_id;
(void) strcpy(dc.lcol_name, lcol->lcol_name);
dc.lcol_rss = lcol->lcol_rss;
dc.lcol_image_size = lcol->lcol_image_size;
dc.lcol_rss_cap = lcol->lcol_rss_cap;
dc.lcol_stat = lcol->lcol_stat;
if (write(fd, &dc, sizeof (dc)) == sizeof (dc)) {
lcol->lcol_stat_old = lcol->lcol_stat;
} else {
debug("can't write %s %s statistics",
(lcol->lcol_id.rcid_type == RCIDT_PROJECT ?
"project" : "zone"),
lcol->lcol_name);
}
return (0);
}
/*
* Determine the count of pages scanned by the global page scanner, obtained
* from the cpu_stat:*::scan kstats. Return zero on success.
*/
static int
get_globally_scanned_pages(uint64_t *scannedp)
{
kstat_t *ksp;
uint64_t scanned = 0;
if (kstat_chain_update(kctl) == -1) {
warn(gettext("can't update kstat chain"));
return (0);
}
for (ksp = kctl->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
if (strcmp(ksp->ks_module, "cpu_stat") == 0) {
if (kstat_read(kctl, ksp, NULL) != -1) {
scanned += ((cpu_stat_t *)
ksp->ks_data)->cpu_vminfo.scan;
} else {
return (-1);
}
}
}
*scannedp = scanned;
return (0);
}
/*
* Determine if the global page scanner is running, during which no memory
* caps should be enforced, to prevent interference with the global page
* scanner.
*/
static boolean_t
is_global_scanner_running()
{
/* measure delta in page scan count */
static uint64_t new_sp = 0;
static uint64_t old_sp = 0;
boolean_t res = B_FALSE;
if (get_globally_scanned_pages(&new_sp) == 0) {
if (old_sp != 0 && (new_sp - old_sp) > 0) {
debug("global memory pressure detected (%llu "
"pages scanned since last interval)\n",
(unsigned long long)(new_sp - old_sp));
res = B_TRUE;
}
old_sp = new_sp;
} else {
warn(gettext("unable to read cpu statistics"));
new_sp = old_sp;
}
return (res);
}
/*
* If soft caps are in use, determine if global memory pressure exceeds the
* configured maximum above which soft caps are enforced.
*/
static boolean_t
must_enforce_soft_caps()
{
/*
* Check for changes to the amount of installed physical memory, to
* compute the current memory pressure.
*/
update_phys_total();
memory_pressure = 100 - (int)((sysconf(_SC_AVPHYS_PAGES) * page_size_kb)
* 100.0 / phys_total);
memory_pressure_sample++;
if (rcfg.rcfg_memory_cap_enforcement_pressure > 0 &&
memory_pressure > rcfg.rcfg_memory_cap_enforcement_pressure) {
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Update the shared statistics file with each collection's current statistics.
* Return zero on success.
*/
static int
update_statistics(void)
{
int fd, res;
static char template[LINELEN];
/*
* Try to create a directory irrespective of whether it is existing
* or not. If it is not there then it will create. Otherwise any way
* it will fail at mkstemp call below.
*/
(void) mkdir(STAT_FILE_DIR, 0755);
/*
* Create a temporary file.
*/
if (sizeof (template) < (strlen(rcfg.rcfg_stat_file) +
strlen(STAT_TEMPLATE_SUFFIX) + 1)) {
debug("temporary file template size too small\n");
return (-1);
}
(void) strcpy(template, rcfg.rcfg_stat_file);
(void) strcat(template, STAT_TEMPLATE_SUFFIX);
(void) rfd_reserve(1);
fd = mkstemp(template);
/*
* Write the header and per-collection statistics.
*/
if (fd >= 0) {
rcapd_stat_hdr_t rs;
rs.rs_pid = rcapd_pid;
rs.rs_time = gethrtime();
ASSERT(sizeof (rs.rs_mode) > strlen(rcfg.rcfg_mode_name));
(void) strcpy(rs.rs_mode, rcfg.rcfg_mode_name);
rs.rs_pressure_cur = memory_pressure;
rs.rs_pressure_cap = rcfg.rcfg_memory_cap_enforcement_pressure;
rs.rs_pressure_sample = memory_pressure_sample;
if (fchmod(fd, 0644) == 0 && write(fd, &rs, sizeof (rs)) ==
sizeof (rs)) {
list_walk_collection(report_collection_cb,
(void *)(intptr_t)fd);
/*
* Replace the existing statistics file with this new
* one.
*/
res = rename(template, rcfg.rcfg_stat_file);
} else
res = -1;
(void) close(fd);
} else
res = -1;
return (res);
}
/*
* Verify the statistics file can be created and written to, and die if an
* existing file may be in use by another rcapd.
*/
static int
verify_statistics(void)
{
pid_t pid;
/*
* Warn if another instance of rcapd might be active.
*/
(void) rfd_reserve(1);
pid = stat_get_rcapd_pid(rcfg.rcfg_stat_file);
if (pid != rcapd_pid && pid != -1)
die(gettext("%s exists; rcapd may already be active\n"),
rcfg.rcfg_stat_file);
return (update_statistics());
}
static int
sum_excess_cb(lcollection_t *lcol, void *arg)
{
uint64_t *sum_excess = arg;
*sum_excess += MAX((int64_t)0, (int64_t)(lcol->lcol_rss -
lcol->lcol_rss_cap));
return (0);
}
/*
* Compute the quantity of memory (in kilobytes) above the cap enforcement
* pressure. Set the scan goal to that quantity (or at most the excess).
*/
static void
compute_soft_scan_goal(soft_scan_arg_t *argp)
{
/*
* Compute the sum of the collections' excesses, which will be the
* denominator.
*/
argp->ssa_sum_excess = 0;
list_walk_collection(sum_excess_cb, &(argp->ssa_sum_excess));
argp->ssa_scan_goal = MIN((sysconf(_SC_PHYS_PAGES) *
(100 - rcfg.rcfg_memory_cap_enforcement_pressure) / 100 -
sysconf(_SC_AVPHYS_PAGES)) * page_size_kb,
argp->ssa_sum_excess);
}
static void
rcapd_usage(void)
{
info(gettext("usage: rcapd [-d]\n"));
}
void
check_update_statistics(void)
{
hrtime_t now = gethrtime();
if (EVENT_TIME(now, next_report)) {
debug("updating statistics...\n");
list_walk_collection(simple_report_collection_cb, NULL);
if (update_statistics() != 0)
debug("couldn't update statistics");
next_report = NEXT_REPORT_EVENT_TIME(now,
rcfg.rcfg_report_interval);
}
}
static void
verify_and_set_privileges(void)
{
priv_set_t *required =
priv_str_to_set("zone,sys_resource,proc_owner", ",", NULL);
/*
* Ensure the required privileges, suitable for controlling processes,
* are possessed.
*/
if (setppriv(PRIV_SET, PRIV_PERMITTED, required) != 0 || setppriv(
PRIV_SET, PRIV_EFFECTIVE, required) != 0)
die(gettext("can't set requisite privileges"));
/*
* Ensure access to /var/run/daemon.
*/
if (setreuid(DAEMON_UID, DAEMON_UID) != 0)
die(gettext("cannot become user daemon"));
priv_freeset(required);
}
/*
* This function does the top-level work to determine if we should do any
* memory capping, and if so, it invokes the right call-backs to do the work.
*/
static void
do_capping(hrtime_t now, hrtime_t *next_proc_walk)
{
boolean_t enforce_caps;
/* soft cap enforcement flag, depending on memory pressure */
boolean_t enforce_soft_caps;
/* avoid interference with kernel's page scanner */
boolean_t global_scanner_running;
sample_col_arg_t col_arg;
soft_scan_arg_t arg;
uint_t col_types = 0;
/* check what kind of collections (project/zone) are capped */
list_walk_collection(col_type_cb, &col_types);
debug("collection types: 0x%x\n", col_types);
/* no capped collections, skip checking rss */
if (col_types == 0)
return;
/* Determine if soft caps are enforced. */
enforce_soft_caps = must_enforce_soft_caps();
/* Determine if the global page scanner is running. */
global_scanner_running = is_global_scanner_running();
/*
* Sample collections' member processes RSSes and recompute
* collections' excess.
*/
rss_sample(B_FALSE, col_types);
col_arg.sca_any_over_cap = B_FALSE;
col_arg.sca_project_over_cap = B_FALSE;
list_walk_collection(rss_sample_col_cb, &col_arg);
list_walk_collection(excess_print_cb, NULL);
debug("any collection/project over cap = %d, %d\n",
col_arg.sca_any_over_cap, col_arg.sca_project_over_cap);
if (enforce_soft_caps)
debug("memory pressure %d%%\n", memory_pressure);
/*
* Cap enforcement is determined by the previous conditions.
*/
enforce_caps = !global_scanner_running && col_arg.sca_any_over_cap &&
(rcfg.rcfg_memory_cap_enforcement_pressure == 0 ||
enforce_soft_caps);
debug("%senforcing caps\n", enforce_caps ? "" : "not ");
/*
* If soft caps are in use, determine the size of the portion from each
* collection to scan for.
*/
if (enforce_caps && enforce_soft_caps)
compute_soft_scan_goal(&arg);
/*
* Victimize offending collections.
*/
if (enforce_caps && (!enforce_soft_caps ||
(arg.ssa_scan_goal > 0 && arg.ssa_sum_excess > 0))) {
/*
* Since at least one collection is over its cap & needs
* enforcing, check if it is at least time for a process walk
* (we could be well past time since we only walk /proc when
* we need to) and if so, update each collections process list
* in a single pass through /proc.
*/
if (EVENT_TIME(now, *next_proc_walk)) {
debug("scanning process list...\n");
proc_walk_all(proc_cb); /* insert & mark */
list_walk_all(sweep_process_cb); /* free dead procs */
*next_proc_walk = NEXT_EVENT_TIME(now,
rcfg.rcfg_proc_walk_interval);
}
gz_col = NULL;
if (enforce_soft_caps) {
debug("scan goal is %lldKB\n",
(long long)arg.ssa_scan_goal);
list_walk_collection(soft_scan_cb, &arg);
if (gz_capped && gz_col != NULL) {
/* process global zone */
arg.ssa_project_over_cap =
col_arg.sca_project_over_cap;
soft_scan_gz(gz_col, &arg);
}
} else {
list_walk_collection(scan_cb, NULL);
if (gz_capped && gz_col != NULL) {
/* process global zone */
scan_gz(gz_col, col_arg.sca_project_over_cap);
}
}
} else if (col_arg.sca_any_over_cap) {
list_walk_collection(unenforced_cap_cb, NULL);
}
}
int
main(int argc, char *argv[])
{
int res;
int should_fork = 1; /* fork flag */
hrtime_t now; /* current time */
hrtime_t next; /* time of next event */
int sig; /* signal iteration */
struct rlimit rl;
hrtime_t next_proc_walk; /* time of next /proc scan */
hrtime_t next_configuration; /* time of next configuration */
hrtime_t next_rss_sample; /* (latest) time of next RSS sample */
(void) set_message_priority(RCM_INFO);
(void) setpname("rcapd");
rcapd_pid = getpid();
(void) chdir("/");
should_run = 1;
ever_ran = 0;
(void) setlocale(LC_ALL, "");
(void) textdomain(TEXT_DOMAIN);
/*
* Parse command-line options.
*/
while ((res = getopt(argc, argv, "dF")) > 0)
switch (res) {
case 'd':
should_fork = 0;
if (debug_mode == 0) {
debug_mode = 1;
(void) set_message_priority(RCM_DEBUG);
} else
(void) set_message_priority(RCM_DEBUG_HIGH);
break;
case 'F':
should_fork = 0;
break;
default:
rcapd_usage();
return (E_USAGE);
/*NOTREACHED*/
}
/*
* Read the configuration.
*/
if (rcfg_read(&rcfg, verify_statistics) != E_SUCCESS) {
warn(gettext("resource caps not configured\n"));
return (SMF_EXIT_ERR_CONFIG);
}
/*
* If not debugging, fork and continue operating, changing the
* destination of messages to syslog().
*/
if (should_fork == 1) {
pid_t child;
debug("forking\n");
child = fork();
if (child == -1)
die(gettext("cannot fork"));
if (child > 0)
return (0);
else {
rcapd_pid = getpid();
(void) set_message_destination(RCD_SYSLOG);
(void) fclose(stdin);
(void) fclose(stdout);
(void) fclose(stderr);
}
/*
* Start a new session and detatch from the controlling tty.
*/
if (setsid() == (pid_t)-1)
debug(gettext("setsid() failed; cannot detach from "
"terminal"));
}
finish_configuration();
should_reconfigure = 0;
/*
* Check that required privileges are possessed.
*/
verify_and_set_privileges();
now = next_report = next_proc_walk = next_rss_sample = gethrtime();
next_configuration = NEXT_EVENT_TIME(gethrtime(),
rcfg.rcfg_reconfiguration_interval);
/*
* Open the kstat chain.
*/
kctl = kstat_open();
if (kctl == NULL)
die(gettext("can't open kstats"));
/*
* Set RLIMIT_NOFILE as high as practical, so roughly 10K processes can
* be effectively managed without revoking descriptors (at 3 per
* process).
*/
rl.rlim_cur = 32 * 1024;
rl.rlim_max = 32 * 1024;
if (setrlimit(RLIMIT_NOFILE, &rl) != 0 &&
getrlimit(RLIMIT_NOFILE, &rl) == 0) {
rl.rlim_cur = rl.rlim_max;
(void) setrlimit(RLIMIT_NOFILE, &rl);
}
(void) enable_extended_FILE_stdio(-1, -1);
if (getrlimit(RLIMIT_NOFILE, &rl) == 0)
debug("fd limit: %lu\n", rl.rlim_cur);
else
debug("fd limit: unknown\n");
get_page_size();
my_zoneid = getzoneid();
/*
* Handle those signals whose (default) exit disposition
* prevents rcapd from finishing scanning before terminating.
*/
(void) sigset(SIGINT, terminate_signal);
(void) sigset(SIGQUIT, abort_signal);
(void) sigset(SIGILL, abort_signal);
(void) sigset(SIGEMT, abort_signal);
(void) sigset(SIGFPE, abort_signal);
(void) sigset(SIGBUS, abort_signal);
(void) sigset(SIGSEGV, abort_signal);
(void) sigset(SIGSYS, abort_signal);
(void) sigset(SIGPIPE, terminate_signal);
(void) sigset(SIGALRM, terminate_signal);
(void) sigset(SIGTERM, terminate_signal);
(void) sigset(SIGUSR1, terminate_signal);
(void) sigset(SIGUSR2, terminate_signal);
(void) sigset(SIGPOLL, terminate_signal);
(void) sigset(SIGVTALRM, terminate_signal);
(void) sigset(SIGXCPU, abort_signal);
(void) sigset(SIGXFSZ, abort_signal);
for (sig = SIGRTMIN; sig <= SIGRTMAX; sig++)
(void) sigset(sig, terminate_signal);
/*
* Install a signal handler for reconfiguration processing.
*/
(void) sigset(SIGHUP, sighup);
/*
* Determine which process collections to cap.
*/
lcollection_update(LCU_COMPLETE);
/*
* Loop forever, monitoring collections' resident set sizes and
* enforcing their caps. Look for changes in caps as well as
* responding to requests to reread the configuration. Update
* per-collection statistics periodically.
*/
while (should_run != 0) {
struct timespec ts;
/*
* Announce that rcapd is starting.
*/
if (ever_ran == 0) {
info(gettext("starting\n"));
ever_ran = 1;
}
/*
* Check the configuration at every next_configuration interval.
* Update the rss data once every next_rss_sample interval.
* The condition of global memory pressure is also checked at
* the same frequency, if strict caps are in use.
*/
now = gethrtime();
/*
* Detect configuration and cap changes only when SIGHUP
* is received. Call reconfigure to apply new configuration
* parameters.
*/
if (should_reconfigure == 1) {
reread_configuration();
should_reconfigure = 0;
reconfigure(now, &next_configuration, &next_proc_walk,
&next_rss_sample);
}
if (EVENT_TIME(now, next_configuration)) {
reconfigure(now, &next_configuration, &next_proc_walk,
&next_rss_sample);
}
/*
* Do the main work for enforcing caps.
*/
if (EVENT_TIME(now, next_rss_sample)) {
do_capping(now, &next_proc_walk);
next_rss_sample = NEXT_EVENT_TIME(now,
rcfg.rcfg_rss_sample_interval);
}
/*
* Update the statistics file, if it's time.
*/
check_update_statistics();
/*
* Sleep for some time before repeating.
*/
now = gethrtime();
next = next_configuration;
next = POSITIVE_MIN(next, next_report);
next = POSITIVE_MIN(next, next_rss_sample);
if (next > now && should_run != 0) {
debug("sleeping %-4.2f seconds\n", (float)(next -
now) / (float)NANOSEC);
hrt2ts(next - now, &ts);
(void) nanosleep(&ts, NULL);
}
}
if (termination_signal != 0)
debug("exiting due to signal %d\n", termination_signal);
if (ever_ran != 0)
info(gettext("exiting\n"));
/*
* Unlink the statistics file before exiting.
*/
if (rcfg.rcfg_stat_file[0] != 0)
(void) unlink(rcfg.rcfg_stat_file);
return (E_SUCCESS);
}