/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014 Racktop Systems.
*/
/*
* Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
* kstat(3KSTAT) facility available to Perl scripts. Kstat is a general-purpose
* mechanism for providing kernel statistics to users. The Solaris API is
* function-based (see the manpage for details), but for ease of use in Perl
* scripts this module presents the information as a nested hash data structure.
* It would be too inefficient to read every kstat in the system, so this module
* uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
* only reads and updates kstats as and when they are actually accessed.
*/
/*
* Ignored raw kstats.
*
* Some raw kstats are ignored by this module, these are listed below. The
* most common reason is that the kstats are stored as arrays and the ks_ndata
* and/or ks_data_size fields are invalid. In this case it is impossible to
* know how many records are in the array, so they can't be read.
*
* unix:*:sfmmu_percpu_stat
* This is stored as an array with one entry per cpu. Each element is of type
* struct sfmmu_percpu_stat. The ks_ndata and ks_data_size fields are bogus.
*
* ufs directio:*:UFS DirectIO Stats
* The structure definition used for these kstats (ufs_directio_kstats) is in a
* C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
* isn't accessible.
*
* qlc:*:statistics
* This is a third-party driver for which we don't have source.
*
* mm:*:phys_installed
* This is stored as an array of uint64_t, with each pair of values being the
* (address, size) of a memory segment. The ks_ndata and ks_data_size fields
* are both zero.
*
* sockfs:*:sock_unix_list
* This is stored as an array with one entry per active socket. Each element
* is of type struct k_sockinfo. The ks_ndata and ks_data_size fields are both
* zero.
*
* Note that the ks_ndata and ks_data_size of many non-array raw kstats are
* also incorrect. The relevant assertions are therefore commented out in the
* appropriate raw kstat read routines.
*/
/* Kstat related includes */
#include <libgen.h>
#include <kstat.h>
#include <sys/var.h>
#include <sys/utsname.h>
#include <sys/sysinfo.h>
#include <sys/flock.h>
#include <sys/dnlc.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
/* Ultra-specific kstat includes */
#ifdef __sparc
#include <vm/hat_sfmmu.h> /* from /usr/platform/sun4u/include */
#include <sys/simmstat.h> /* from /usr/platform/sun4u/include */
#include <sys/sysctrl.h> /* from /usr/platform/sun4u/include */
#include <sys/fhc.h> /* from /usr/include */
#endif
/*
* Solaris #defines SP, which conflicts with the perl definition of SP
* We don't need the Solaris one, so get rid of it to avoid warnings
*/
#undef SP
/* Perl XS includes */
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
/* Debug macros */
#define DEBUG_ID "Sun::Solaris::Kstat"
#ifdef KSTAT_DEBUG
#define PERL_ASSERT(EXP) \
((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
#define PERL_ASSERTMSG(EXP, MSG) \
((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
#else
#define PERL_ASSERT(EXP) ((void)0)
#define PERL_ASSERTMSG(EXP, MSG) ((void)0)
#endif
/* Macros for saving the contents of KSTAT_RAW structures */
#if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
#define NEW_IV(V) \
(newSViv((IVTYPE) V))
#define NEW_UV(V) \
(newSVuv((UVTYPE) V))
#else
#define NEW_IV(V) \
(V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
#if defined(UVTYPE)
#define NEW_UV(V) \
(V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
# else
#define NEW_UV(V) \
(V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
#endif
#endif
#define NEW_HRTIME(V) \
newSVnv((NVTYPE) (V / 1000000000.0))
#define SAVE_FNP(H, F, K) \
hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0)
#define SAVE_STRING(H, S, K, SS) \
hv_store(H, #K, sizeof (#K) - 1, \
newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
#define SAVE_INT32(H, S, K) \
hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
#define SAVE_UINT32(H, S, K) \
hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
#define SAVE_INT64(H, S, K) \
hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
#define SAVE_UINT64(H, S, K) \
hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
#define SAVE_HRTIME(H, S, K) \
hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
/* Private structure used for saving kstat info in the tied hashes */
typedef struct {
char read; /* Kstat block has been read before */
char valid; /* Kstat still exists in kstat chain */
char strip_str; /* Strip KSTAT_DATA_CHAR fields */
kstat_ctl_t *kstat_ctl; /* Handle returned by kstat_open */
kstat_t *kstat; /* Handle used by kstat_read */
} KstatInfo_t;
/* typedef for apply_to_ties callback functions */
typedef int (*ATTCb_t)(HV *, void *);
/* typedef for raw kstat reader functions */
typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
/* Hash of "module:name" to KSTAT_RAW read functions */
static HV *raw_kstat_lookup;
/*
* Kstats come in two flavours, named and raw. Raw kstats are just C structs,
* so we need a function per raw kstat to convert the C struct into the
* corresponding perl hash. All such conversion functions are in the following
* section.
*/
/*
* Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
*/
static void
save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
{
cpu_stat_t *statp;
cpu_sysinfo_t *sysinfop;
cpu_syswait_t *syswaitp;
cpu_vminfo_t *vminfop;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
statp = (cpu_stat_t *)(kp->ks_data);
sysinfop = &statp->cpu_sysinfo;
syswaitp = &statp->cpu_syswait;
vminfop = &statp->cpu_vminfo;
hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
hv_store(self, "wait_pio", 8, NEW_UV(sysinfop->wait[W_PIO]), 0);
SAVE_UINT32(self, sysinfop, bread);
SAVE_UINT32(self, sysinfop, bwrite);
SAVE_UINT32(self, sysinfop, lread);
SAVE_UINT32(self, sysinfop, lwrite);
SAVE_UINT32(self, sysinfop, phread);
SAVE_UINT32(self, sysinfop, phwrite);
SAVE_UINT32(self, sysinfop, pswitch);
SAVE_UINT32(self, sysinfop, trap);
SAVE_UINT32(self, sysinfop, intr);
SAVE_UINT32(self, sysinfop, syscall);
SAVE_UINT32(self, sysinfop, sysread);
SAVE_UINT32(self, sysinfop, syswrite);
SAVE_UINT32(self, sysinfop, sysfork);
SAVE_UINT32(self, sysinfop, sysvfork);
SAVE_UINT32(self, sysinfop, sysexec);
SAVE_UINT32(self, sysinfop, readch);
SAVE_UINT32(self, sysinfop, writech);
SAVE_UINT32(self, sysinfop, rcvint);
SAVE_UINT32(self, sysinfop, xmtint);
SAVE_UINT32(self, sysinfop, mdmint);
SAVE_UINT32(self, sysinfop, rawch);
SAVE_UINT32(self, sysinfop, canch);
SAVE_UINT32(self, sysinfop, outch);
SAVE_UINT32(self, sysinfop, msg);
SAVE_UINT32(self, sysinfop, sema);
SAVE_UINT32(self, sysinfop, namei);
SAVE_UINT32(self, sysinfop, ufsiget);
SAVE_UINT32(self, sysinfop, ufsdirblk);
SAVE_UINT32(self, sysinfop, ufsipage);
SAVE_UINT32(self, sysinfop, ufsinopage);
SAVE_UINT32(self, sysinfop, inodeovf);
SAVE_UINT32(self, sysinfop, fileovf);
SAVE_UINT32(self, sysinfop, procovf);
SAVE_UINT32(self, sysinfop, intrthread);
SAVE_UINT32(self, sysinfop, intrblk);
SAVE_UINT32(self, sysinfop, idlethread);
SAVE_UINT32(self, sysinfop, inv_swtch);
SAVE_UINT32(self, sysinfop, nthreads);
SAVE_UINT32(self, sysinfop, cpumigrate);
SAVE_UINT32(self, sysinfop, xcalls);
SAVE_UINT32(self, sysinfop, mutex_adenters);
SAVE_UINT32(self, sysinfop, rw_rdfails);
SAVE_UINT32(self, sysinfop, rw_wrfails);
SAVE_UINT32(self, sysinfop, modload);
SAVE_UINT32(self, sysinfop, modunload);
SAVE_UINT32(self, sysinfop, bawrite);
#ifdef STATISTICS /* see header file */
SAVE_UINT32(self, sysinfop, rw_enters);
SAVE_UINT32(self, sysinfop, win_uo_cnt);
SAVE_UINT32(self, sysinfop, win_uu_cnt);
SAVE_UINT32(self, sysinfop, win_so_cnt);
SAVE_UINT32(self, sysinfop, win_su_cnt);
SAVE_UINT32(self, sysinfop, win_suo_cnt);
#endif
SAVE_INT32(self, syswaitp, iowait);
SAVE_INT32(self, syswaitp, swap);
SAVE_INT32(self, syswaitp, physio);
SAVE_UINT32(self, vminfop, pgrec);
SAVE_UINT32(self, vminfop, pgfrec);
SAVE_UINT32(self, vminfop, pgin);
SAVE_UINT32(self, vminfop, pgpgin);
SAVE_UINT32(self, vminfop, pgout);
SAVE_UINT32(self, vminfop, pgpgout);
SAVE_UINT32(self, vminfop, swapin);
SAVE_UINT32(self, vminfop, pgswapin);
SAVE_UINT32(self, vminfop, swapout);
SAVE_UINT32(self, vminfop, pgswapout);
SAVE_UINT32(self, vminfop, zfod);
SAVE_UINT32(self, vminfop, dfree);
SAVE_UINT32(self, vminfop, scan);
SAVE_UINT32(self, vminfop, rev);
SAVE_UINT32(self, vminfop, hat_fault);
SAVE_UINT32(self, vminfop, as_fault);
SAVE_UINT32(self, vminfop, maj_fault);
SAVE_UINT32(self, vminfop, cow_fault);
SAVE_UINT32(self, vminfop, prot_fault);
SAVE_UINT32(self, vminfop, softlock);
SAVE_UINT32(self, vminfop, kernel_asflt);
SAVE_UINT32(self, vminfop, pgrrun);
SAVE_UINT32(self, vminfop, execpgin);
SAVE_UINT32(self, vminfop, execpgout);
SAVE_UINT32(self, vminfop, execfree);
SAVE_UINT32(self, vminfop, anonpgin);
SAVE_UINT32(self, vminfop, anonpgout);
SAVE_UINT32(self, vminfop, anonfree);
SAVE_UINT32(self, vminfop, fspgin);
SAVE_UINT32(self, vminfop, fspgout);
SAVE_UINT32(self, vminfop, fsfree);
}
/*
* Definitions in /usr/include/sys/var.h
*/
static void
save_var(HV *self, kstat_t *kp, int strip_str)
{
struct var *varp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
varp = (struct var *)(kp->ks_data);
SAVE_INT32(self, varp, v_buf);
SAVE_INT32(self, varp, v_call);
SAVE_INT32(self, varp, v_proc);
SAVE_INT32(self, varp, v_maxupttl);
SAVE_INT32(self, varp, v_nglobpris);
SAVE_INT32(self, varp, v_maxsyspri);
SAVE_INT32(self, varp, v_clist);
SAVE_INT32(self, varp, v_maxup);
SAVE_INT32(self, varp, v_hbuf);
SAVE_INT32(self, varp, v_hmask);
SAVE_INT32(self, varp, v_pbuf);
SAVE_INT32(self, varp, v_sptmap);
SAVE_INT32(self, varp, v_maxpmem);
SAVE_INT32(self, varp, v_autoup);
SAVE_INT32(self, varp, v_bufhwm);
}
/*
* Definition in /usr/include/sys/dnlc.h
*/
static void
save_ncstats(HV *self, kstat_t *kp, int strip_str)
{
struct ncstats *ncstatsp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
ncstatsp = (struct ncstats *)(kp->ks_data);
SAVE_INT32(self, ncstatsp, hits);
SAVE_INT32(self, ncstatsp, misses);
SAVE_INT32(self, ncstatsp, enters);
SAVE_INT32(self, ncstatsp, dbl_enters);
SAVE_INT32(self, ncstatsp, long_enter);
SAVE_INT32(self, ncstatsp, long_look);
SAVE_INT32(self, ncstatsp, move_to_front);
SAVE_INT32(self, ncstatsp, purges);
}
/*
* Definition in /usr/include/sys/sysinfo.h
*/
static void
save_sysinfo(HV *self, kstat_t *kp, int strip_str)
{
sysinfo_t *sysinfop;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
sysinfop = (sysinfo_t *)(kp->ks_data);
SAVE_UINT32(self, sysinfop, updates);
SAVE_UINT32(self, sysinfop, runque);
SAVE_UINT32(self, sysinfop, runocc);
SAVE_UINT32(self, sysinfop, swpque);
SAVE_UINT32(self, sysinfop, swpocc);
SAVE_UINT32(self, sysinfop, waiting);
}
/*
* Definition in /usr/include/sys/sysinfo.h
*/
static void
save_vminfo(HV *self, kstat_t *kp, int strip_str)
{
vminfo_t *vminfop;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
vminfop = (vminfo_t *)(kp->ks_data);
SAVE_UINT64(self, vminfop, freemem);
SAVE_UINT64(self, vminfop, swap_resv);
SAVE_UINT64(self, vminfop, swap_alloc);
SAVE_UINT64(self, vminfop, swap_avail);
SAVE_UINT64(self, vminfop, swap_free);
SAVE_UINT64(self, vminfop, updates);
}
/*
* Definition in /usr/include/nfs/nfs_clnt.h
*/
static void
save_nfs(HV *self, kstat_t *kp, int strip_str)
{
struct mntinfo_kstat *mntinfop;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
SAVE_STRING(self, mntinfop, mik_proto, strip_str);
SAVE_UINT32(self, mntinfop, mik_vers);
SAVE_UINT32(self, mntinfop, mik_flags);
SAVE_UINT32(self, mntinfop, mik_secmod);
SAVE_UINT32(self, mntinfop, mik_curread);
SAVE_UINT32(self, mntinfop, mik_curwrite);
SAVE_INT32(self, mntinfop, mik_timeo);
SAVE_INT32(self, mntinfop, mik_retrans);
SAVE_UINT32(self, mntinfop, mik_acregmin);
SAVE_UINT32(self, mntinfop, mik_acregmax);
SAVE_UINT32(self, mntinfop, mik_acdirmin);
SAVE_UINT32(self, mntinfop, mik_acdirmax);
hv_store(self, "lookup_srtt", 11,
NEW_UV(mntinfop->mik_timers[0].srtt), 0);
hv_store(self, "lookup_deviate", 14,
NEW_UV(mntinfop->mik_timers[0].deviate), 0);
hv_store(self, "lookup_rtxcur", 13,
NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
hv_store(self, "read_srtt", 9,
NEW_UV(mntinfop->mik_timers[1].srtt), 0);
hv_store(self, "read_deviate", 12,
NEW_UV(mntinfop->mik_timers[1].deviate), 0);
hv_store(self, "read_rtxcur", 11,
NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
hv_store(self, "write_srtt", 10,
NEW_UV(mntinfop->mik_timers[2].srtt), 0);
hv_store(self, "write_deviate", 13,
NEW_UV(mntinfop->mik_timers[2].deviate), 0);
hv_store(self, "write_rtxcur", 12,
NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
SAVE_UINT32(self, mntinfop, mik_noresponse);
SAVE_UINT32(self, mntinfop, mik_failover);
SAVE_UINT32(self, mntinfop, mik_remap);
SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
}
/*
* The following struct => hash functions are all only present on the sparc
* platform, so they are all conditionally compiled depending on __sparc
*/
/*
* Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
*/
#ifdef __sparc
static void
save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
{
struct sfmmu_global_stat *sfmmugp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
SAVE_INT32(self, sfmmugp, sf_pagefaults);
SAVE_INT32(self, sfmmugp, sf_uhash_searches);
SAVE_INT32(self, sfmmugp, sf_uhash_links);
SAVE_INT32(self, sfmmugp, sf_khash_searches);
SAVE_INT32(self, sfmmugp, sf_khash_links);
SAVE_INT32(self, sfmmugp, sf_swapout);
SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
SAVE_INT32(self, sfmmugp, sf_tteload8k);
SAVE_INT32(self, sfmmugp, sf_tteload64k);
SAVE_INT32(self, sfmmugp, sf_tteload512k);
SAVE_INT32(self, sfmmugp, sf_tteload4m);
SAVE_INT32(self, sfmmugp, sf_tteload32m);
SAVE_INT32(self, sfmmugp, sf_tteload256m);
SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
SAVE_INT32(self, sfmmugp, sf_hblk_hit);
SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
SAVE_INT32(self, sfmmugp, sf_get_free_success);
SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
SAVE_INT32(self, sfmmugp, sf_get_free_fail);
SAVE_INT32(self, sfmmugp, sf_put_free_success);
SAVE_INT32(self, sfmmugp, sf_put_free_fail);
SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
SAVE_INT32(self, sfmmugp, sf_unload_conflict);
SAVE_INT32(self, sfmmugp, sf_ism_uncache);
SAVE_INT32(self, sfmmugp, sf_ism_recache);
SAVE_INT32(self, sfmmugp, sf_recache);
SAVE_INT32(self, sfmmugp, sf_steal_count);
SAVE_INT32(self, sfmmugp, sf_pagesync);
SAVE_INT32(self, sfmmugp, sf_clrwrt);
SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
SAVE_INT32(self, sfmmugp, sf_user_xcalls);
SAVE_INT32(self, sfmmugp, sf_tsb_grow);
SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
SAVE_INT32(self, sfmmugp, sf_user_vtop);
SAVE_INT32(self, sfmmugp, sf_ctx_inv);
SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
SAVE_INT32(self, sfmmugp, sf_create_scd);
SAVE_INT32(self, sfmmugp, sf_join_scd);
SAVE_INT32(self, sfmmugp, sf_leave_scd);
SAVE_INT32(self, sfmmugp, sf_destroy_scd);
}
#endif
/*
* Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
*/
#ifdef __sparc
static void
save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
{
struct sfmmu_tsbsize_stat *sfmmutp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
}
#endif
/*
* Definition in /usr/platform/sun4u/include/sys/simmstat.h
*/
#ifdef __sparc
static void
save_simmstat(HV *self, kstat_t *kp, int strip_str)
{
uchar_t *simmstatp;
SV *list;
int i;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);
list = newSVpv("", 0);
for (i = 0, simmstatp = (uchar_t *)(kp->ks_data);
i < SIMM_COUNT - 1; i++, simmstatp++) {
sv_catpvf(list, "%d,", *simmstatp);
}
sv_catpvf(list, "%d", *simmstatp);
hv_store(self, "status", 6, list, 0);
}
#endif
/*
* Used by save_temperature to make CSV lists from arrays of
* short temperature values
*/
#ifdef __sparc
static SV *
short_array_to_SV(short *shortp, int len)
{
SV *list;
list = newSVpv("", 0);
for (; len > 1; len--, shortp++) {
sv_catpvf(list, "%d,", *shortp);
}
sv_catpvf(list, "%d", *shortp);
return (list);
}
/*
* Definition in /usr/platform/sun4u/include/sys/fhc.h
*/
static void
save_temperature(HV *self, kstat_t *kp, int strip_str)
{
struct temp_stats *tempsp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats));
tempsp = (struct temp_stats *)(kp->ks_data);
SAVE_UINT32(self, tempsp, index);
hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0);
hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0);
hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0);
hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0);
hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0);
SAVE_INT32(self, tempsp, max);
SAVE_INT32(self, tempsp, min);
SAVE_INT32(self, tempsp, state);
SAVE_INT32(self, tempsp, temp_cnt);
SAVE_INT32(self, tempsp, shutdown_cnt);
SAVE_INT32(self, tempsp, version);
SAVE_INT32(self, tempsp, trend);
SAVE_INT32(self, tempsp, override);
}
#endif
/*
* Not actually defined anywhere - just a short. Yuck.
*/
#ifdef __sparc
static void
save_temp_over(HV *self, kstat_t *kp, int strip_str)
{
short *shortp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == sizeof (short));
shortp = (short *)(kp->ks_data);
hv_store(self, "override", 8, newSViv(*shortp), 0);
}
#endif
/*
* Defined in /usr/platform/sun4u/include/sys/sysctrl.h
* (Well, sort of. Actually there's no structure, just a list of #defines
* enumerating *some* of the array indexes.)
*/
#ifdef __sparc
static void
save_ps_shadow(HV *self, kstat_t *kp, int strip_str)
{
uchar_t *ucharp;
/* PERL_ASSERT(kp->ks_ndata == 1); */
PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT);
ucharp = (uchar_t *)(kp->ks_data);
hv_store(self, "core_0", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_1", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_2", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_3", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_4", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_5", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_6", 6, newSViv(*ucharp++), 0);
hv_store(self, "core_7", 6, newSViv(*ucharp++), 0);
hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0);
hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0);
hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0);
hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0);
hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0);
hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0);
hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0);
hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0);
hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0);
hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0);
hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0);
}
#endif
/*
* Definition in /usr/platform/sun4u/include/sys/fhc.h
*/
#ifdef __sparc
static void
save_fault_list(HV *self, kstat_t *kp, int strip_str)
{
struct ft_list *faultp;
int i;
char name[KSTAT_STRLEN + 7]; /* room for 999999 faults */
/* PERL_ASSERT(kp->ks_ndata == 1); */
/* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */
for (i = 1, faultp = (struct ft_list *)(kp->ks_data);
i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
i++, faultp++) {
(void) snprintf(name, sizeof (name), "unit_%d", i);
hv_store(self, name, strlen(name), newSViv(faultp->unit), 0);
(void) snprintf(name, sizeof (name), "type_%d", i);
hv_store(self, name, strlen(name), newSViv(faultp->type), 0);
(void) snprintf(name, sizeof (name), "fclass_%d", i);
hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0);
(void) snprintf(name, sizeof (name), "create_time_%d", i);
hv_store(self, name, strlen(name),
NEW_UV(faultp->create_time), 0);
(void) snprintf(name, sizeof (name), "msg_%d", i);
hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0);
}
}
#endif
/*
* We need to be able to find the function corresponding to a particular raw
* kstat. To do this we ignore the instance and glue the module and name
* together to form a composite key. We can then use the data in the kstat
* structure to find the appropriate function. We use a perl hash to manage the
* lookup, where the key is "module:name" and the value is a pointer to the
* appropriate C function.
*
* Note that some kstats include the instance number as part of the module
* and/or name. This could be construed as a bug. However, to work around this
* we omit any digits from the module and name as we build the table in
* build_raw_kstat_loopup(), and we remove any digits from the module and name
* when we look up the functions in lookup_raw_kstat_fn()
*/
/*
* This function is called when the XS is first dlopen()ed, and builds the
* lookup table as described above.
*/
static void
build_raw_kstat_lookup()
{
/* Create new hash */
raw_kstat_lookup = newHV();
SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
#ifdef __sparc
SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
"unix:sfmmu_global_stat");
SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
"unix:sfmmu_tsbsize_stat");
SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status");
SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature");
SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override");
SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow");
SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list");
#endif
}
/*
* This finds and returns the raw kstat reader function corresponding to the
* supplied module and name. If no matching function exists, 0 is returned.
*/
static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
{
char key[KSTAT_STRLEN * 2];
register char *f, *t;
SV **entry;
kstat_raw_reader_t fnp;
/* Copy across module & name, removing any digits - see comment above */
for (f = module, t = key; *f != '\0'; f++, t++) {
while (*f != '\0' && isdigit(*f)) { f++; }
*t = *f;
}
*t++ = ':';
for (f = name; *f != '\0'; f++, t++) {
while (*f != '\0' && isdigit(*f)) {
f++;
}
*t = *f;
}
*t = '\0';
/* look up & return the function, or teturn 0 if not found */
if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
{
fnp = 0;
} else {
fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
}
return (fnp);
}
/*
* This module converts the flat list returned by kstat_read() into a perl hash
* tree keyed on module, instance, name and statistic. The following functions
* provide code to create the nested hashes, and to iterate over them.
*/
/*
* Given module, instance and name keys return a pointer to the hash tied to
* the bottommost hash. If the hash already exists, we just return a pointer
* to it, otherwise we create the hash and any others also required above it in
* the hierarchy. The returned tiehash is blessed into the
* Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
* called when the bottommost hash is accessed. If the is_new parameter is
* non-null it will be set to TRUE if a new tie has been created, and FALSE if
* the tie already existed.
*/
static HV *
get_tie(SV *self, char *module, int instance, char *name, int *is_new)
{
char str_inst[11]; /* big enough for up to 10^10 instances */
char *key[3]; /* 3 part key: module, instance, name */
int k;
int new;
HV *hash;
HV *tie;
/* Create the keys */
(void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
key[0] = module;
key[1] = str_inst;
key[2] = name;
/* Iteratively descend the tree, creating new hashes as required */
hash = (HV *)SvRV(self);
for (k = 0; k < 3; k++) {
SV **entry;
SvREADONLY_off(hash);
entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
/* If the entry doesn't exist, create it */
if (! SvOK(*entry)) {
HV *newhash;
SV *rv;
newhash = newHV();
rv = newRV_noinc((SV *)newhash);
sv_setsv(*entry, rv);
SvREFCNT_dec(rv);
if (k < 2) {
SvREADONLY_on(newhash);
}
SvREADONLY_on(*entry);
SvREADONLY_on(hash);
hash = newhash;
new = 1;
/* Otherwise it already existed */
} else {
SvREADONLY_on(hash);
hash = (HV *)SvRV(*entry);
new = 0;
}
}
/* Create and bless a hash for the tie, if necessary */
if (new) {
SV *tieref;
HV *stash;
tie = newHV();
tieref = newRV_noinc((SV *)tie);
stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
sv_bless(tieref, stash);
/* Add TIEHASH magic */
hv_magic(hash, (GV *)tieref, 'P');
SvREADONLY_on(hash);
/* Otherwise, just find the existing tied hash */
} else {
MAGIC *mg;
mg = mg_find((SV *)hash, 'P');
PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
tie = (HV *)SvRV(mg->mg_obj);
}
if (is_new) {
*is_new = new;
}
return (tie);
}
/*
* This is an iterator function used to traverse the hash hierarchy and apply
* the passed function to the tied hashes at the bottom of the hierarchy. If
* any of the callback functions return 0, 0 is returned, otherwise 1
*/
static int
apply_to_ties(SV *self, ATTCb_t cb, void *arg)
{
HV *hash1;
HE *entry1;
int ret;
hash1 = (HV *)SvRV(self);
hv_iterinit(hash1);
ret = 1;
/* Iterate over each module */
while ((entry1 = hv_iternext(hash1))) {
HV *hash2;
HE *entry2;
hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
hv_iterinit(hash2);
/* Iterate over each module:instance */
while ((entry2 = hv_iternext(hash2))) {
HV *hash3;
HE *entry3;
hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
hv_iterinit(hash3);
/* Iterate over each module:instance:name */
while ((entry3 = hv_iternext(hash3))) {
HV *hash4;
MAGIC *mg;
/* Get the tie */
hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
mg = mg_find((SV *)hash4, 'P');
PERL_ASSERTMSG(mg != 0,
"apply_to_ties: lost P magic");
/* Apply the callback */
if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
ret = 0;
}
}
}
}
return (ret);
}
/*
* Mark this HV as valid - used by update() when pruning deleted kstat nodes
*/
static int
set_valid(HV *self, void *arg)
{
MAGIC *mg;
mg = mg_find((SV *)self, '~');
PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg;
return (1);
}
/*
* Prune invalid kstat nodes. This is called when kstat_chain_update() detects
* that the kstat chain has been updated. This removes any hash tree entries
* that no longer have a corresponding kstat. If del is non-null it will be
* set to the keys of the deleted kstat nodes, if any. If any entries are
* deleted 1 will be retured, otherwise 0
*/
static int
prune_invalid(SV *self, AV *del)
{
HV *hash1;
HE *entry1;
STRLEN klen;
char *module, *instance, *name, *key;
int ret;
hash1 = (HV *)SvRV(self);
hv_iterinit(hash1);
ret = 0;
/* Iterate over each module */
while ((entry1 = hv_iternext(hash1))) {
HV *hash2;
HE *entry2;
module = HePV(entry1, PL_na);
hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
hv_iterinit(hash2);
/* Iterate over each module:instance */
while ((entry2 = hv_iternext(hash2))) {
HV *hash3;
HE *entry3;
instance = HePV(entry2, PL_na);
hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
hv_iterinit(hash3);
/* Iterate over each module:instance:name */
while ((entry3 = hv_iternext(hash3))) {
HV *hash4;
MAGIC *mg;
HV *tie;
name = HePV(entry3, PL_na);
hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
mg = mg_find((SV *)hash4, 'P');
PERL_ASSERTMSG(mg != 0,
"prune_invalid: lost P magic");
tie = (HV *)SvRV(mg->mg_obj);
mg = mg_find((SV *)tie, '~');
PERL_ASSERTMSG(mg != 0,
"prune_invalid: lost ~ magic");
/* If this is marked as invalid, prune it */
if (((KstatInfo_t *)SvPVX(
(SV *)mg->mg_obj))->valid == FALSE) {
SvREADONLY_off(hash3);
key = HePV(entry3, klen);
hv_delete(hash3, key, klen, G_DISCARD);
SvREADONLY_on(hash3);
if (del) {
av_push(del,
newSVpvf("%s:%s:%s",
module, instance, name));
}
ret = 1;
}
}
/* If the module:instance:name hash is empty prune it */
if (HvKEYS(hash3) == 0) {
SvREADONLY_off(hash2);
key = HePV(entry2, klen);
hv_delete(hash2, key, klen, G_DISCARD);
SvREADONLY_on(hash2);
}
}
/* If the module:instance hash is empty prune it */
if (HvKEYS(hash2) == 0) {
SvREADONLY_off(hash1);
key = HePV(entry1, klen);
hv_delete(hash1, key, klen, G_DISCARD);
SvREADONLY_on(hash1);
}
}
return (ret);
}
/*
* Named kstats are returned as a list of key/values. This function converts
* such a list into the equivalent perl datatypes, and stores them in the passed
* hash.
*/
static void
save_named(HV *self, kstat_t *kp, int strip_str)
{
kstat_named_t *knp;
int n;
SV* value;
for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
switch (knp->data_type) {
case KSTAT_DATA_CHAR:
value = newSVpv(knp->value.c, strip_str ?
strlen(knp->value.c) : sizeof (knp->value.c));
break;
case KSTAT_DATA_INT32:
value = newSViv(knp->value.i32);
break;
case KSTAT_DATA_UINT32:
value = NEW_UV(knp->value.ui32);
break;
case KSTAT_DATA_INT64:
value = NEW_UV(knp->value.i64);
break;
case KSTAT_DATA_UINT64:
value = NEW_UV(knp->value.ui64);
break;
case KSTAT_DATA_STRING:
if (KSTAT_NAMED_STR_PTR(knp) == NULL)
value = newSVpv("null", sizeof ("null") - 1);
else
value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
KSTAT_NAMED_STR_BUFLEN(knp) -1);
break;
default:
PERL_ASSERTMSG(0, "kstat_read: invalid data type");
continue;
}
hv_store(self, knp->name, strlen(knp->name), value, 0);
}
}
/*
* Save kstat interrupt statistics
*/
static void
save_intr(HV *self, kstat_t *kp, int strip_str)
{
kstat_intr_t *kintrp;
int i;
static char *intr_names[] =
{ "hard", "soft", "watchdog", "spurious", "multiple_service" };
PERL_ASSERT(kp->ks_ndata == 1);
PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
kintrp = KSTAT_INTR_PTR(kp);
for (i = 0; i < KSTAT_NUM_INTRS; i++) {
hv_store(self, intr_names[i], strlen(intr_names[i]),
NEW_UV(kintrp->intrs[i]), 0);
}
}
/*
* Save IO statistics
*/
static void
save_io(HV *self, kstat_t *kp, int strip_str)
{
kstat_io_t *kiop;
PERL_ASSERT(kp->ks_ndata == 1);
PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
kiop = KSTAT_IO_PTR(kp);
SAVE_UINT64(self, kiop, nread);
SAVE_UINT64(self, kiop, nwritten);
SAVE_UINT32(self, kiop, reads);
SAVE_UINT32(self, kiop, writes);
SAVE_HRTIME(self, kiop, wtime);
SAVE_HRTIME(self, kiop, wlentime);
SAVE_HRTIME(self, kiop, wlastupdate);
SAVE_HRTIME(self, kiop, rtime);
SAVE_HRTIME(self, kiop, rlentime);
SAVE_HRTIME(self, kiop, rlastupdate);
SAVE_UINT32(self, kiop, wcnt);
SAVE_UINT32(self, kiop, rcnt);
}
/*
* Save timer statistics
*/
static void
save_timer(HV *self, kstat_t *kp, int strip_str)
{
kstat_timer_t *ktimerp;
PERL_ASSERT(kp->ks_ndata == 1);
PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
ktimerp = KSTAT_TIMER_PTR(kp);
SAVE_STRING(self, ktimerp, name, strip_str);
SAVE_UINT64(self, ktimerp, num_events);
SAVE_HRTIME(self, ktimerp, elapsed_time);
SAVE_HRTIME(self, ktimerp, min_time);
SAVE_HRTIME(self, ktimerp, max_time);
SAVE_HRTIME(self, ktimerp, start_time);
SAVE_HRTIME(self, ktimerp, stop_time);
}
/*
* Read kstats and copy into the supplied perl hash structure. If refresh is
* true, this function is being called as part of the update() method. In this
* case it is only necessary to read the kstats if they have previously been
* accessed (kip->read == TRUE). If refresh is false, this function is being
* called prior to returning a value to the caller. In this case, it is only
* necessary to read the kstats if they have not previously been read. If the
* kstat_read() fails, 0 is returned, otherwise 1
*/
static int
read_kstats(HV *self, int refresh)
{
MAGIC *mg;
KstatInfo_t *kip;
kstat_raw_reader_t fnp;
/* Find the MAGIC KstatInfo_t data structure */
mg = mg_find((SV *)self, '~');
PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
/* Return early if we don't need to actually read the kstats */
if ((refresh && ! kip->read) || (! refresh && kip->read)) {
return (1);
}
/* Read the kstats and return 0 if this fails */
if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
return (0);
}
/* Save the read data */
hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
switch (kip->kstat->ks_type) {
case KSTAT_TYPE_RAW:
if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
kip->kstat->ks_name)) != 0) {
fnp(self, kip->kstat, kip->strip_str);
}
break;
case KSTAT_TYPE_NAMED:
save_named(self, kip->kstat, kip->strip_str);
break;
case KSTAT_TYPE_INTR:
save_intr(self, kip->kstat, kip->strip_str);
break;
case KSTAT_TYPE_IO:
save_io(self, kip->kstat, kip->strip_str);
break;
case KSTAT_TYPE_TIMER:
save_timer(self, kip->kstat, kip->strip_str);
break;
default:
PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
break;
}
kip->read = TRUE;
return (1);
}
/*
* The XS code exported to perl is below here. Note that the XS preprocessor
* has its own commenting syntax, so all comments from this point on are in
* that form.
*/
/* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
PROTOTYPES: ENABLE
# Create the raw kstat to store function lookup table on load
BOOT:
build_raw_kstat_lookup();
#
# The Sun::Solaris::Kstat constructor. This builds the nested
# name::instance::module hash structure, but doesn't actually read the
# underlying kstats. This is done on demand by the TIEHASH methods in
# Sun::Solaris::Kstat::_Stat
#
SV*
new(class, ...)
char *class;
PREINIT:
HV *stash;
kstat_ctl_t *kc;
SV *kcsv;
kstat_t *kp;
KstatInfo_t kstatinfo;
int sp, strip_str;
CODE:
/* Check we have an even number of arguments, excluding the class */
sp = 1;
if (((items - sp) % 2) != 0) {
croak(DEBUG_ID ": new: invalid number of arguments");
}
/* Process any (name => value) arguments */
strip_str = 0;
while (sp < items) {
SV *name, *value;
name = ST(sp);
sp++;
value = ST(sp);
sp++;
if (strcmp(SvPVX(name), "strip_strings") == 0) {
strip_str = SvTRUE(value);
} else {
croak(DEBUG_ID ": new: invalid parameter name '%s'",
SvPVX(name));
}
}
/* Open the kstats handle */
if ((kc = kstat_open()) == 0) {
XSRETURN_UNDEF;
}
/* Create a blessed hash ref */
RETVAL = (SV *)newRV_noinc((SV *)newHV());
stash = gv_stashpv(class, TRUE);
sv_bless(RETVAL, stash);
/* Create a place to save the KstatInfo_t structure */
kcsv = newSVpv((char *)&kc, sizeof (kc));
sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
SvREFCNT_dec(kcsv);
/* Initialise the KstatsInfo_t structure */
kstatinfo.read = FALSE;
kstatinfo.valid = TRUE;
kstatinfo.strip_str = strip_str;
kstatinfo.kstat_ctl = kc;
/* Scan the kstat chain, building hash entries for the kstats */
for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
HV *tie;
SV *kstatsv;
/* Don't bother storing the kstat headers */
if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
continue;
}
/* Don't bother storing raw stats we don't understand */
if (kp->ks_type == KSTAT_TYPE_RAW &&
lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
#ifdef REPORT_UNKNOWN
(void) fprintf(stderr,
"Unknown kstat type %s:%d:%s - %d of size %d\n",
kp->ks_module, kp->ks_instance, kp->ks_name,
kp->ks_ndata, kp->ks_data_size);
#endif
continue;
}
/* Create a 3-layer hash hierarchy - module.instance.name */
tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
kp->ks_name, 0);
/* Save the data necessary to read the kstat info on demand */
hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
kstatinfo.kstat = kp;
kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
sv_magic((SV *)tie, kstatsv, '~', 0, 0);
SvREFCNT_dec(kstatsv);
}
SvREADONLY_on(SvRV(RETVAL));
/* SvREADONLY_on(RETVAL); */
OUTPUT:
RETVAL
#
# Update the perl hash structure so that it is in line with the kernel kstats
# data. Only kstats athat have previously been accessed are read,
#
# Scalar context: true/false
# Array context: (\@added, \@deleted)
void
update(self)
SV* self;
PREINIT:
MAGIC *mg;
kstat_ctl_t *kc;
kstat_t *kp;
int ret;
AV *add, *del;
PPCODE:
/* Find the hidden KstatInfo_t structure */
mg = mg_find(SvRV(self), '~');
PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
/* Update the kstat chain, and return immediately on error. */
if ((ret = kstat_chain_update(kc)) == -1) {
if (GIMME_V == G_ARRAY) {
EXTEND(SP, 2);
PUSHs(sv_newmortal());
PUSHs(sv_newmortal());
} else {
EXTEND(SP, 1);
PUSHs(sv_2mortal(newSViv(ret)));
}
}
/* Create the arrays to be returned if in an array context */
if (GIMME_V == G_ARRAY) {
add = newAV();
del = newAV();
} else {
add = 0;
del = 0;
}
/*
* If the kstat chain hasn't changed we can just reread any stats
* that have already been read
*/
if (ret == 0) {
if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) {
if (GIMME_V == G_ARRAY) {
EXTEND(SP, 2);
PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
} else {
EXTEND(SP, 1);
PUSHs(sv_2mortal(newSViv(-1)));
}
}
/*
* Otherwise we have to update the Perl structure so that it is in
* agreement with the new kstat chain. We do this in such a way as to
* retain all the existing structures, just adding or deleting the
* bare minimum.
*/
} else {
KstatInfo_t kstatinfo;
/*
* Step 1: set the 'invalid' flag on each entry
*/
apply_to_ties(self, &set_valid, (void *)FALSE);
/*
* Step 2: Set the 'valid' flag on all entries still in the
* kernel kstat chain
*/
kstatinfo.read = FALSE;
kstatinfo.valid = TRUE;
kstatinfo.kstat_ctl = kc;
for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
int new;
HV *tie;
/* Don't bother storing the kstat headers or types */
if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
continue;
}
/* Don't bother storing raw stats we don't understand */
if (kp->ks_type == KSTAT_TYPE_RAW &&
lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
== 0) {
#ifdef REPORT_UNKNOWN
(void) printf("Unknown kstat type %s:%d:%s "
"- %d of size %d\n", kp->ks_module,
kp->ks_instance, kp->ks_name,
kp->ks_ndata, kp->ks_data_size);
#endif
continue;
}
/* Find the tied hash associated with the kstat entry */
tie = get_tie(self, kp->ks_module, kp->ks_instance,
kp->ks_name, &new);
/* If newly created store the associated kstat info */
if (new) {
SV *kstatsv;
/*
* Save the data necessary to read the kstat
* info on demand
*/
hv_store(tie, "class", 5,
newSVpv(kp->ks_class, 0), 0);
hv_store(tie, "crtime", 6,
NEW_HRTIME(kp->ks_crtime), 0);
kstatinfo.kstat = kp;
kstatsv = newSVpv((char *)&kstatinfo,
sizeof (kstatinfo));
sv_magic((SV *)tie, kstatsv, '~', 0, 0);
SvREFCNT_dec(kstatsv);
/* Save the key on the add list, if required */
if (GIMME_V == G_ARRAY) {
av_push(add, newSVpvf("%s:%d:%s",
kp->ks_module, kp->ks_instance,
kp->ks_name));
}
/* If the stats already exist, just update them */
} else {
MAGIC *mg;
KstatInfo_t *kip;
/* Find the hidden KstatInfo_t */
mg = mg_find((SV *)tie, '~');
PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
/* Mark the tie as valid */
kip->valid = TRUE;
/* Re-save the kstat_t pointer. If the kstat
* has been deleted and re-added since the last
* update, the address of the kstat structure
* will have changed, even though the kstat will
* still live at the same place in the perl
* hash tree structure.
*/
kip->kstat = kp;
/* Reread the stats, if read previously */
read_kstats(tie, TRUE);
}
}
/*
*Step 3: Delete any entries still marked as 'invalid'
*/
ret = prune_invalid(self, del);
}
if (GIMME_V == G_ARRAY) {
EXTEND(SP, 2);
PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
} else {
EXTEND(SP, 1);
PUSHs(sv_2mortal(newSViv(ret)));
}
#
# Destructor. Closes the kstat connection
#
void
DESTROY(self)
SV *self;
PREINIT:
MAGIC *mg;
kstat_ctl_t *kc;
CODE:
mg = mg_find(SvRV(self), '~');
PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
if (kstat_close(kc) != 0) {
croak(DEBUG_ID ": kstat_close: failed");
}
#
# The following XS methods implement the TIEHASH mechanism used to update the
# kstats hash structure. These are blessed into a package that isn't
# visible to callers of the Sun::Solaris::Kstat module
#
MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
PROTOTYPES: ENABLE
#
# If a value has already been read, return it. Otherwise read the appropriate
# kstat and then return the value
#
SV*
FETCH(self, key)
SV* self;
SV* key;
PREINIT:
char *k;
STRLEN klen;
SV **value;
CODE:
self = SvRV(self);
k = SvPV(key, klen);
if (strNE(k, "class") && strNE(k, "crtime")) {
read_kstats((HV *)self, FALSE);
}
value = hv_fetch((HV *)self, k, klen, FALSE);
if (value) {
RETVAL = *value; SvREFCNT_inc(RETVAL);
} else {
RETVAL = &PL_sv_undef;
}
OUTPUT:
RETVAL
#
# Save the passed value into the kstat hash. Read the appropriate kstat first,
# if necessary. Note that this DOES NOT update the underlying kernel kstat
# structure.
#
SV*
STORE(self, key, value)
SV* self;
SV* key;
SV* value;
PREINIT:
char *k;
STRLEN klen;
CODE:
self = SvRV(self);
k = SvPV(key, klen);
if (strNE(k, "class") && strNE(k, "crtime")) {
read_kstats((HV *)self, FALSE);
}
SvREFCNT_inc(value);
RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
SvREFCNT_inc(RETVAL);
OUTPUT:
RETVAL
#
# Check for the existence of the passed key. Read the kstat first if necessary
#
bool
EXISTS(self, key)
SV* self;
SV* key;
PREINIT:
char *k;
CODE:
self = SvRV(self);
k = SvPV(key, PL_na);
if (strNE(k, "class") && strNE(k, "crtime")) {
read_kstats((HV *)self, FALSE);
}
RETVAL = hv_exists_ent((HV *)self, key, 0);
OUTPUT:
RETVAL
#
# Hash iterator initialisation. Read the kstats if necessary.
#
SV*
FIRSTKEY(self)
SV* self;
PREINIT:
HE *he;
PPCODE:
self = SvRV(self);
read_kstats((HV *)self, FALSE);
hv_iterinit((HV *)self);
if ((he = hv_iternext((HV *)self))) {
EXTEND(SP, 1);
PUSHs(hv_iterkeysv(he));
}
#
# Return hash iterator next value. Read the kstats if necessary.
#
SV*
NEXTKEY(self, lastkey)
SV* self;
SV* lastkey;
PREINIT:
HE *he;
PPCODE:
self = SvRV(self);
if ((he = hv_iternext((HV *)self))) {
EXTEND(SP, 1);
PUSHs(hv_iterkeysv(he));
}
#
# Delete the specified hash entry.
#
SV*
DELETE(self, key)
SV *self;
SV *key;
CODE:
self = SvRV(self);
RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
if (RETVAL) {
SvREFCNT_inc(RETVAL);
} else {
RETVAL = &PL_sv_undef;
}
OUTPUT:
RETVAL
#
# Clear the entire hash. This will stop any update() calls rereading this
# kstat until it is accessed again.
#
void
CLEAR(self)
SV* self;
PREINIT:
MAGIC *mg;
KstatInfo_t *kip;
CODE:
self = SvRV(self);
hv_clear((HV *)self);
mg = mg_find(self, '~');
PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
kip->read = FALSE;
kip->valid = TRUE;
hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);