/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* raidctl.c is the entry file of RAID configuration utility.
*/
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <langinfo.h>
#include <regex.h>
#include <locale.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <errno.h>
#include <libgen.h>
#include <raidcfg.h>
#define TRUE 1
#define FALSE 0
#ifndef TEXT_DOMAIN
#define TEXT_DOMAIN "SYS_TEST"
#endif
/*
* Return value of command
*/
#define SUCCESS 0
#define INVALID_ARG 1
#define FAILURE 2
/*
* Initial value of variables
*/
#define INIT_HANDLE_VALUE -3
#define MAX64BIT 0xffffffffffffffffull
#define MAX32BIT 0xfffffffful
/*
* Flag of set or unset HSP
*/
#define HSP_SET 1
#define HSP_UNSET 0
/*
* Operate codes of command
*/
#define DO_HW_RAID_NOP -1
#define DO_HW_RAID_HELP 0
#define DO_HW_RAID_CREATEO 1
#define DO_HW_RAID_CREATEN 2
#define DO_HW_RAID_DELETE 3
#define DO_HW_RAID_LIST 4
#define DO_HW_RAID_FLASH 5
#define DO_HW_RAID_HSP 6
#define DO_HW_RAID_SET_ATTR 7
#define DO_HW_RAID_SNAPSHOT 8
#define LOWER_H (1 << 0)
#define LOWER_C (1 << 1)
#define LOWER_D (1 << 2)
#define LOWER_L (1 << 3)
#define LOWER_R (1 << 4)
#define LOWER_Z (1 << 5)
#define LOWER_G (1 << 6)
#define LOWER_A (1 << 7)
#define LOWER_S (1 << 8)
#define LOWER_P (1 << 9)
#define LOWER_F (1 << 10)
#define UPPER_S (1 << 11)
#define UPPER_C (1 << 12)
#define UPPER_F (1 << 13)
/* Add a ARRAY state (temporary) */
#define ARRAY_STATE_SYNC 100
/*
* Function and strings to properly localize our prompt.
* So for example in German it would ask (ja/nein) or (yes/no) in
* english.
*/
#ifndef SCHAR_MAX
#define SCHAR_MAX 10
#endif
#define RAIDCTL_LOCKF "/var/run/lockf_raidctl"
/* Locale setting */
static int yes(void);
static int rpmatch(char *s);
static char *yesstr = NULL;
static char *nostr = NULL;
static char *yesexpr = NULL;
static char *default_yesexpr = "^[yY]";
static char *default_yesstr = "yes";
static char *default_nostr = "no";
static regex_t re;
#define SET_DEFAULT_STRS \
regfree(&re); \
free(yesexpr); \
free(yesstr); \
free(nostr); \
yesexpr = default_yesexpr; \
yesstr = default_yesstr; \
nostr = default_nostr;
#define FREE_STRS \
if (yesexpr != default_yesexpr) \
free(yesexpr); \
if (yesstr != default_yesstr) \
free(yesstr); \
if (nostr != default_nostr) \
free(nostr);
/* program name */
static char *prog_namep;
/*
* Functions declaration
*/
static void helpinfo(char *prog_namep);
static int do_create_cidl(char *raid_levelp, char *capacityp, char *disk_argp,
char *stripe_sizep, uint32_t f_flag, char **argv, uint32_t optind);
static int do_create_ctd(char *raid_levelp, char **disks_argpp,
uint32_t disks_num, uint32_t argindex, uint32_t f_flag);
static int do_list(char *disk_argp, char **argv, uint32_t optind,
uint8_t is_snapshot);
static int do_delete(uint32_t f_flag, char **argv, uint32_t optind);
static int do_flash(uint8_t f_flag, char *filep, char **ctls_argpp,
uint32_t index, uint32_t ctl_num);
static int do_set_hsp(char *a_argp, char *disk_argp, char **argv,
uint32_t optind);
static int do_set_array_attr(uint32_t f_flag, char *p_argp, char **argv,
uint32_t optind);
static int snapshot_raidsystem(uint8_t recursive, uint8_t indent,
uint8_t is_snapshot);
static int snapshot_ctl(raid_obj_handle_t ctl_handle, uint8_t recursive,
uint8_t indent, uint8_t is_snapshot);
static int snapshot_array(raid_obj_handle_t array_handle,
uint8_t indent, uint8_t is_sub, uint8_t is_snapshot);
static int snapshot_disk(uint32_t ctl_tag, raid_obj_handle_t disk_handle,
uint8_t indent, uint8_t is_snapshot);
static int print_ctl_table(raid_obj_handle_t ctl_handle);
static int print_array_table(raid_obj_handle_t ctl_handle,
raid_obj_handle_t array_handle);
static int print_disk_table(raid_obj_handle_t ctl_handle,
raid_obj_handle_t disk_handle);
static int print_ctl_attr(raidcfg_controller_t *attrp);
static int print_array_attr(raidcfg_array_t *attrp);
static int print_arraypart_attr(raidcfg_arraypart_t *attrp);
static int print_disk_attr(raid_obj_handle_t ctl_handle,
raid_obj_handle_t disk_handle, raidcfg_disk_t *attrp);
static void print_indent(uint8_t indent);
static int get_disk_handle_cidl(uint32_t ctl_tag, char *disks_argp,
int *comps_nump, raid_obj_handle_t **handlespp);
static int get_disk_handle_ctd(int disks_num, char **disks_argpp,
uint32_t *ctl_tagp, raid_obj_handle_t *disks_handlep);
static int get_ctl_tag(char *argp, uint32_t *ctl_tagp);
static int get_array_tag(char *argp, uint32_t *ctl_tagp,
array_tag_t *array_tagp);
static int get_disk_tag_ctd(char *argp, disk_tag_t *disk_tagp,
uint32_t *controller_id);
static int get_disk_tag_cidl(char *argp, disk_tag_t *disk_tagp);
static int calc_size(char *sizep, uint64_t *valp);
static int is_fully_numeric(char *strp);
static int size_to_string(uint64_t size, char *string, int len);
static int enter_raidctl_lock(int *fd);
static void exit_raidctl_lock(int fd);
/*
* Entry function of raidctl command
*/
int
main(int argc, char **argv)
{
/* operation index */
int8_t findex = DO_HW_RAID_NOP;
/* argument pointers */
char *r_argp = NULL;
char *z_argp = NULL;
char *g_argp = NULL;
char *a_argp = NULL;
char *s_argp = NULL;
char *p_argp = NULL;
char *F_argp = NULL;
char *C_argp = NULL;
/*
* operation flags.
*/
uint8_t r_flag = FALSE;
uint8_t f_flag = FALSE;
uint8_t action = FALSE;
uint64_t options = 0;
/* index and temporary variables */
int ret;
int status;
char c = '\0';
/* fd for the filelock */
int fd;
if (enter_raidctl_lock(&fd) != SUCCESS) {
return (FAILURE);
}
(void) setlocale(LC_ALL, "");
(void) textdomain(TEXT_DOMAIN);
/* parse command line, and get program name */
if ((prog_namep = strrchr(argv[0], '/')) == NULL) {
prog_namep = argv[0];
} else {
prog_namep++;
}
/* close error option messages from getopt */
opterr = 0;
/* get yes expression according to current locale */
yesexpr = strdup(nl_langinfo(YESEXPR));
yesstr = strdup(nl_langinfo(YESSTR));
nostr = strdup(nl_langinfo(NOSTR));
if (yesexpr == NULL || yesstr == NULL || nostr == NULL) {
return (FAILURE);
}
/*
* If the was no expression or if there is a compile error
* use default yes expression.
*/
status = regcomp(&re, yesexpr, REG_EXTENDED | REG_NOSUB);
if ((*yesexpr == (char)NULL) ||
(*yesstr == (char)NULL) ||
(*nostr == (char)NULL) ||
(status != 0)) {
SET_DEFAULT_STRS;
if (regcomp(&re, default_yesexpr,
REG_EXTENDED | REG_NOSUB) != 0) {
return (FALSE);
}
}
while ((c = getopt(argc, argv,
"?hC:cdlF:r:z:g:a:s:p:fS")) != EOF) {
switch (c) {
case 'h':
case '?':
if (action == FALSE) {
findex = DO_HW_RAID_HELP;
action = TRUE;
options |= LOWER_H;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'C':
if (action == FALSE) {
findex = DO_HW_RAID_CREATEN;
C_argp = optarg;
action = TRUE;
options |= UPPER_C;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'c':
if (action == FALSE) {
findex = DO_HW_RAID_CREATEO;
action = TRUE;
options |= LOWER_C;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'd':
if (action == FALSE) {
findex = DO_HW_RAID_DELETE;
action = TRUE;
options |= LOWER_D;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'l':
if (action == FALSE) {
findex = DO_HW_RAID_LIST;
action = TRUE;
options |= LOWER_L;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'F':
if (action == FALSE) {
findex = DO_HW_RAID_FLASH;
F_argp = optarg;
action = TRUE;
options |= UPPER_F;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'a':
if (action == FALSE) {
findex = DO_HW_RAID_HSP;
a_argp = optarg;
action = TRUE;
options |= LOWER_A;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'p':
if (action == FALSE) {
findex = DO_HW_RAID_SET_ATTR;
p_argp = optarg;
action = TRUE;
options |= LOWER_P;
} else {
findex = DO_HW_RAID_NOP;
}
break;
case 'r':
r_argp = optarg;
r_flag = TRUE;
options |= LOWER_R;
break;
case 'z':
z_argp = optarg;
options |= LOWER_Z;
break;
case 'g':
g_argp = optarg;
options |= LOWER_G;
break;
case 's':
s_argp = optarg;
options |= LOWER_S;
break;
case 'f':
f_flag = TRUE;
options |= LOWER_F;
break;
case 'S':
if (action == FALSE) {
findex = DO_HW_RAID_SNAPSHOT;
action = TRUE;
options |= UPPER_S;
} else {
findex = DO_HW_RAID_NOP;
}
break;
default:
(void) fprintf(stderr,
gettext("Invalid argument(s).\n"));
exit_raidctl_lock(fd);
FREE_STRS;
regfree(&re);
return (INVALID_ARG);
}
}
/* parse options */
switch (findex) {
case DO_HW_RAID_HELP:
if ((options & ~(LOWER_H)) != 0) {
ret = INVALID_ARG;
} else {
helpinfo(prog_namep);
ret = SUCCESS;
}
break;
case DO_HW_RAID_CREATEO:
if ((options & ~(LOWER_F | LOWER_C | LOWER_R)) != 0) {
ret = INVALID_ARG;
} else {
if (r_flag != FALSE && f_flag == FALSE) {
ret = do_create_ctd(r_argp, argv, argc - 4,
optind, f_flag);
} else if (r_flag == FALSE && f_flag == FALSE) {
ret = do_create_ctd(NULL, argv, argc - 2,
optind, f_flag);
} else if (r_flag != FALSE && f_flag != FALSE) {
ret = do_create_ctd(r_argp, argv, argc - 5,
optind, f_flag);
} else {
ret = do_create_ctd(NULL, argv, argc - 3,
optind, f_flag);
}
}
break;
case DO_HW_RAID_CREATEN:
if ((options & ~(LOWER_F | UPPER_C | LOWER_R | LOWER_Z |
LOWER_S)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_create_cidl(r_argp, z_argp, C_argp, s_argp,
f_flag, argv, optind);
}
break;
case DO_HW_RAID_DELETE:
if ((options & ~(LOWER_F | LOWER_D)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_delete(f_flag, argv, optind);
}
break;
case DO_HW_RAID_LIST:
if ((options & ~(LOWER_L | LOWER_G)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_list(g_argp, argv, optind, FALSE);
}
break;
case DO_HW_RAID_SNAPSHOT:
if ((options & ~(UPPER_S | LOWER_G)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_list(g_argp, argv, optind, TRUE);
}
break;
case DO_HW_RAID_FLASH:
if ((options & ~(LOWER_F | UPPER_F)) != 0) {
ret = INVALID_ARG;
} else {
if (f_flag == FALSE) {
ret = do_flash(f_flag, F_argp, argv, optind,
argc - 3);
} else {
ret = do_flash(f_flag, F_argp, argv, optind,
argc - 4);
}
}
break;
case DO_HW_RAID_HSP:
if ((options & ~(LOWER_A | LOWER_G)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_set_hsp(a_argp, g_argp, argv, optind);
}
break;
case DO_HW_RAID_SET_ATTR:
if ((options & ~(LOWER_F | LOWER_P)) != 0) {
ret = INVALID_ARG;
} else {
ret = do_set_array_attr(f_flag, p_argp, argv, optind);
}
break;
case DO_HW_RAID_NOP:
if (argc == 1) {
ret = do_list(g_argp, argv, optind, FALSE);
} else {
ret = INVALID_ARG;
}
break;
default:
ret = INVALID_ARG;
break;
}
if (ret == INVALID_ARG) {
(void) fprintf(stderr,
gettext("Invalid argument(s).\n"));
}
exit_raidctl_lock(fd);
FREE_STRS;
regfree(&re);
return (ret);
}
/*
* helpinfo(prog_namep)
* This function prints help informations for usrs.
*/
static void
helpinfo(char *prog_namep)
{
char quote = '"';
(void) printf(gettext("%s [-f] -C %c<disks>%c [-r <raid_level>] "
"[-z <capacity>] [-s <stripe_size>] <controller>\n"), prog_namep,
quote, quote);
(void) printf(gettext("%s [-f] -d <volume>\n"), prog_namep);
(void) printf(gettext("%s [-f] -F <filename> <controller1> "
"[<controller2> ...]\n"), prog_namep);
(void) printf(gettext("%s [-f] -p %c<param>=<value>%c <volume>\n"),
prog_namep, quote, quote);
(void) printf(gettext("%s [-f] -c [-r <raid_level>] <disk1> <disk2> "
"[<disk3> ...]\n"), prog_namep);
(void) printf(gettext("%s [-l]\n"), prog_namep);
(void) printf(gettext("%s -l -g <disk> <controller>\n"), prog_namep);
(void) printf(gettext("%s -l <volume>\n"), prog_namep);
(void) printf(gettext("%s -l <controller1> [<controller2> ...]\n"),
prog_namep);
(void) printf(gettext("%s -a {set | unset} -g <disk> "
"{<volume> | <controller>}\n"), prog_namep);
(void) printf(gettext("%s -S [<volume> | <controller>]\n"), prog_namep);
(void) printf(gettext("%s -S -g <disk> <controller>\n"), prog_namep);
(void) printf(gettext("%s -h\n"), prog_namep);
}
/*
* do_create_cidl(raid_levelp, capacityp, disks_argp, stripe_sizep,
* f_flag, argv, optind)
* This function creates a new RAID volume with specified arguments,
* and returns result as SUCCESS, INVALID_ARG or FAILURE.
* The "c.id.l" is used to express single physical disk. 'c' expresses
* bus number, 'id' expresses target number, and 'l' expresses lun.
* The physical disks represented by c.id.l may be invisible to OS, which
* means physical disks attached to controllers are not accessible by
* OS directly. The disks should be organized as a logical volume, and
* the logical volume is exported to OS as a single unit. Some hardware
* RAID controllers also support physical disks accessed by OS directly,
* for example LSI1068. In this case, it's both OK to express physical
* disk by c.id.l format or canonical ctd format.
*/
static int
do_create_cidl(char *raid_levelp, char *capacityp, char *disks_argp,
char *stripe_sizep, uint32_t f_flag, char **argv, uint32_t optind)
{
uint32_t ctl_tag = MAX32BIT;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
uint32_t raid_level = RAID_LEVEL_1;
uint64_t capacity = 0;
uint64_t stripe_size = (uint64_t)OBJ_ATTR_NONE;
raid_obj_handle_t *disk_handlesp = NULL;
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
raidcfg_controller_t ctl_attr;
int comps_num = 0;
int ret = 0;
raidcfg_array_t array_attr;
if (argv[optind] == NULL || argv[optind + 1] != NULL) {
return (INVALID_ARG);
}
if (disks_argp == NULL) {
return (INVALID_ARG);
}
/* Check controller tag */
if (get_ctl_tag(argv[optind], &ctl_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ctl_handle));
return (FAILURE);
}
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Get raid level */
if (raid_levelp != NULL) {
if (*raid_levelp == '1' &&
(*(raid_levelp + 1) == 'E' || *(raid_levelp + 1) == 'e')) {
raid_level = RAID_LEVEL_1E;
} else {
if (is_fully_numeric(raid_levelp) == FALSE) {
return (INVALID_ARG);
}
switch (atoi(raid_levelp)) {
case 0:
raid_level = RAID_LEVEL_0;
break;
case 1:
raid_level = RAID_LEVEL_1;
break;
case 5:
raid_level = RAID_LEVEL_5;
break;
case 10:
raid_level = RAID_LEVEL_10;
break;
case 50:
raid_level = RAID_LEVEL_50;
break;
default:
return (INVALID_ARG);
}
}
}
/*
* The rang check of capacity and stripe size is performed in library,
* and it relates to hardware feature.
*/
/* Capacity in bytes. Capacity 0 means max available space. */
if (capacityp != NULL) {
if (*capacityp == '-' ||
calc_size(capacityp, &capacity) != SUCCESS) {
return (INVALID_ARG);
}
}
/* Stripe size in bytes */
if (stripe_sizep != NULL) {
if (calc_size(stripe_sizep, &stripe_size) != SUCCESS ||
*stripe_sizep == '-') {
return (INVALID_ARG);
}
}
/* Open controller before accessing its object */
if ((ret = raidcfg_open_controller(ctl_handle, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Get disks' handles */
if ((ret = get_disk_handle_cidl(ctl_tag, disks_argp, &comps_num,
&disk_handlesp)) != SUCCESS) {
(void) raidcfg_close_controller(ctl_handle, NULL);
return (ret);
}
if (f_flag == FALSE) {
(void) fprintf(stdout, gettext("Creating RAID volume "
"will destroy all data on spare space of member disks, "
"proceed (%s/%s)? "), yesstr, nostr);
if (!yes()) {
(void) fprintf(stdout, gettext("RAID volume "
"not created.\n\n"));
(void) raidcfg_close_controller(ctl_handle, NULL);
free(disk_handlesp);
return (SUCCESS);
}
}
/* Create array */
array_handle = raidcfg_create_array(comps_num,
disk_handlesp, raid_level, capacity, stripe_size, NULL);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(array_handle));
free(disk_handlesp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
/* Get attribute of the new created array */
if ((ret = raidcfg_get_attr(array_handle, &array_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
free(disk_handlesp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
(void) fprintf(stdout, gettext("Volume c%ut%llud%llu is created "
"successfully!\n"), ctl_tag, array_attr.tag.idl.target_id,
array_attr.tag.idl.lun);
/* Print attribute of array */
(void) print_array_table(ctl_handle, array_handle);
/* Close controller */
(void) raidcfg_close_controller(ctl_handle, NULL);
free(disk_handlesp);
return (SUCCESS);
}
/*
* do_create_ctd(raid_levelp, disks_argpp, disks_num, argindex, f_flag)
* This function creates array with specified arguments, and return result
* as SUCCESS, FAILURE, or INVALID_ARG. It only supports LSI MPT controller
* to be compatible with old raidctl. The capacity and stripe size can't
* be specified for LSI MPT controller, and they use zero and default value.
* The "ctd" is the canonical expression of physical disks which are
* accessible by OS.
*/
static int
do_create_ctd(char *raid_levelp, char **disks_argpp, uint32_t disks_num,
uint32_t argindex, uint32_t f_flag)
{
uint32_t ctl_tag = MAX32BIT;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
uint32_t raid_level = RAID_LEVEL_1;
uint64_t capacity = 0;
uint32_t stripe_size = (uint32_t)OBJ_ATTR_NONE;
raid_obj_handle_t *disk_handlesp = NULL;
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
raidcfg_controller_t ctl_attr;
int ret;
raidcfg_array_t array_attr;
int i, j;
/* Check disks parameter */
if (disks_argpp == NULL || disks_num < 2) {
return (INVALID_ARG);
}
for (i = 0, j = argindex; i < disks_num; i++, j++) {
if (disks_argpp[j] == NULL) {
return (INVALID_ARG);
}
}
/*
* We need check if the raid_level string is fully numeric. If user
* input string with unsupported letters, such as "s10", atoi() will
* return zero because it is an illegal string, but it doesn't mean
* RAID_LEVEL_0.
*/
if (raid_levelp != NULL) {
if (*raid_levelp == '1' &&
(*(raid_levelp + 1) == 'E' || *(raid_levelp + 1) == 'e')) {
raid_level = RAID_LEVEL_1E;
} else {
if (is_fully_numeric(raid_levelp) == FALSE) {
return (INVALID_ARG);
}
switch (atoi(raid_levelp)) {
case 0:
raid_level = RAID_LEVEL_0;
break;
case 1:
raid_level = RAID_LEVEL_1;
break;
case 5:
raid_level = RAID_LEVEL_5;
break;
default:
return (INVALID_ARG);
}
}
}
/* Get disks tag and controller tag */
disk_handlesp = (raid_obj_handle_t *)calloc(disks_num + 2,
sizeof (raid_obj_handle_t));
if (disk_handlesp == NULL) {
return (FAILURE);
}
disk_handlesp[0] = OBJ_SEPARATOR_BEGIN;
disk_handlesp[disks_num + 1] = OBJ_SEPARATOR_END;
if ((ret = get_disk_handle_ctd(disks_num, &disks_argpp[argindex],
&ctl_tag, &disk_handlesp[1])) != SUCCESS) {
free(disk_handlesp);
return (ret);
}
/* LIB API should check whether all disks here belong to one ctl. */
/* get_disk_handle_ctd has opened controller. */
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ctl_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
free(disk_handlesp);
return (FAILURE);
}
/* Check if the controller is host raid type */
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
free(disk_handlesp);
return (FAILURE);
}
if ((ctl_attr.capability & RAID_CAP_DISK_TRANS) == 0) {
/* -c only support host raid controller, return failure here */
(void) fprintf(stderr,
gettext("Option -c only supports host raid controller.\n"));
(void) raidcfg_close_controller(ctl_handle, NULL);
free(disk_handlesp);
return (FAILURE);
}
if (f_flag == FALSE) {
(void) fprintf(stdout, gettext("Creating RAID volume "
"will destroy all data on spare space of member disks, "
"proceed (%s/%s)? "), yesstr, nostr);
if (!yes()) {
(void) fprintf(stdout, gettext("RAID volume "
"not created.\n\n"));
free(disk_handlesp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
}
/*
* For old raidctl, capacity is 0, which means to creates
* max possible capacity of array.
*/
array_handle = raidcfg_create_array(disks_num + 2,
disk_handlesp, raid_level, capacity, stripe_size, NULL);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(array_handle));
free(disk_handlesp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
/* Get attribute of array */
if ((ret = raidcfg_get_attr(array_handle, &array_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
free(disk_handlesp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
/* Close controller */
(void) raidcfg_close_controller(ctl_handle, NULL);
/* Print feedback for user */
(void) fprintf(stdout,
gettext("Volume c%ut%llud%llu is created successfully!\n"),
ctl_tag, array_attr.tag.idl.target_id,
array_attr.tag.idl.lun);
free(disk_handlesp);
return (SUCCESS);
}
/*
* do_list(disk_arg, argv, optind, is_snapshot)
* This function lists RAID's system configuration. It supports various RAID
* controller. The return value can be SUCCESS, FAILURE, or INVALID_ARG.
*/
static int
do_list(char *disk_argp, char **argv, uint32_t optind, uint8_t is_snapshot)
{
uint32_t ctl_tag = MAX32BIT;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t disk_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
disk_tag_t disk_tag;
array_tag_t array_tag;
int ret;
/* print RAID system */
if (disk_argp == NULL) {
if (argv[optind] == NULL) {
ret = snapshot_raidsystem(TRUE, 0, is_snapshot);
return (ret);
} else {
if (is_fully_numeric(argv[optind]) == TRUE) {
while (argv[optind] != NULL) {
if (get_ctl_tag(argv[optind], &ctl_tag)
!= SUCCESS) {
ret = INVALID_ARG;
optind++;
continue;
}
ctl_handle =
raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
ret = FAILURE;
optind++;
continue;
}
ret =
raidcfg_open_controller(ctl_handle,
NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
ret = FAILURE;
optind++;
continue;
}
if (is_snapshot == FALSE) {
ret =
print_ctl_table(ctl_handle);
} else {
ret =
snapshot_ctl(ctl_handle,
FALSE, 0, is_snapshot);
}
(void) raidcfg_close_controller(
ctl_handle, NULL);
optind++;
}
} else {
if (get_array_tag(argv[optind],
&ctl_tag, &array_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
array_handle = raidcfg_get_array(ctl_handle,
array_tag.idl.target_id, array_tag.idl.lun);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(array_handle));
(void) raidcfg_close_controller(
ctl_handle, NULL);
return (FAILURE);
}
if (is_snapshot == FALSE) {
ret = print_array_table(ctl_handle,
array_handle);
} else {
ret = snapshot_array(array_handle, 0,
FALSE, is_snapshot);
}
(void) raidcfg_close_controller(
ctl_handle, NULL);
}
}
} else {
if (argv[optind + 1] != NULL) {
return (INVALID_ARG);
}
if (get_ctl_tag(argv[optind], &ctl_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
if (get_disk_tag_cidl(disk_argp, &disk_tag) != SUCCESS) {
return (INVALID_ARG);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
disk_handle = raidcfg_get_disk(ctl_handle, disk_tag);
if (disk_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(disk_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
if (is_snapshot == FALSE) {
ret = print_disk_table(ctl_handle, disk_handle);
} else {
ret = snapshot_disk(ctl_tag, disk_handle, 0,
is_snapshot);
}
(void) raidcfg_close_controller(ctl_handle, NULL);
}
return (ret);
}
/*
* do_delete(f_flag, argv, optind)
* This function deletes a specified array, and return result as SUCCESS,
* FAILURE or INVALID_ARG.
*/
static int
do_delete(uint32_t f_flag, char **argv, uint32_t optind)
{
uint32_t ctl_tag;
char *array_argp;
array_tag_t array_tag;
raid_obj_handle_t ctl_handle;
raid_obj_handle_t array_handle;
int ret;
array_argp = argv[optind];
if (array_argp == NULL || argv[optind + 1] != NULL) {
return (INVALID_ARG);
}
if (get_array_tag(array_argp, &ctl_tag, &array_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ctl_handle));
return (INVALID_ARG);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
array_handle = raidcfg_get_array(ctl_handle, array_tag.idl.target_id,
array_tag.idl.lun);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(array_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
if (f_flag == FALSE) {
(void) fprintf(stdout, gettext("Deleting RAID volume "
"%s will destroy all data it contains, "
"proceed (%s/%s)? "), array_argp, yesstr, nostr);
if (!yes()) {
(void) fprintf(stdout, gettext("RAID Volume "
"%s not deleted.\n\n"), array_argp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
}
if ((ret = raidcfg_delete_array(array_handle, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
(void) fprintf(stdout, gettext("Volume %s is deleted successfully!\n"),
array_argp);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
/*
* do_flash(f_flag, filep, ctls_argpp, index, ctl_num)
* This function downloads and updates firmware for specified controller, and
* return result as SUCCESS, FAILURE or INVALID_ARG.
*/
static int
do_flash(uint8_t f_flag, char *filep, char **ctls_argpp,
uint32_t index, uint32_t ctl_num)
{
uint32_t ctl_tag = MAX32BIT;
char *ctl_argp = NULL;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
int ret;
int i, j;
if (ctl_num == 0)
return (INVALID_ARG);
for (i = 0, j = index; i < ctl_num; i++, j++) {
ctl_argp = ctls_argpp[j];
if (get_ctl_tag(ctl_argp, &ctl_tag) != SUCCESS) {
return (INVALID_ARG);
}
/* Ask user to confirm operation. */
if (f_flag == FALSE) {
(void) fprintf(stdout, gettext("Update flash image on "
"controller %d (%s/%s)? "), ctl_tag, yesstr, nostr);
if (!yes()) {
(void) fprintf(stdout,
gettext("Controller %d not "
"flashed.\n\n"), ctl_tag);
return (SUCCESS);
}
}
if ((ctl_handle = raidcfg_get_controller(ctl_tag)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
(void) fprintf(stdout, gettext("Start updating controller "
"c%u firmware....\n"), ctl_tag);
if ((ret = raidcfg_update_fw(ctl_handle, filep, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
(void) fprintf(stdout, gettext("Update controller "
"c%u firmware successfully.\n"), ctl_tag);
(void) raidcfg_close_controller(ctl_handle, NULL);
}
return (SUCCESS);
}
/*
* do_set_hsp(a_argp, disk_argp, argv, optind)
* This function set or unset HSP relationship between disk and controller/
* array, and return result as SUCCESS, FAILURE or INVALID_ARG.
*/
static int
do_set_hsp(char *a_argp, char *disk_argp, char **argv, uint32_t optind)
{
uint32_t flag = MAX32BIT;
uint32_t ctl_tag = MAX32BIT;
array_tag_t array_tag;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t disk_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
raidcfg_controller_t ctl_attr;
disk_tag_t disk_tag;
int ret;
int hsp_type;
raidcfg_hsp_relation_t hsp_relation;
(void) memset(&hsp_relation, 0, sizeof (raidcfg_hsp_relation_t));
if (a_argp == NULL) {
return (INVALID_ARG);
}
if (strcmp(a_argp, "set") == 0) {
flag = HSP_SET;
} else if (strcmp(a_argp, "unset") == 0) {
flag = HSP_UNSET;
} else {
return (INVALID_ARG);
}
if (disk_argp == NULL) {
return (INVALID_ARG);
}
if (argv[optind] == NULL || argv[optind + 1] != NULL) {
return (INVALID_ARG);
} else if (is_fully_numeric(argv[optind]) == TRUE) {
/* Global HSP */
hsp_type = 0;
if (get_disk_tag_cidl(disk_argp, &disk_tag) != SUCCESS) {
return (INVALID_ARG);
}
if (get_ctl_tag(argv[optind], &ctl_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
disk_handle = raidcfg_get_disk(ctl_handle, disk_tag);
if (disk_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(disk_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
} else {
/* Local HSP */
hsp_type = 1;
if (get_array_tag(argv[optind], &ctl_tag, &array_tag) !=
SUCCESS) {
return (INVALID_ARG);
}
/* Open controller */
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Get controller's attribute */
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
if (get_disk_tag_cidl(disk_argp, &disk_tag) != SUCCESS) {
(void) raidcfg_close_controller(ctl_handle, NULL);
return (INVALID_ARG);
}
/* Get disk handle */
disk_handle = raidcfg_get_disk(ctl_handle, disk_tag);
if (disk_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(disk_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
/* Get array handle */
array_handle = raidcfg_get_array(ctl_handle,
array_tag.idl.target_id, array_tag.idl.lun);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(array_handle));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
}
hsp_relation.disk_handle = disk_handle;
if (hsp_type) {
/* Set or unset local HSP */
hsp_relation.array_handle = array_handle;
} else {
/* Set or unset global HSP */
hsp_relation.array_handle = OBJ_ATTR_NONE;
}
/* Perform operation of set or unset */
if (flag == HSP_SET) {
if ((ret = raidcfg_set_hsp(&hsp_relation, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
if (hsp_type) {
(void) printf(gettext("Set local HSP between disk %s "
"and RAID volume %s successfully.\n"),
disk_argp, argv[optind]);
} else {
(void) printf(gettext("Set global HSP between disk %s "
"and controller %s successfully.\n"),
disk_argp, argv[optind]);
}
} else {
if ((ret = raidcfg_unset_hsp(&hsp_relation, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
if (hsp_type) {
(void) printf(gettext("Unset local HSP between "
"disk %s and RAID volume %s successfully.\n"),
disk_argp, argv[optind]);
} else {
(void) printf(gettext("Unset global HSP between "
"disk %s and controller %s successfully.\n"),
disk_argp, argv[optind]);
}
}
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
/*
* do_set_array_attr(f_flag, p_argp, argv, optind)
* This function changes array's attribute when array is running.
* The changeable attribute is up to controller's feature.
* The return value can be SUCCESS, FAILURE or INVALID_ARG.
*/
static int
do_set_array_attr(uint32_t f_flag, char *p_argp, char **argv, uint32_t optind)
{
uint32_t ctl_tag = MAX32BIT;
array_tag_t array_tag;
uint32_t type = MAX32BIT;
uint32_t value = MAX32BIT;
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
char *param, *op = "=";
int ret;
if (argv[optind] == NULL || argv[optind + 1] != NULL) {
return (INVALID_ARG);
}
if (p_argp != NULL) {
param = strtok(p_argp, op);
if (strcmp(param, "wp") == 0) {
type = SET_CACHE_WR_PLY;
param = strtok(NULL, op);
if (strcmp(param, "on") == 0) {
value = CACHE_WR_ON;
} else if (strcmp(param, "off") == 0) {
value = CACHE_WR_OFF;
} else {
return (INVALID_ARG);
}
} else if (strcmp(param, "state") == 0) {
type = SET_ACTIVATION_PLY;
param = strtok(NULL, op);
if (strcmp(param, "activate") == 0) {
value = ARRAY_ACT_ACTIVATE;
} else {
return (INVALID_ARG);
}
} else {
return (INVALID_ARG);
}
} else {
return (INVALID_ARG);
}
if (get_array_tag(argv[optind], &ctl_tag, &array_tag) != SUCCESS) {
return (INVALID_ARG);
}
ctl_handle = raidcfg_get_controller(ctl_tag);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
array_handle = raidcfg_get_array(ctl_handle, array_tag.idl.target_id,
array_tag.idl.lun);
if (array_handle <= 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(array_handle));
return (FAILURE);
}
/* Ask user to confirm operation. */
if (f_flag == FALSE) {
(void) fprintf(stdout, gettext("Update attribute of "
"array %s (%s/%s)? "), argv[optind], yesstr, nostr);
if (!yes()) {
(void) fprintf(stdout,
gettext("Array %s not "
"changed.\n\n"), argv[optind]);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
}
if ((ret = raidcfg_set_attr(array_handle, type, &value, NULL)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
(void) printf(gettext("Set attribute of RAID volume %s "
"successfully.\n"), argv[optind]);
(void) raidcfg_close_controller(ctl_handle, NULL);
return (SUCCESS);
}
/*
* snapshot_raidsystem(recursive, indent, is_snapshot)
* This function prints the snapshot of whole RAID's system configuration,
* and return result as SUCCESS or FAILURE.
*/
static int
snapshot_raidsystem(uint8_t recursive, uint8_t indent, uint8_t is_snapshot)
{
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
int ret;
ctl_handle = raidcfg_list_head(OBJ_SYSTEM, OBJ_TYPE_CONTROLLER);
while (ctl_handle > 0) {
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret == 0) {
if (snapshot_ctl(ctl_handle, recursive, indent,
is_snapshot) == FAILURE) {
(void) raidcfg_close_controller(ctl_handle,
NULL);
}
}
ctl_handle = raidcfg_list_next(ctl_handle);
}
return (SUCCESS);
}
/*
* snapshot_ctl(ctl_handle, recursive, indent, is_snapshot)
* This function prints snapshot of specified controller's configuration,
* and return result as SUCCESS or FAILURE.
*/
static int
snapshot_ctl(raid_obj_handle_t ctl_handle, uint8_t recursive, uint8_t indent,
uint8_t is_snapshot)
{
raid_obj_handle_t array_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t disk_handle = INIT_HANDLE_VALUE;
raidcfg_controller_t ctl_attr;
uint32_t ctl_tag;
char ctlbuf[256];
int ret;
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
ctl_tag = ctl_attr.controller_id;
if (is_snapshot == FALSE) {
print_indent(indent);
(void) fprintf(stdout, gettext("Controller: %u\n"), ctl_tag);
} else {
(void) snprintf(ctlbuf, sizeof (ctlbuf), "%u \"%s\"",
ctl_tag, ctl_attr.controller_type);
(void) fprintf(stdout, "%s", ctlbuf);
(void) fprintf(stdout, "\n");
}
if (recursive == TRUE) {
array_handle = raidcfg_list_head(ctl_handle, OBJ_TYPE_ARRAY);
while (array_handle > 0) {
if (snapshot_array(array_handle,
indent + 1, FALSE, is_snapshot) == FAILURE) {
return (FAILURE);
}
array_handle = raidcfg_list_next(array_handle);
}
disk_handle = raidcfg_list_head(ctl_handle, OBJ_TYPE_DISK);
while (disk_handle > 0) {
if (snapshot_disk(ctl_tag, disk_handle,
indent + 1, is_snapshot) == FAILURE) {
return (FAILURE);
}
disk_handle = raidcfg_list_next(disk_handle);
}
}
return (SUCCESS);
}
/*
* snapshot_array(array_handle, indent, is_sub, is_snapshot)
* This function prints snapshot of specified array's configuration,
* and return result as SUCCESS or FAILURE.
*/
static int
snapshot_array(raid_obj_handle_t array_handle, uint8_t indent, uint8_t is_sub,
uint8_t is_snapshot)
{
raid_obj_handle_t ctl_handle;
raid_obj_handle_t subarray_handle;
raid_obj_handle_t arraypart_handle;
raid_obj_handle_t task_handle;
raidcfg_controller_t ctl_attr;
raidcfg_array_t array_attr;
raidcfg_arraypart_t arraypart_attr;
raidcfg_task_t task_attr;
char arraybuf[256] = "\0";
char diskbuf[256] = "\0";
char tempbuf[256] = "\0";
int disknum = 0;
uint32_t ctl_tag;
int ret;
ctl_handle = raidcfg_get_container(array_handle);
ret = raidcfg_get_attr(ctl_handle, &ctl_attr);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
ctl_tag = ctl_attr.controller_id;
/* Print array attribute */
if ((ret = raidcfg_get_attr(array_handle, &array_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
if (is_snapshot == FALSE) {
print_indent(indent);
if (is_sub == FALSE) {
(void) fprintf(stdout, gettext("Volume:"
"c%ut%llud%llu\n"),
ctl_tag, array_attr.tag.idl.target_id,
array_attr.tag.idl.lun);
} else {
(void) fprintf(stdout, gettext("Sub-Volume\n"));
}
} else {
(void) snprintf(arraybuf, sizeof (arraybuf), "c%ut%llud%llu ",
ctl_tag, array_attr.tag.idl.target_id,
array_attr.tag.idl.lun);
/* Check if array is in sync state */
task_handle = raidcfg_list_head(array_handle, OBJ_TYPE_TASK);
if (task_handle > 0) {
(void) raidcfg_get_attr(task_handle, &task_attr);
if (task_attr.task_func == TASK_FUNC_BUILD) {
array_attr.state = ARRAY_STATE_SYNC;
}
} else {
subarray_handle = raidcfg_list_head(array_handle,
OBJ_TYPE_ARRAY);
while (subarray_handle > 0) {
task_handle = raidcfg_list_head(subarray_handle,
OBJ_TYPE_TASK);
if (task_handle > 0) {
(void) raidcfg_get_attr(task_handle,
&task_attr);
if (task_attr.task_func ==
TASK_FUNC_BUILD) {
array_attr.state =
ARRAY_STATE_SYNC;
}
break;
}
subarray_handle =
raidcfg_list_next(subarray_handle);
}
}
/* Print sub array */
subarray_handle = raidcfg_list_head(array_handle,
OBJ_TYPE_ARRAY);
while (subarray_handle > 0) {
/* print subarraypart */
arraypart_handle = raidcfg_list_head(subarray_handle,
OBJ_TYPE_ARRAY_PART);
while (arraypart_handle > 0) {
if ((ret = raidcfg_get_attr(arraypart_handle,
&arraypart_attr)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
if (arraypart_attr.tag.cidl.bus == MAX64BIT) {
(void) snprintf(tempbuf,
sizeof (tempbuf),
gettext("N/A"));
} else {
(void) snprintf(tempbuf,
sizeof (tempbuf),
"%llu.%llu.%llu",
arraypart_attr.tag.cidl.bus,
arraypart_attr.tag.cidl.target_id,
arraypart_attr.tag.cidl.lun);
}
(void) strlcat(diskbuf, tempbuf,
sizeof (diskbuf));
(void) strcat(diskbuf, " ");
disknum++;
arraypart_handle =
raidcfg_list_next(arraypart_handle);
}
subarray_handle = raidcfg_list_next(subarray_handle);
}
/* Print arraypart */
arraypart_handle = raidcfg_list_head(array_handle,
OBJ_TYPE_ARRAY_PART);
while (arraypart_handle > 0) {
if ((ret = raidcfg_get_attr(arraypart_handle,
&arraypart_attr)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
if (arraypart_attr.tag.cidl.bus == MAX64BIT) {
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("N/A"));
} else {
(void) snprintf(tempbuf, sizeof (tempbuf),
"%llu.%llu.%llu",
arraypart_attr.tag.cidl.bus,
arraypart_attr.tag.cidl.target_id,
arraypart_attr.tag.cidl.lun);
}
(void) strlcat(diskbuf, tempbuf, sizeof (diskbuf));
(void) strcat(diskbuf, " ");
disknum++;
arraypart_handle = raidcfg_list_next(arraypart_handle);
}
(void) snprintf(tempbuf, sizeof (tempbuf), "%u ", disknum);
(void) strlcat(arraybuf, tempbuf, sizeof (arraybuf));
(void) strlcat(arraybuf, diskbuf, sizeof (arraybuf));
switch (array_attr.raid_level) {
case RAID_LEVEL_0:
(void) sprintf(tempbuf, "0");
break;
case RAID_LEVEL_1:
(void) sprintf(tempbuf, "1");
break;
case RAID_LEVEL_1E:
(void) sprintf(tempbuf, "1E");
break;
case RAID_LEVEL_5:
(void) sprintf(tempbuf, "5");
break;
case RAID_LEVEL_10:
(void) sprintf(tempbuf, "10");
break;
case RAID_LEVEL_50:
(void) sprintf(tempbuf, "50");
break;
default:
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("N/A"));
break;
}
(void) strlcat(arraybuf, tempbuf, sizeof (arraybuf));
(void) fprintf(stdout, "%s ", arraybuf);
switch (array_attr.state) {
case ARRAY_STATE_OPTIMAL:
(void) fprintf(stdout, gettext("OPTIMAL"));
break;
case ARRAY_STATE_DEGRADED:
(void) fprintf(stdout, gettext("DEGRADED"));
break;
case ARRAY_STATE_FAILED:
(void) fprintf(stdout, gettext("FAILED"));
break;
case ARRAY_STATE_SYNC:
(void) fprintf(stdout, gettext("SYNC"));
break;
case ARRAY_STATE_MISSING:
(void) fprintf(stdout, gettext("MISSING"));
break;
default:
(void) fprintf(stdout, gettext("N/A"));
break;
}
(void) fprintf(stdout, "\n");
}
return (SUCCESS);
}
/*
* snapshot_disk(ctl_tag, disk_handle, indent, is_snapshot)
* This function prints snapshot of specified disk's configuration, and return
* result as SUCCESS or FAILURE.
*/
static int
snapshot_disk(uint32_t ctl_tag, raid_obj_handle_t disk_handle, uint8_t indent,
uint8_t is_snapshot)
{
raid_obj_handle_t ctl_handle = INIT_HANDLE_VALUE;
raid_obj_handle_t hsp_handle;
raidcfg_controller_t ctl_attr;
raidcfg_disk_t disk_attr;
char diskbuf[256] = "";
char tempbuf[256] = "";
int ret;
ctl_handle = raidcfg_get_controller(ctl_tag);
ret = raidcfg_get_attr(ctl_handle, &ctl_attr);
if (ret < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Print attribute of disk */
if ((ret = raidcfg_get_attr(disk_handle, &disk_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
if (is_snapshot == FALSE) {
print_indent(indent);
hsp_handle = raidcfg_list_head(disk_handle, OBJ_TYPE_HSP);
if (disk_attr.tag.cidl.bus == MAX64BIT) {
(void) fprintf(stdout, gettext("Disk: N/A"));
} else {
(void) fprintf(stdout, gettext("Disk: %llu.%llu.%llu"),
disk_attr.tag.cidl.bus,
disk_attr.tag.cidl.target_id,
disk_attr.tag.cidl.lun);
}
if (hsp_handle > 0) {
(void) fprintf(stdout, "(HSP)");
}
(void) fprintf(stdout, "\n");
} else {
if (disk_attr.tag.cidl.bus == MAX64BIT) {
(void) fprintf(stdout, gettext("N/A"));
} else {
(void) snprintf(diskbuf, sizeof (diskbuf),
"%llu.%llu.%llu ",
disk_attr.tag.cidl.bus,
disk_attr.tag.cidl.target_id,
disk_attr.tag.cidl.lun);
}
hsp_handle = raidcfg_list_head(disk_handle, OBJ_TYPE_HSP);
if (hsp_handle > 0) {
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("HSP"));
} else if (disk_attr.state == DISK_STATE_GOOD) {
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("GOOD"));
} else if (disk_attr.state == DISK_STATE_FAILED) {
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("FAILED"));
} else {
(void) snprintf(tempbuf, sizeof (tempbuf),
gettext("N/A"));
}
(void) strlcat(diskbuf, tempbuf, sizeof (diskbuf));
(void) fprintf(stdout, "%s\n", diskbuf);
}
return (SUCCESS);
}
static int
print_ctl_table(raid_obj_handle_t ctl_handle)
{
raidcfg_controller_t ctl_attr;
char controller[8];
int ret;
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
(void) fprintf(stdout, gettext("Controller\tType\t\tVersion"));
(void) fprintf(stdout, "\n");
(void) fprintf(stdout, "--------------------------------");
(void) fprintf(stdout, "--------------------------------");
(void) fprintf(stdout, "\n");
(void) snprintf(controller, sizeof (controller), "%u",
ctl_attr.controller_id);
(void) printf("c%s\t\t", controller);
(void) print_ctl_attr(&ctl_attr);
(void) fprintf(stdout, "\n");
return (SUCCESS);
}
static int
print_array_table(raid_obj_handle_t ctl_handle, raid_obj_handle_t array_handle)
{
raidcfg_controller_t ctl_attr;
raidcfg_array_t array_attr;
raidcfg_array_t subarray_attr;
raidcfg_arraypart_t arraypart_attr;
raidcfg_task_t task_attr;
raid_obj_handle_t subarray_handle;
raid_obj_handle_t arraypart_handle;
raid_obj_handle_t task_handle;
char array[16];
char arraypart[8];
int ret;
int i;
/* Controller attribute */
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Array attribute */
if ((ret = raidcfg_get_attr(array_handle, &array_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* print header */
(void) fprintf(stdout, gettext("Volume\t\t\tSize\tStripe\tStatus\t"
" Cache\tRAID"));
(void) fprintf(stdout, "\n");
(void) fprintf(stdout, gettext("\tSub\t\t\tSize\t\t\tLevel"));
(void) fprintf(stdout, "\n");
(void) fprintf(stdout, gettext("\t\tDisk\t\t\t\t\t"));
(void) fprintf(stdout, "\n");
(void) fprintf(stdout, "--------------------------------");
(void) fprintf(stdout, "--------------------------------");
(void) fprintf(stdout, "\n");
/* print array */
(void) snprintf(array, sizeof (array), "c%ut%llud%llu",
ctl_attr.controller_id, array_attr.tag.idl.target_id,
array_attr.tag.idl.lun);
(void) fprintf(stdout, "%s\t\t", array);
if (strlen(array) < 8)
(void) fprintf(stdout, "\t");
/* check if array is in sync state */
task_handle = raidcfg_list_head(array_handle, OBJ_TYPE_TASK);
if (task_handle > 0) {
(void) raidcfg_get_attr(task_handle, &task_attr);
if (task_attr.task_func == TASK_FUNC_BUILD) {
array_attr.state = ARRAY_STATE_SYNC;
}
} else {
subarray_handle = raidcfg_list_head(array_handle,
OBJ_TYPE_ARRAY);
while (subarray_handle > 0) {
task_handle = raidcfg_list_head(subarray_handle,
OBJ_TYPE_TASK);
if (task_handle > 0) {
(void) raidcfg_get_attr(task_handle,
&task_attr);
if (task_attr.task_func == TASK_FUNC_BUILD) {
array_attr.state = ARRAY_STATE_SYNC;
}
break;
}
subarray_handle = raidcfg_list_next(subarray_handle);
}
}
(void) print_array_attr(&array_attr);
(void) fprintf(stdout, "\n");
/* Print sub array */
i = 0; /* Count sub array number */
subarray_handle = raidcfg_list_head(array_handle, OBJ_TYPE_ARRAY);
while (subarray_handle > 0) {
if ((ret = raidcfg_get_attr(subarray_handle,
&subarray_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Use sub0/sub1 here, not cxtxd0 for subarray */
(void) snprintf(array, sizeof (array), "sub%u", i++);
(void) fprintf(stdout, "\t%s\t\t", array);
/* Check if array is in sync */
task_handle = raidcfg_list_head(subarray_handle, OBJ_TYPE_TASK);
if (task_handle > 0) {
(void) raidcfg_get_attr(task_handle, &task_attr);
if (task_attr.task_func == TASK_FUNC_BUILD) {
subarray_attr.state = ARRAY_STATE_SYNC;
}
}
(void) print_array_attr(&subarray_attr);
(void) fprintf(stdout, "\n");
/* Print subarraypart */
arraypart_handle = raidcfg_list_head(subarray_handle,
OBJ_TYPE_ARRAY_PART);
while (arraypart_handle > 0) {
if ((ret = raidcfg_get_attr(arraypart_handle,
&arraypart_attr)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
if (arraypart_attr.tag.cidl.bus == MAX64BIT) {
(void) snprintf(arraypart, sizeof (arraypart),
gettext("N/A"));
} else {
(void) snprintf(arraypart, sizeof (arraypart),
"%llu.%llu.%llu",
arraypart_attr.tag.cidl.bus,
arraypart_attr.tag.cidl.target_id,
arraypart_attr.tag.cidl.lun);
}
(void) fprintf(stdout, "\t\t%s\t", arraypart);
(void) print_arraypart_attr(&arraypart_attr);
(void) fprintf(stdout, "\n");
arraypart_handle = raidcfg_list_next(arraypart_handle);
}
subarray_handle = raidcfg_list_next(subarray_handle);
}
/* Print arraypart */
arraypart_handle = raidcfg_list_head(array_handle,
OBJ_TYPE_ARRAY_PART);
while (arraypart_handle > 0) {
if ((ret = raidcfg_get_attr(arraypart_handle,
&arraypart_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
if (arraypart_attr.tag.cidl.bus == MAX64BIT) {
(void) snprintf(arraypart, sizeof (arraypart),
gettext("N/A"));
} else {
(void) snprintf(arraypart, sizeof (arraypart),
"%llu.%llu.%llu",
arraypart_attr.tag.cidl.bus,
arraypart_attr.tag.cidl.target_id,
arraypart_attr.tag.cidl.lun);
}
(void) fprintf(stdout, "\t\t%s\t", arraypart);
(void) print_arraypart_attr(&arraypart_attr);
(void) fprintf(stdout, "\n");
arraypart_handle = raidcfg_list_next(arraypart_handle);
}
return (SUCCESS);
}
static int
print_disk_table(raid_obj_handle_t ctl_handle, raid_obj_handle_t disk_handle)
{
raidcfg_controller_t ctl_attr;
raidcfg_disk_t disk_attr;
raidcfg_prop_t *prop_attr, *prop_attr2;
raid_obj_handle_t prop_handle;
char disk[8];
int ret;
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
if ((ret = raidcfg_get_attr(disk_handle, &disk_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
/* Print header */
(void) fprintf(stdout, gettext("Disk\tVendor Product "
"Firmware\tCapacity\tStatus\tHSP"));
(void) fprintf(stdout, "\n");
(void) fprintf(stdout, "--------------------------------------");
(void) fprintf(stdout, "--------------------------------------");
(void) fprintf(stdout, "\n");
(void) snprintf(disk, sizeof (disk), "%llu.%llu.%llu",
disk_attr.tag.cidl.bus,
disk_attr.tag.cidl.target_id,
disk_attr.tag.cidl.lun);
(void) fprintf(stdout, "%s\t", disk);
(void) print_disk_attr(ctl_handle, disk_handle, &disk_attr);
prop_attr = calloc(1, sizeof (raidcfg_prop_t));
if (prop_attr == NULL) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ERR_NOMEM));
return (FAILURE);
}
prop_handle = raidcfg_list_head(disk_handle, OBJ_TYPE_PROP);
if (prop_handle == 0) {
free(prop_attr);
return (SUCCESS);
}
do {
prop_attr->prop_size = 0;
if ((ret = raidcfg_get_attr(prop_handle, prop_attr)) < 0) {
free(prop_attr);
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
if (prop_attr->prop_type == PROP_GUID)
break;
} while (prop_handle != 0);
prop_attr2 = realloc(prop_attr,
sizeof (raidcfg_prop_t) + prop_attr->prop_size);
free(prop_attr);
if (prop_attr2 == NULL) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ERR_NOMEM));
return (FAILURE);
}
if ((ret = raidcfg_get_attr(prop_handle, prop_attr2)) < 0) {
free(prop_attr2);
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
(void) fprintf(stdout, "GUID:%s\n", prop_attr2->prop);
free(prop_attr2);
return (SUCCESS);
}
/*
* print_ctl_attr(attrp)
* This function prints attribute of specified controller, and return
* result as SUCCESS or FAILURE.
*/
static int
print_ctl_attr(raidcfg_controller_t *attrp)
{
char type[CONTROLLER_TYPE_LEN];
char version[CONTROLLER_FW_LEN];
if (attrp == NULL) {
return (FAILURE);
}
(void) snprintf(type, sizeof (type), "%s", attrp->controller_type);
(void) fprintf(stdout, "%-16s", type);
(void) snprintf(version, sizeof (version), "%s", attrp->fw_version);
(void) fprintf(stdout, "%s", version);
return (SUCCESS);
}
/*
* print_array_attr(attrp)
* This function prints attribute of specified array, and return
* result as SUCCESS or FAILURE.
*/
static int
print_array_attr(raidcfg_array_t *attrp)
{
char capacity[8];
char stripe_size[8];
char raid_level[8];
if (attrp == NULL) {
return (FAILURE);
}
if (attrp->capacity != MAX64BIT) {
if (size_to_string(attrp->capacity, capacity, 8) != SUCCESS) {
return (FAILURE);
}
(void) printf("%s\t", capacity);
} else {
(void) printf(gettext("N/A\t"));
}
if (attrp->stripe_size != MAX32BIT) {
(void) snprintf(stripe_size, sizeof (stripe_size), "%uK",
attrp->stripe_size / 1024);
(void) printf("%s\t", stripe_size);
} else {
(void) printf(gettext("N/A\t"));
}
if (attrp->state & ARRAY_STATE_INACTIVATE)
(void) printf("%-8s", gettext("INACTIVE"));
else {
switch (attrp->state) {
case ARRAY_STATE_OPTIMAL:
(void) printf("%-8s", gettext("OPTIMAL"));
break;
case ARRAY_STATE_DEGRADED:
(void) printf("%-8s", gettext("DEGRADED"));
break;
case ARRAY_STATE_FAILED:
(void) printf("%-8s", gettext("FAILED"));
break;
case ARRAY_STATE_SYNC:
(void) printf("%-8s", gettext("SYNC"));
break;
case ARRAY_STATE_MISSING:
(void) printf("%-8s", gettext("MISSING"));
break;
default:
(void) printf("%-8s", gettext("N/A"));
break;
}
}
(void) printf(" ");
if (attrp->write_policy == CACHE_WR_OFF) {
(void) printf(gettext("OFF"));
} else if (attrp->write_policy == CACHE_WR_ON) {
(void) printf(gettext("ON"));
} else {
(void) printf(gettext("N/A"));
}
(void) printf("\t");
switch (attrp->raid_level) {
case RAID_LEVEL_0:
(void) sprintf(raid_level, "RAID0");
break;
case RAID_LEVEL_1:
(void) sprintf(raid_level, "RAID1");
break;
case RAID_LEVEL_1E:
(void) sprintf(raid_level, "RAID1E");
break;
case RAID_LEVEL_5:
(void) sprintf(raid_level, "RAID5");
break;
case RAID_LEVEL_10:
(void) sprintf(raid_level, "RAID10");
break;
case RAID_LEVEL_50:
(void) sprintf(raid_level, "RAID50");
break;
default:
(void) snprintf(raid_level, sizeof (raid_level),
gettext("N/A"));
break;
}
(void) printf("%s", raid_level);
return (SUCCESS);
}
/*
* print_arraypart_attr(attrp)
* This function print attribute of specified arraypart, and return
* result as SUCCESS or FAILURE.
*/
static int
print_arraypart_attr(raidcfg_arraypart_t *attrp)
{
char size[8];
if (attrp == NULL) {
return (FAILURE);
}
if (attrp->size != MAX64BIT) {
if (size_to_string(attrp->size, size, 8) != SUCCESS) {
return (FAILURE);
}
(void) printf("%s\t", size);
} else {
(void) printf(gettext("N/A\t"));
}
(void) printf("\t");
if (attrp->state == DISK_STATE_GOOD) {
(void) printf(gettext("GOOD"));
} else if (attrp->state == DISK_STATE_FAILED) {
(void) printf(gettext("FAILED"));
} else {
(void) printf(gettext("N/A"));
}
(void) printf("\t");
return (SUCCESS);
}
/*
* print_disk_attr(ctl_handle, disk_handle, attrp)
* This function prints attribute of specified disk, and return
* result as SUCCESS or FAILURE.
*/
static int
print_disk_attr(raid_obj_handle_t ctl_handle, raid_obj_handle_t disk_handle,
raidcfg_disk_t *attrp)
{
char vendor[DISK_VENDER_LEN + 1];
char product[DISK_PRODUCT_LEN + 1];
char revision[DISK_REV_LEN + 1];
char capacity[16];
char hsp[16];
raid_obj_handle_t hsp_handle;
raidcfg_hsp_t hsp_attr;
raidcfg_controller_t ctl_attr;
int ret;
char is_indent;
if (attrp == NULL) {
return (FAILURE);
}
(void) memccpy(vendor, attrp->vendorid, '\0', DISK_VENDER_LEN);
vendor[DISK_VENDER_LEN] = '\0';
(void) printf("%-9s", vendor);
(void) memccpy(product, attrp->productid, '\0', DISK_PRODUCT_LEN);
product[DISK_PRODUCT_LEN] = '\0';
(void) printf("%-17s", product);
(void) memccpy(revision, attrp->revision, '\0', DISK_REV_LEN);
revision[DISK_REV_LEN] = '\0';
(void) printf("%s\t\t", revision);
if (attrp->capacity != MAX64BIT) {
if (size_to_string(attrp->capacity, capacity, 16) != SUCCESS) {
return (FAILURE);
}
(void) printf("%s\t\t", capacity);
} else {
(void) printf(gettext("N/A"));
}
if (attrp->state == DISK_STATE_GOOD) {
(void) printf(gettext("GOOD"));
} else if (attrp->state == DISK_STATE_FAILED) {
(void) printf(gettext("FAILED"));
} else {
(void) printf(gettext("N/A"));
}
(void) printf("\t");
/* Controller attribute */
if ((ret = raidcfg_get_attr(ctl_handle, &ctl_attr)) < 0) {
(void) fprintf(stderr, "%s\n", raidcfg_errstr(ret));
return (FAILURE);
}
hsp_handle = raidcfg_list_head(disk_handle, OBJ_TYPE_HSP);
if (hsp_handle == 0) {
(void) printf(gettext("N/A\n"));
} else {
is_indent = FALSE;
while (hsp_handle > 0) {
if ((ret = raidcfg_get_attr(hsp_handle,
&hsp_attr)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
if (is_indent == TRUE) {
(void) printf("\t\t\t\t\t\t\t");
} else {
is_indent = TRUE;
}
if (hsp_attr.type == HSP_TYPE_LOCAL) {
(void) snprintf(hsp, sizeof (hsp),
"c%ut%llud%llu",
ctl_attr.controller_id,
hsp_attr.tag.idl.target_id,
hsp_attr.tag.idl.lun);
(void) printf("%s\n", hsp);
} else if (hsp_attr.type == HSP_TYPE_GLOBAL) {
(void) printf(gettext("Global\n"));
} else {
return (FAILURE);
}
hsp_handle = raidcfg_list_next(hsp_handle);
}
}
return (SUCCESS);
}
/*
* print_indent(indent)
* This function prints specified number of tab characters. It's used to
* format layout.
*/
static void
print_indent(uint8_t indent)
{
uint32_t i;
for (i = 0; i < indent; i++) {
(void) fprintf(stdout, "\t");
}
}
/*
* get_disk_handle_cidl(ctl_tag, disks_argp, comps_num, handlespp)
* This function parses the string of disk argument, and gets the disks tag
* and separators from the string. Then it translates the tag to handle, and
* stores handles and separators to new buffer pointed by parameter handlespp.
* The format of disk_arg must be C:ID:L, for example, it is 0.1.0. The first
* "0" is channel number, and the second "1" is target number, and the third
* "0" is LUN number. The disk tags are separated by comma and parenthesis.
* Function returns SUCCESS or FAILURE.
*/
static int
get_disk_handle_cidl(uint32_t ctl_tag, char *disks_argp, int *comps_nump,
raid_obj_handle_t **handlespp)
{
int len = 0;
int i = 0, j = 0;
char *p, *t;
char *delimit = " ";
char *disks_str;
disk_tag_t disk_tag;
if (disks_argp == NULL || comps_nump == NULL) {
return (FAILURE);
}
p = disks_argp;
len = strlen(disks_argp);
if ((disks_str = (char *)malloc(3 * len + 4)) == NULL) {
return (FAILURE);
}
/* Insert whitespace between disk tags, '(' , and ')' */
disks_str[j ++] = '(';
disks_str[j ++] = ' ';
while (p[i] != '\0') {
if (p[i] == ')' || p[i] == '(') {
disks_str[j ++] = ' ';
disks_str[j ++] = p[i];
disks_str[j ++] = ' ';
} else
disks_str[j ++] = p[i];
i ++;
}
disks_str[j ++] = ' ';
disks_str[j ++] = ')';
disks_str[j] = '\0';
len = strlen(disks_str) + 1;
if ((t = (char *)malloc(len)) == NULL) {
return (FAILURE);
}
(void) memcpy(t, disks_str, len);
p = strtok(t, delimit);
while (p != NULL) {
(*comps_nump)++;
p = strtok(NULL, delimit);
}
free(t);
*handlespp = calloc(*comps_nump, sizeof (raid_obj_handle_t));
if (*handlespp == NULL) {
return (FAILURE);
}
for (i = 0; i < *comps_nump; i++)
(*handlespp)[i] = INIT_HANDLE_VALUE;
i = 0;
p = strtok(disks_str, delimit);
while (p != NULL) {
if (*p == '(') {
(*handlespp)[i] = OBJ_SEPARATOR_BEGIN;
} else if (*p == ')') {
(*handlespp)[i] = OBJ_SEPARATOR_END;
} else {
if (get_disk_tag_cidl(p, &disk_tag) != SUCCESS) {
free(*handlespp);
free(disks_str);
return (INVALID_ARG);
}
(*handlespp)[i] =
raidcfg_get_disk(raidcfg_get_controller(ctl_tag),
disk_tag);
if ((*handlespp)[i] <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr((*handlespp)[i]));
free(*handlespp);
free(disks_str);
return (FAILURE);
}
}
p = strtok(NULL, delimit);
i++;
}
free(disks_str);
return (SUCCESS);
}
/*
* get_disk_handle_ctd(disks_num, disks_argpp, ctl_tagp, disks_handlep)
* This function parses string of single disk with "ctd" format, for example,
* c0t0d0, and translates it to controller tag and disk tag.
* Then it calls lib api and get disk handle. The controller tag and disk
* handle are both returned by out parameters.
* The return value is SUCCESS or FAILURE.
*/
static int
get_disk_handle_ctd(int disks_num, char **disks_argpp, uint32_t *ctl_tagp,
raid_obj_handle_t *disks_handlep)
{
raid_obj_handle_t ctl_handle;
disk_tag_t disk_tag;
uint32_t ctl_id;
int i;
int ret;
if (disks_handlep == NULL) {
return (FAILURE);
}
for (i = 0; i < disks_num; i++) {
if (get_disk_tag_ctd(disks_argpp[i], &disk_tag, &ctl_id) !=
SUCCESS) {
return (INVALID_ARG);
}
*ctl_tagp = ctl_id;
if (i == 0) {
ctl_handle = raidcfg_get_controller(*ctl_tagp);
if (ctl_handle <= 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ctl_handle));
return (FAILURE);
}
ret = raidcfg_open_controller(ctl_handle, NULL);
if (ret < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(ret));
return (FAILURE);
}
}
if ((disks_handlep[i] =
raidcfg_get_disk(ctl_handle, disk_tag)) < 0) {
(void) fprintf(stderr, "%s\n",
raidcfg_errstr(disks_handlep[i]));
(void) raidcfg_close_controller(ctl_handle, NULL);
return (FAILURE);
}
}
return (SUCCESS);
}
/*
* get_ctl_tag(argp)
* This function translates controller string to tag. The return value is
* SUCCESS if the string has legal format and is parsed successfully,
* or FAILURE if it fails.
*/
static int
get_ctl_tag(char *argp, uint32_t *ctl_tagp)
{
if (argp == NULL || is_fully_numeric(argp) == FALSE ||
ctl_tagp == NULL) {
return (FAILURE);
}
*ctl_tagp = (atoi(argp));
return (SUCCESS);
}
/*
* get_array_tag(argp, ctl_tagp, array_tagp)
* This function parses array string to get array tag and controller tag.
* The return value is SUCCESS if the string has legal format, or
* FAILURE if it fails.
*/
static int
get_array_tag(char *argp, uint32_t *ctl_tagp, array_tag_t *array_tagp)
{
char *t = NULL;
char *cp = NULL;
char *tp = NULL;
char *dp = NULL;
uint32_t value_c = MAX32BIT;
uint32_t value_t = MAX32BIT;
uint32_t value_d = MAX32BIT;
int len = 0;
if (argp == NULL || (len = strlen(argp)) == 0 ||
array_tagp == NULL) {
return (FAILURE);
}
t = (char *)malloc(len + 1);
if (t == NULL) {
return (FAILURE);
}
(void) memcpy(t, argp, len + 1);
/* Now remmber to release t memory if exception occurs */
if (((dp = strchr(t, 'd')) == NULL) ||
((tp = strchr(t, 't')) == NULL) ||
((cp = strchr(t, 'c')) == NULL)) {
free(t);
return (FAILURE);
}
cp = t;
*dp = '\0';
dp++;
*tp = '\0';
tp++;
cp++;
if (is_fully_numeric(dp) == FALSE ||
is_fully_numeric(tp) == FALSE ||
is_fully_numeric(cp) == FALSE) {
free(t);
return (FAILURE);
}
value_c = atoi(cp);
value_t = atoi(tp);
value_d = atoi(dp);
array_tagp->idl.target_id = value_t;
array_tagp->idl.lun = value_d;
if (ctl_tagp != NULL) {
*ctl_tagp = value_c;
}
free(t);
return (SUCCESS);
}
/*
* get_disk_tag_ctd(argp, disk_tagp)
* This function parses disk string of ctd format, and translates it to
* disk tag and controller tag. The tags is returned by out parameters.
* The return value is SUCCESS if the string has legal format, or FAILURE
* if it fails.
*/
static int
get_disk_tag_ctd(char *argp, disk_tag_t *disk_tagp, uint32_t *ctl_tag)
{
char *t = NULL;
char *cp = NULL;
char *tp = NULL;
char *dp = NULL;
uint32_t value_c = MAX32BIT;
uint32_t value_t = MAX32BIT;
uint32_t value_d = MAX32BIT;
int len = 0;
if (argp == NULL || (len = strlen(argp)) == 0 ||
disk_tagp == NULL) {
return (FAILURE);
}
t = (char *)malloc(len + 1);
if (t == NULL) {
return (FAILURE);
}
(void) memcpy(t, argp, len + 1);
/* Now remmber to release t memory if exception occurs */
if (((dp = strchr(t, 'd')) == NULL) ||
((tp = strchr(t, 't')) == NULL) ||
((cp = strchr(t, 'c')) == NULL)) {
free(t);
return (FAILURE);
}
cp = t;
*dp = '\0';
dp++;
*tp = '\0';
tp++;
cp++;
if (is_fully_numeric(dp) == FALSE ||
is_fully_numeric(tp) == FALSE ||
is_fully_numeric(cp) == FALSE) {
free(t);
return (FAILURE);
}
value_c = atoi(cp);
value_t = atoi(tp);
value_d = atoi(dp);
disk_tagp->cidl.bus = 0;
disk_tagp->cidl.target_id = value_t;
disk_tagp->cidl.lun = value_d;
*ctl_tag = value_c;
free(t);
return (SUCCESS);
}
/*
* get_disk_tag_cidl(argp, disk_tagp)
* This function parses disk string of cidl format and translates it to tag.
* The return value is disk tag if the string has legal format, or FAILURE
* if it fails.
*/
static int
get_disk_tag_cidl(char *argp, disk_tag_t *disk_tagp)
{
int len = 0;
char *p = NULL;
char *t = NULL;
char *dot1p = NULL;
char *dot2p = NULL;
if (argp == NULL || (len = strlen(argp)) == 0) {
return (FAILURE);
}
if (disk_tagp == NULL) {
return (FAILURE);
}
t = (char *)malloc(len + 1);
if (t == NULL) {
return (FAILURE);
}
(void) memcpy(t, argp, len + 1);
p = t;
dot2p = strrchr(p, '.');
if (dot2p == NULL) {
free(t);
return (FAILURE);
}
*dot2p = '\0';
dot2p++;
dot1p = strrchr(p, '.');
if (dot1p == NULL) {
free(t);
return (FAILURE);
}
*dot1p = '\0';
dot1p++;
/* Assert only 2 dots in this string */
if (strrchr(p, '.') != NULL) {
free(t);
return (FAILURE);
}
while (*p == ' ')
p++;
if (is_fully_numeric(p) == FALSE ||
is_fully_numeric(dot1p) == FALSE ||
is_fully_numeric(dot2p) == FALSE) {
free(t);
return (FAILURE);
}
disk_tagp->cidl.bus = atoi(p);
disk_tagp->cidl.target_id = atoi(dot1p);
disk_tagp->cidl.lun = atoi(dot2p);
free(t);
return (SUCCESS);
}
/*
* calc_size(sizep, valp)
* This function calculates the value represented by string sizep.
* The string sizep can be decomposed into three parts: an initial,
* possibly empty, sequence of white-space characters; a subject digital
* sequence interpreted as an integer with unit k/K/m/M/g/G/t/T; and a
* final string of one or more unrecognized characters or white-sapce
* characters, including the terminating null. If unrecognized character
* exists or overflow happens, the conversion must fail and return
* INVALID_ARG. If the conversion is performed successfully, result will
* be saved into valp and function returns SUCCESS. It returns FAILURE
* when memory allocation fails.
*/
static int
calc_size(char *sizep, uint64_t *valp)
{
int len;
uint64_t size;
uint64_t unit;
char *t = NULL;
char *tailp = NULL;
if (sizep == NULL || valp == NULL) {
return (INVALID_ARG);
}
if (is_fully_numeric(sizep) == TRUE) {
*valp = atoi(sizep);
return (SUCCESS);
}
len = strlen(sizep);
if (len == 0) {
return (INVALID_ARG);
}
t = (char *)malloc(len + 1);
if (t == NULL) {
return (FAILURE);
}
(void) memcpy(t, sizep, len + 1);
switch (*(t + len - 1)) {
case 'k':
case 'K':
unit = 1024ull;
errno = 0;
size = strtoll(t, &tailp, 0);
break;
case 'm':
case 'M':
unit = 1024ull * 1024ull;
errno = 0;
size = strtoll(t, &tailp, 0);
break;
case 'g':
case 'G':
unit = 1024ull * 1024ull * 1024ull;
errno = 0;
size = strtoll(t, &tailp, 0);
break;
case 't':
case 'T':
unit = 1024ull * 1024ull * 1024ull * 1024ull;
errno = 0;
size = strtoll(t, &tailp, 0);
break;
default:
/* The unit must be kilobyte at least. */
free(t);
return (INVALID_ARG);
}
*(t + len - 1) = '\0';
if (is_fully_numeric(t) != TRUE) {
free(t);
return (INVALID_ARG);
}
errno = 0;
size = strtoll(t, &tailp, 0);
/* Check overflow condition */
if (errno == ERANGE || (size > (MAX64BIT / unit))) {
free(t);
return (INVALID_ARG);
}
*valp = size * unit;
free(t);
return (SUCCESS);
}
/*
* is_fully_numeric(str)
* This function checks if the string are legal numeric string. The beginning
* or ending characters can be white spaces.
* Return value is TRUE if the string are legal numeric string, or FALSE
* otherwise.
*/
static int
is_fully_numeric(char *strp)
{
uint32_t len;
uint32_t i;
if (strp == NULL) {
return (FALSE);
}
len = strlen(strp);
if (len == 0) {
return (FALSE);
}
/* Skip whitespace characters */
for (i = 0; i < len; i++) {
if (strp[i] != ' ') {
break;
}
}
/* if strp points all space characters */
if (i == len) {
return (FALSE);
}
/* Check the digitals in string */
for (; i < len; i++) {
if (!isdigit(strp[i])) {
break;
}
}
/* Check the ending string */
for (; i < len; i++) {
if (strp[i] != ' ') {
return (FALSE);
}
}
return (TRUE);
}
static int
yes(void)
{
int i, b;
char ans[SCHAR_MAX + 1];
for (i = 0; ; i++) {
b = getchar();
if (b == '\n' || b == '\0' || b == EOF) {
ans[i] = 0;
break;
}
if (i < SCHAR_MAX) {
ans[i] = b;
}
}
if (i >= SCHAR_MAX) {
i = SCHAR_MAX;
ans[SCHAR_MAX] = 0;
}
return (rpmatch(ans));
}
/*
* Function: int rpmatch(char *)
*
* Description:
*
* Internationalized get yes / no answer.
*
* Inputs:
* s -> Pointer to answer to compare against.
*
* Returns:
* TRUE -> Answer was affirmative
* FALSE -> Answer was negative
*/
static int
rpmatch(char *s)
{
int status;
/* match yesexpr */
status = regexec(&re, s, (size_t)0, NULL, 0);
if (status != 0) {
return (FALSE);
}
return (TRUE);
}
static int
size_to_string(uint64_t size, char *string, int len)
{
int i = 0;
uint32_t remainder;
char unit[][2] = {" ", "K", "M", "G", "T"};
if (string == NULL) {
return (FAILURE);
}
while (size > 1023) {
remainder = size % 1024;
size /= 1024;
i++;
}
if (i > 4) {
return (FAILURE);
}
remainder /= 103;
if (remainder == 0) {
(void) snprintf(string, len, "%llu", size);
} else {
(void) snprintf(string, len, "%llu.%1u", size,
remainder);
}
/* make sure there is one byte for unit */
if ((strlen(string) + 1) >= len) {
return (FAILURE);
}
(void) strlcat(string, unit[i], len);
return (SUCCESS);
}
/*
* Only one raidctl is running at one time.
*/
static int
enter_raidctl_lock(int *fd)
{
int fd0 = -1;
struct flock lock;
fd0 = open(RAIDCTL_LOCKF, O_CREAT|O_WRONLY, 0600);
if (fd0 < 0) {
if (errno == EACCES) {
(void) fprintf(stderr,
gettext("raidctl:must be root to run raidctl"
": %s\n"), strerror(errno));
} else {
(void) fprintf(stderr,
gettext("raidctl:failed to open lockfile"
" '"RAIDCTL_LOCKF"': %s\n"), strerror(errno));
}
return (FAILURE);
}
*fd = fd0;
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
if ((fcntl(fd0, F_SETLK, &lock) == -1) &&
(errno == EAGAIN || errno == EDEADLK)) {
if (fcntl(fd0, F_GETLK, &lock) == -1) {
(void) fprintf(stderr,
gettext("raidctl:enter_filelock error\n"));
return (FAILURE);
}
(void) fprintf(stderr, gettext("raidctl:"
"enter_filelock:filelock is owned "
"by 'process %d'\n"), lock.l_pid);
return (FAILURE);
}
return (SUCCESS);
}
static void
exit_raidctl_lock(int fd)
{
struct flock lock;
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(fd, F_SETLK, &lock) == -1) {
(void) fprintf(stderr, gettext("raidctl: failed to"
" exit_filelock: %s\n"),
strerror(errno));
}
(void) close(fd);
}