/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* This file is the main module for the pcitool. */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/inttypes.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/param.h>
#include <fcntl.h>
#include <strings.h>
#include <ctype.h>
#include <errno.h>
#include <libdevinfo.h>
#include <sys/sunddi.h>
#ifdef __x86
#include <sys/apic_ctlr.h>
#endif
#include <sys/pci.h>
#include <sys/pci_tools.h>
#include "pcitool_ui.h"
/* First 16 longs of device PCI config header. */
typedef union {
uint8_t bytes[16 * sizeof (uint32_t)];
uint32_t dwords[16];
} pci_conf_hdr_t;
/* Used by probe printing functions. */
typedef struct {
uint16_t cfg_offset; /* Offset of data within config space. */
uint8_t size; /* Size of desired data field. */
char *abbrev_hdr; /* Abbreviated header for this data. */
char *full_hdr; /* Full header for this data, verbose option. */
} field_type_t;
/* Used to package many args into one arg for probe di_node walk function. */
typedef struct {
pcitool_uiargs_t *input_args_p;
char *pathname;
di_prom_handle_t di_phdl;
} probe_walk_args_t;
/*
* Read config space in native processor endianness. Endian-neutral
* processing can then take place. On big endian machines, MSB and LSB
* of little endian data end up switched if read as little endian.
* They are in correct order if read as big endian.
*/
#if defined(__sparc)
#define NATIVE_ENDIAN PCITOOL_ACC_ATTR_ENDN_BIG
#elif defined(__x86)
#define NATIVE_ENDIAN PCITOOL_ACC_ATTR_ENDN_LTL
#else
#error "ISA is neither __sparc nor __x86"
#endif
/* status error lookup table. */
static struct {
pcitool_errno_t value;
char *string;
} pcitool_stat_str[] = {
{ PCITOOL_SUCCESS,
"No error status returned from driver" },
{ PCITOOL_INVALID_CPUID,
"CPU is non-existent or not online" },
{ PCITOOL_INVALID_INO,
"INO is out of range or invalid" },
{ PCITOOL_INVALID_MSI,
"MSI is out of range or invalid" },
{ PCITOOL_PENDING_INTRTIMEOUT,
"Timeout waiting for pending interrupts to clear" },
{ PCITOOL_REGPROP_NOTWELLFORMED,
"Reg property has invalid format" },
{ PCITOOL_INVALID_ADDRESS,
"Address out of range or invalid" },
{ PCITOOL_NOT_ALIGNED,
"Improper address alignment for access attempted" },
{ PCITOOL_OUT_OF_RANGE,
"Argument out of range" },
{ PCITOOL_END_OF_RANGE,
"End of address range" },
{ PCITOOL_ROM_DISABLED,
"Device ROM is disabled. Cannot read" },
{ PCITOOL_ROM_WRITE,
"Write to ROM not allowed" },
{ PCITOOL_IO_ERROR,
"IO error encountered" },
{ PCITOOL_INVALID_SIZE,
"Size is invalid for this platform" },
{ 0, NULL }
};
/* Used with ^C handler to stop looping in repeat mode in do_device_or_nexus. */
static boolean_t keep_looping = B_TRUE;
static void signal_handler(int dummy);
static char *strstatus(pcitool_errno_t pcitool_status);
static int open_node(char *device, pcitool_uiargs_t *input_args_p);
static void print_probe_value(pci_conf_hdr_t *config_hdr_p, uint16_t offset,
uint8_t size);
static void print_probe_info_verbose(pci_conf_hdr_t *config_hdr_p,
pcitool_reg_t *info_p);
static void print_probe_info_nonverbose(pci_conf_hdr_t *config_hdr_p,
pcitool_reg_t *info_p);
static void print_probe_info(pci_conf_hdr_t *config_hdr_p,
pcitool_reg_t *info_p, boolean_t verbose);
static int get_config_header(int fd, uint8_t bus_no, uint8_t dev_no,
uint8_t func_no, pci_conf_hdr_t *config_hdr_p);
static int supports_ari(int fd, uint8_t bus_no);
static int probe_dev(int fd, pcitool_reg_t *prg_p,
pcitool_uiargs_t *input_args_p);
static int do_probe(int fd, di_node_t di_node, di_prom_handle_t di_phdl,
pcitool_uiargs_t *input_args_p);
static int process_nexus_node(di_node_t node, di_minor_t minor, void *arg);
static int do_probe_walk(pcitool_uiargs_t *input_args_p, char *pathname);
static void print_bytedump_header(boolean_t do_chardump);
static int bytedump_get(int fd, int cmd, pcitool_reg_t *prg_p,
pcitool_uiargs_t *input_args_p);
static uint32_t set_acc_attr(pcitool_uiargs_t *input_args_p);
static int do_single_access(int fd, int cmd, pcitool_reg_t *prg_p,
pcitool_uiargs_t *input_args_p);
static int do_device_or_nexus(int fd, pcitool_uiargs_t *input_args_p);
static void print_intr_info(pcitool_intr_get_t *iget_p);
static int get_single_interrupt(int fd, pcitool_intr_get_t **iget_pp,
pcitool_uiargs_t *input_args_p);
static int get_interrupts(int fd, pcitool_uiargs_t *input_args_p);
static int set_interrupts(int fd, pcitool_uiargs_t *input_args_p);
static int do_interrupts(int fd, pcitool_uiargs_t *input_args_p);
/* *************** General ************** */
/*
* Handler for ^C to stop looping.
*/
/*ARGSUSED*/
static void
signal_handler(int dummy)
{
keep_looping = B_FALSE;
}
/*
* Print string based on PCItool status returned from driver.
*/
static char *
strstatus(pcitool_errno_t pcitool_status)
{
int i;
for (i = 0; pcitool_stat_str[i].string != NULL; i++) {
if (pcitool_stat_str[i].value == pcitool_status) {
return (pcitool_stat_str[i].string);
}
}
return ("Unknown status returned from driver.");
}
static int
open_node(char *device, pcitool_uiargs_t *input_args_p)
{
int fd;
char *path; /* For building full nexus pathname. */
int stringsize; /* Device name size. */
char *prefix;
char *suffix;
char *format;
static char slash_devices[] = {"/devices"};
static char wcolon[] = {"%s%s:%s"};
static char wocolon[] = {"%s%s%s"};
/* Check for names starting with /devices. */
prefix = (strstr(device, slash_devices) == device) ? "" : slash_devices;
format = wcolon;
if (input_args_p->flags & INTR_FLAG) {
if (strstr(device, PCI_MINOR_INTR) ==
device + (strlen(device) - strlen(PCI_MINOR_INTR))) {
suffix = "";
format = wocolon;
} else {
suffix = PCI_MINOR_INTR;
}
} else {
if (strstr(device, PCI_MINOR_REG) ==
device + (strlen(device) - strlen(PCI_MINOR_REG))) {
suffix = "";
format = wocolon;
} else {
suffix = PCI_MINOR_REG;
}
}
/*
* Build nexus pathname.
* User specified /pci@1f,700000 becomes /devices/pci@1f,700000:intr
* for interrupt nodes, and ...:reg for register nodes.
*
* ...The 2 at the end leaves room for a : and the terminating NULL.
*/
stringsize = strlen(prefix) + strlen(device) + strlen(suffix) + 2;
path = malloc(stringsize);
/*LINTED*/
(void) snprintf(path, stringsize, format, prefix, device, suffix);
/* Open the nexus. */
if ((fd = open(path, O_RDWR)) == -1) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"Could not open nexus node %s: %s\n",
path, strerror(errno));
}
}
return (fd);
}
/* ****************** Probe **************** */
/* The following are used by the probe printing functions. */
/* Header 0 and 1 config space headers have these fields. */
static field_type_t first_fields[] = {
{ PCI_CONF_VENID, 2, "Vend", "Vendor ID" },
{ PCI_CONF_DEVID, 2, "Dev ", "Device ID" },
{ PCI_CONF_COMM, 2, "Cmd ", "Command" },
{ PCI_CONF_STAT, 2, "Stat", "Status" },
{ PCI_CONF_REVID, 1, "Rv", "Revision ID" },
{ PCI_CONF_PROGCLASS, 3, "Class ", "Class Code" },
{ PCI_CONF_CACHE_LINESZ, 1, "Ca", "Cache Line Size" },
{ PCI_CONF_LATENCY_TIMER, 1, "LT", "Latency Timer" },
{ PCI_CONF_HEADER, 1, "Hd", "Header Type" },
{ PCI_CONF_BIST, 1, "BI", "BIST" },
{ 0, 0, NULL, NULL }
};
/* Header 0 (for regular devices) have these fields. */
static field_type_t last_dev_fields[] = {
{ PCI_CONF_BASE0, 4, "BAR0", "Base Address Register 0 (@10)" },
{ PCI_CONF_BASE1, 4, "BAR1", "Base Address Register 1 (@14)" },
{ PCI_CONF_BASE2, 4, "BAR2", "Base Address Register 2 (@18)" },
{ PCI_CONF_BASE3, 4, "BAR3", "Base Address Register 3 (@1C)" },
{ PCI_CONF_BASE4, 4, "BAR4", "Base Address Register 4 (@20)" },
{ PCI_CONF_BASE5, 4, "BAR5", "Base Address Register 5 (@24)" },
{ PCI_CONF_ROM, 4, "ROM", "Expansion ROM Base Address Register (@30)" },
{ 0, 0, NULL, NULL }
};
/* Header 1 (PCI-PCI bridge devices) have these fields. */
static field_type_t last_pcibrg_fields[] = {
{ PCI_CONF_BASE0, 4, "BAR0", "Base Address Register 0 (@10)" },
{ PCI_CONF_BASE1, 4, "BAR1", "Base Address Register 1 (@14)" },
{ PCI_BCNF_ROM, 4, "ROM", "Expansion ROM Base Address Register (@38)" },
{ 0, 0, NULL, NULL }
};
/* Header 2 (PCI-Cardbus bridge devices) have these fields. */
static field_type_t last_cbbrg_fields[] = {
{ PCI_CBUS_SOCK_REG, 4, "SCKT", "Socket/ExCA Base Address (@10)" },
{ 0, 0, NULL, NULL }
};
#define FMT_SIZE 7
static void
print_probe_value(pci_conf_hdr_t *config_hdr_p, uint16_t offset, uint8_t size)
{
char format[FMT_SIZE];
/* Size cannot be any larger than 4 bytes. This is not checked. */
uint32_t value = 0;
/* Build format of print, "%<size*2>.<size*2>x" */
(void) snprintf(format, FMT_SIZE, "%%%d.%dx ", size * 2, size * 2);
while (size-- > 0) {
value = (value << 8) + config_hdr_p->bytes[offset + size];
}
/*LINTED*/
(void) printf(format, value);
}
static void
print_probe_info_verbose(pci_conf_hdr_t *config_hdr_p, pcitool_reg_t *info_p)
{
field_type_t *last_fields = NULL;
int i;
(void) printf("\n"
"Bus Number: %x Device Number: %x Function Number: %x\n",
info_p->bus_no, info_p->dev_no, info_p->func_no);
if (info_p->phys_addr != 0) {
(void) printf("Physical Address: 0x%" PRIx64 " \n",
info_p->phys_addr);
}
switch (config_hdr_p->bytes[PCI_CONF_HEADER] & PCI_HEADER_TYPE_M) {
case PCI_HEADER_ZERO: /* Header type 0 is a regular device. */
last_fields = last_dev_fields;
break;
case PCI_HEADER_PPB: /* Header type 1 is a PCI-PCI bridge. */
last_fields = last_pcibrg_fields;
(void) printf("PCI-PCI bridge\n");
break;
case PCI_HEADER_CARDBUS: /* Header type 2 is a cardbus bridge */
last_fields = last_cbbrg_fields;
(void) printf("PCI-Cardbus bridge\n");
break;
default:
(void) printf("Unknown device\n");
break;
}
if (last_fields != NULL) {
for (i = 0; first_fields[i].size != 0; i++) {
(void) printf("%s: ", first_fields[i].full_hdr);
print_probe_value(config_hdr_p,
first_fields[i].cfg_offset, first_fields[i].size);
(void) putchar('\n');
}
for (i = 0; last_fields[i].size != 0; i++) {
(void) printf("%s: ", last_fields[i].full_hdr);
print_probe_value(config_hdr_p,
last_fields[i].cfg_offset, last_fields[i].size);
(void) putchar('\n');
}
}
}
static void
print_probe_info_nonverbose(pci_conf_hdr_t *config_hdr_p, pcitool_reg_t *info_p)
{
int i;
(void) printf("%2.2x %2.2x %1.1x ",
info_p->bus_no, info_p->dev_no, info_p->func_no);
for (i = 0; first_fields[i].size != 0; i++) {
print_probe_value(config_hdr_p,
first_fields[i].cfg_offset, first_fields[i].size);
}
(void) putchar('\n');
}
/*
* Print device information retrieved during probe mode.
* Takes the PCI config header, plus address information retrieved from the
* driver.
*
* When called with config_hdr_p == NULL, this function just prints a header
* when not in verbose mode.
*/
static void
print_probe_info(
pci_conf_hdr_t *config_hdr_p, pcitool_reg_t *info_p, boolean_t verbose)
{
int i;
/* Print header if not in verbose mode. */
if (config_hdr_p == NULL) {
if (!verbose) {
/* Bus dev func not from tble */
(void) printf("B D F ");
for (i = 0; first_fields[i].size != 0; i++) {
(void) printf("%s ",
first_fields[i].abbrev_hdr);
}
(void) putchar('\n');
}
return;
}
if (verbose) {
print_probe_info_verbose(config_hdr_p, info_p);
} else {
print_probe_info_nonverbose(config_hdr_p, info_p);
}
}
/*
* Retrieve first 16 dwords of device's config header, except for the first
* dword. First 16 dwords are defined by the PCI specification.
*/
static int
get_config_header(int fd, uint8_t bus_no, uint8_t dev_no, uint8_t func_no,
pci_conf_hdr_t *config_hdr_p)
{
pcitool_reg_t cfg_prg;
int i;
int rval = SUCCESS;
/* Prepare a local pcitool_reg_t so as to not disturb the caller's. */
cfg_prg.offset = 0;
cfg_prg.acc_attr = PCITOOL_ACC_ATTR_SIZE_4 + NATIVE_ENDIAN;
cfg_prg.bus_no = bus_no;
cfg_prg.dev_no = dev_no;
cfg_prg.func_no = func_no;
cfg_prg.barnum = 0;
cfg_prg.user_version = PCITOOL_VERSION;
/* Get dwords 1-15 of config space. They must be read as uint32_t. */
for (i = 1; i < (sizeof (pci_conf_hdr_t) / sizeof (uint32_t)); i++) {
cfg_prg.offset += sizeof (uint32_t);
if ((rval =
ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg)) != SUCCESS) {
break;
}
config_hdr_p->dwords[i] = (uint32_t)cfg_prg.data;
}
return (rval);
}
static int
supports_ari(int fd, uint8_t bus_no)
{
pcitool_reg_t cfg_prg;
int deadcount = 0;
uint32_t data, hdr_next_ptr, hdr_cap_id;
uint8_t dev_no = 0;
uint8_t func_no = 0;
/* Prepare a local pcitool_reg_t so as to not disturb the caller's. */
cfg_prg.bus_no = bus_no;
cfg_prg.dev_no = dev_no;
cfg_prg.func_no = func_no;
cfg_prg.barnum = 0;
cfg_prg.user_version = PCITOOL_VERSION;
cfg_prg.offset = 0;
cfg_prg.acc_attr = PCITOOL_ACC_ATTR_SIZE_4 + PCITOOL_ACC_ATTR_ENDN_LTL;
if (ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg) != SUCCESS) {
return (FAILURE);
}
data = (uint32_t)cfg_prg.data;
if (data == (uint32_t)(-1))
return (FAILURE);
cfg_prg.offset = PCI_CONF_COMM;
if (ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg) != SUCCESS) {
return (FAILURE);
}
data = (uint32_t)cfg_prg.data;
if (!((data >> 16) & PCI_STAT_CAP))
return (FAILURE);
cfg_prg.offset = PCI_CONF_CAP_PTR;
if (ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg) != SUCCESS) {
return (FAILURE);
}
data = (uint32_t)cfg_prg.data;
hdr_next_ptr = data & 0xff;
hdr_cap_id = 0;
/*
* Find the PCIe capability.
*/
while ((hdr_next_ptr != PCI_CAP_NEXT_PTR_NULL) &&
(hdr_cap_id != PCI_CAP_ID_PCI_E)) {
if (hdr_next_ptr < 0x40)
break;
cfg_prg.offset = hdr_next_ptr;
if (ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg) != SUCCESS)
return (FAILURE);
data = (uint32_t)cfg_prg.data;
hdr_next_ptr = (data >> 8) & 0xFF;
hdr_cap_id = data & 0xFF;
if (deadcount++ > 100)
return (FAILURE);
}
if (hdr_cap_id != PCI_CAP_ID_PCI_E)
return (FAILURE);
/* Found a PCIe Capability */
hdr_next_ptr = 0x100;
hdr_cap_id = 0;
/*
* Now find the ARI Capability.
*/
while ((hdr_next_ptr != PCI_CAP_NEXT_PTR_NULL) &&
(hdr_cap_id != 0xe)) {
if (hdr_next_ptr < 0x40)
break;
cfg_prg.offset = hdr_next_ptr;
if (ioctl(fd, PCITOOL_DEVICE_GET_REG, &cfg_prg) != SUCCESS) {
return (FAILURE);
}
data = (uint32_t)cfg_prg.data;
hdr_next_ptr = (data >> 20) & 0xFFF;
hdr_cap_id = data & 0xFFFF;
if (deadcount++ > 100)
return (FAILURE);
}
if (hdr_cap_id != 0xe)
return (FAILURE);
return (SUCCESS);
}
/*
* Identify problematic southbridges. These have device id 0x5249 and
* vendor id 0x10b9. Check for revision ID 0 and class code 060400 as well.
* Values are little endian, so they are reversed for SPARC.
*
* Check for these southbridges on all architectures, as the issue is a
* southbridge issue, independent of processor.
*
* If one of these is found during probing, skip probing other devs/funcs on
* the rest of the bus, since the southbridge and all devs underneath will
* otherwise disappear.
*/
#if (NATIVE_ENDIAN == PCITOOL_ACC_ATTR_ENDN_BIG)
#define U45_SB_DEVID_VID 0xb9104952
#define U45_SB_CLASS_RID 0x00000406
#else
#define U45_SB_DEVID_VID 0x524910b9
#define U45_SB_CLASS_RID 0x06040000
#endif
/*
* Probe device's functions. Modifies many fields in the prg_p.
*/
static int
probe_dev(int fd, pcitool_reg_t *prg_p, pcitool_uiargs_t *input_args_p)
{
pci_conf_hdr_t config_hdr;
boolean_t multi_function_device = B_FALSE;
int func;
int first_func = 0;
int last_func = PCI_REG_FUNC_M >> PCI_REG_FUNC_SHIFT;
int rval = SUCCESS;
if (input_args_p->flags & FUNC_SPEC_FLAG) {
first_func = last_func = input_args_p->function;
} else if (supports_ari(fd, prg_p->bus_no) == SUCCESS) {
multi_function_device = B_TRUE;
if (!(input_args_p->flags & DEV_SPEC_FLAG))
last_func = 255;
}
/*
* Loop through at least func=first_func. Continue looping through
* functions if there are no errors and the device is a multi-function
* device.
*
* (Note, if first_func == 0, header will show whether multifunction
* device and set multi_function_device. If first_func != 0, then we
* will force the loop as the user wants a specific function to be
* checked.
*/
for (func = first_func; ((func <= last_func) &&
((func == first_func) || (multi_function_device)));
func++) {
if (last_func > 7) {
prg_p->func_no = func & 0x7;
prg_p->dev_no = (func >> 3) & 0x1f;
} else
prg_p->func_no = func;
/*
* Four things can happen here:
*
* 1) ioctl comes back as EFAULT and prg_p->status is
* PCITOOL_INVALID_ADDRESS. There is no device at this
* location.
*
* 2) ioctl comes back successful and the data comes back as
* zero. Config space is mapped but no device responded.
*
* 3) ioctl comes back successful and the data comes back as
* non-zero. We've found a device.
*
* 4) Some other error occurs in an ioctl.
*/
prg_p->status = PCITOOL_SUCCESS;
prg_p->offset = 0;
prg_p->data = 0;
prg_p->user_version = PCITOOL_VERSION;
if (((rval = ioctl(fd, PCITOOL_DEVICE_GET_REG, prg_p)) != 0) ||
(prg_p->data == 0xffffffff)) {
/*
* Accept errno == EINVAL along with status of
* PCITOOL_OUT_OF_RANGE because some systems
* don't implement the full range of config space.
* Leave the loop quietly in this case.
*/
if ((errno == EINVAL) ||
(prg_p->status == PCITOOL_OUT_OF_RANGE)) {
break;
}
/*
* Exit silently with ENXIO as this means that there are
* no devices under the pci root nexus.
*/
else if ((errno == ENXIO) &&
(prg_p->status == PCITOOL_IO_ERROR)) {
break;
}
/*
* Expect errno == EFAULT along with status of
* PCITOOL_INVALID_ADDRESS because there won't be
* devices at each stop. Quit on any other error.
*/
else if (((errno != EFAULT) ||
(prg_p->status != PCITOOL_INVALID_ADDRESS)) &&
(prg_p->data != 0xffffffff)) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"Ioctl error: %s\n",
strerror(errno));
}
break;
/*
* If no function at this location,
* just advance to the next function.
*/
} else {
rval = SUCCESS;
}
/*
* Data came back as 0.
* Treat as unresponsive device amd check next device.
*/
} else if (prg_p->data == 0) {
rval = SUCCESS;
/* Found something. */
} else {
config_hdr.dwords[0] = (uint32_t)prg_p->data;
/* Get the rest of the PCI header. */
if ((rval = get_config_header(fd, prg_p->bus_no,
prg_p->dev_no, prg_p->func_no, &config_hdr)) !=
SUCCESS) {
break;
}
/* Print the found information. */
print_probe_info(&config_hdr, prg_p,
IS_VERBOSE(input_args_p->flags));
/*
* Special case for the type of Southbridge found on
* Ultra-45 and other sun4u fire workstations.
*/
if ((config_hdr.dwords[0] == U45_SB_DEVID_VID) &&
(config_hdr.dwords[2] == U45_SB_CLASS_RID)) {
rval = ECANCELED;
break;
}
/*
* Accomodate devices which state their
* multi-functionality only in their function 0 config
* space. Note multi-functionality throughout probing
* of all of this device's functions.
*/
if (config_hdr.bytes[PCI_CONF_HEADER] &
PCI_HEADER_MULTI) {
multi_function_device = B_TRUE;
}
}
}
return (rval);
}
/*
* Probe a given nexus config space for devices.
*
* fd is the file descriptor of the nexus.
* input_args contains commandline options as specified by the user.
*/
static int
do_probe(int fd, di_node_t di_node, di_prom_handle_t di_phdl,
pcitool_uiargs_t *input_args_p)
{
pcitool_reg_t prg;
int bus;
int dev;
int last_bus = PCI_REG_BUS_M >> PCI_REG_BUS_SHIFT;
int last_dev = PCI_REG_DEV_M >> PCI_REG_DEV_SHIFT;
int first_bus = 0;
int first_dev = 0;
int rval = SUCCESS;
prg.barnum = 0; /* Config space. */
/* Must read in 4-byte quantities. */
prg.acc_attr = PCITOOL_ACC_ATTR_SIZE_4 + NATIVE_ENDIAN;
prg.data = 0;
/* If an explicit bus was specified by the user, go with it. */
if (input_args_p->flags & BUS_SPEC_FLAG) {
first_bus = last_bus = input_args_p->bus;
} else if (input_args_p->flags & PROBERNG_FLAG) {
/* Otherwise get the bus range from properties. */
int len;
uint32_t *rangebuf = NULL;
len = di_prop_lookup_ints(DDI_DEV_T_ANY, di_node,
"bus-range", (int **)&rangebuf);
/* Try PROM property */
if (len <= 0) {
len = di_prom_prop_lookup_ints(di_phdl, di_node,
"bus-range", (int **)&rangebuf);
}
/* Take full range for default if cannot get property. */
if (len > 0) {
first_bus = rangebuf[0];
last_bus = rangebuf[1];
}
}
/* Take full range for default if not PROBERNG and not BUS_SPEC. */
if (last_bus == first_bus) {
if (input_args_p->flags & DEV_SPEC_FLAG) {
/* Explicit device given. Not probing a whole bus. */
(void) puts("");
} else {
(void) printf("*********** Probing bus %x "
"***********\n\n", first_bus);
}
} else {
(void) printf("*********** Probing buses %x through %x "
"***********\n\n", first_bus, last_bus);
}
/* Print header. */
print_probe_info(NULL, NULL, IS_VERBOSE(input_args_p->flags));
/* Device number explicitly specified. */
if (input_args_p->flags & DEV_SPEC_FLAG) {
first_dev = last_dev = input_args_p->device;
}
/*
* Loop through all valid bus / dev / func combinations to check for
* all devices, with the following exceptions:
*
* When nothing is found at function 0 of a bus / dev combination, skip
* the other functions of that bus / dev combination.
*
* When a found device's function 0 is probed and it is determined that
* it is not a multifunction device, skip probing of that device's
* other functions.
*/
for (bus = first_bus; ((bus <= last_bus) && (rval == SUCCESS)); bus++) {
prg.bus_no = bus;
/* Device number explicitly specified. */
if (input_args_p->flags & DEV_SPEC_FLAG) {
first_dev = last_dev = input_args_p->device;
} else if (supports_ari(fd, bus) == SUCCESS) {
last_dev = 0;
first_dev = 0;
} else {
last_dev = PCI_REG_DEV_M >> PCI_REG_DEV_SHIFT;
}
for (dev = first_dev;
((dev <= last_dev) && (rval == SUCCESS)); dev++) {
prg.dev_no = dev;
rval = probe_dev(fd, &prg, input_args_p);
}
/*
* Ultra-45 southbridge workaround:
* ECANCELED tells to skip to the next bus.
*/
if (rval == ECANCELED) {
rval = SUCCESS;
}
}
return (rval);
}
/*
* This function is called-back from di_walk_minor() when any PROBE is processed
*/
/*ARGSUSED*/
static int
process_nexus_node(di_node_t di_node, di_minor_t minor, void *arg)
{
int fd;
char *trunc;
probe_walk_args_t *walk_args_p = (probe_walk_args_t *)arg;
char *pathname = walk_args_p->pathname;
char *nexus_path = di_devfs_minor_path(minor);
if (nexus_path == NULL) {
(void) fprintf(stderr, "Error getting nexus path: %s\n",
strerror(errno));
return (DI_WALK_CONTINUE);
}
/*
* Display this node if pathname not specified (as all nodes are
* displayed) or if the current node matches the single specified
* pathname. Pathname form: xxx, nexus form: xxx:reg
*/
if ((pathname != NULL) &&
((strstr(nexus_path, pathname) != nexus_path) ||
(strlen(nexus_path) !=
(strlen(pathname) + strlen(PCI_MINOR_REG) + 1)))) {
di_devfs_path_free(nexus_path);
return (DI_WALK_CONTINUE);
}
if ((fd = open_node(nexus_path, walk_args_p->input_args_p)) >= 0) {
/* Strip off the suffix at the end of the nexus path. */
if ((trunc = strstr(nexus_path, PCI_MINOR_REG)) != NULL) {
trunc--; /* Get the : just before too. */
*trunc = '\0';
}
/* Show header only if no explicit nexus node name given. */
(void) puts("");
if (pathname == NULL) {
(void) printf("********** Devices in tree under %s "
"**********\n", nexus_path);
}
/*
* Exit silently with ENXIO as this means that there are
* no devices under the pci root nexus.
*/
if ((do_probe(fd, di_node, walk_args_p->di_phdl,
walk_args_p->input_args_p) != SUCCESS) &&
(errno != ENXIO)) {
(void) fprintf(stderr, "Error probing node %s: %s\n",
nexus_path, strerror(errno));
}
(void) close(fd);
}
di_devfs_path_free(nexus_path);
/*
* If node was explicitly specified, it has just been displayed
* and no more looping is required.
* Otherwise, keep looping for more nodes.
*/
return ((pathname == NULL) ? DI_WALK_CONTINUE : DI_WALK_TERMINATE);
}
/*
* Start of probe. If pathname is NULL, search all devices.
*
* di_walk_minor() walks all DDI_NT_REGACC (PCItool register access) nodes
* and calls process_nexus_node on them. process_nexus_node will then check
* the pathname for a match, unless it is NULL which works like a wildcard.
*/
static int
do_probe_walk(pcitool_uiargs_t *input_args_p, char *pathname)
{
di_node_t di_node;
di_prom_handle_t di_phdl = DI_PROM_HANDLE_NIL;
probe_walk_args_t walk_args;
int rval = SUCCESS;
if ((di_node = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
(void) fprintf(stderr, "di_init() failed: %s\n",
strerror(errno));
rval = errno;
} else if ((input_args_p->flags & PROBERNG_FLAG) &&
((di_phdl = di_prom_init()) == DI_PROM_HANDLE_NIL)) {
(void) fprintf(stderr, "di_prom_init failed: %s\n",
strerror(errno));
rval = errno;
} else {
walk_args.input_args_p = input_args_p;
walk_args.di_phdl = di_phdl;
walk_args.pathname = pathname;
(void) di_walk_minor(di_node, DDI_NT_REGACC, 0,
&walk_args, process_nexus_node);
}
if (di_phdl != DI_PROM_HANDLE_NIL) {
di_prom_fini(di_phdl);
}
if (di_node != DI_NODE_NIL) {
di_fini(di_node);
}
return (rval);
}
/* **************** Byte dump specific **************** */
static void
print_bytedump_header(boolean_t do_chardump)
{
static char header1[] = {" "
"0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00"};
static char header2[] = {" "
"-----------------------------------------------"};
static char cheader1[] = {" 0123456789ABCDEF"};
static char cheader2[] = {" ----------------"};
(void) puts("");
(void) printf(header1);
if (do_chardump) {
(void) printf(cheader1);
}
(void) puts("");
(void) printf(header2);
if (do_chardump) {
(void) printf(cheader2);
}
}
/* Number of bytes per line in a dump. */
#define DUMP_BUF_SIZE 16
#define LINES_BTWN_HEADER 16
/*
* Retrieve several bytes over several reads, and print a formatted byte-dump
*
* fd is the nexus by which device is accessed.
* prg provided has bus, dev, func, bank, initial offset already specified,
* as well as size and endian attributes.
*
* No checking is made that this is a read operation, although only read
* operations are allowed.
*/
static int
bytedump_get(int fd, int cmd, pcitool_reg_t *prg_p,
pcitool_uiargs_t *input_args_p)
{
typedef union {
uint8_t bytes[DUMP_BUF_SIZE];
uint16_t shorts[DUMP_BUF_SIZE / sizeof (uint16_t)];
uint32_t dwords[DUMP_BUF_SIZE / sizeof (uint32_t)];
uint64_t longs[DUMP_BUF_SIZE / sizeof (uint64_t)];
} buffer_t;
/*
* Local copy of pcitool_reg_t, since offset and phys_addrs are
* modified.
*/
pcitool_reg_t local_prg;
/* Loop parameters. */
uint32_t dump_end = prg_p->offset + input_args_p->bytedump_amt;
uint32_t dump_curr = prg_p->offset;
int read_size = input_args_p->size;
/* How many stores to the buffer before it is full. */
int wrap_size = DUMP_BUF_SIZE / read_size;
/* Address prints at the beginning of each line. */
uint64_t print_addr = 0;
/* Skip this num bytes at the beginning of the first dump. */
int skip_begin;
/* Skip this num bytes at the end of the last dump. */
int skip_end = 0;
/* skip_begin and skip_end are needed twice. */
int skip_begin2;
int skip_end2;
/* Number of lines between headers */
int lines_since_header = 0;
boolean_t do_chardump = input_args_p->flags & CHARDUMP_FLAG;
boolean_t continue_on_errs = input_args_p->flags & ERRCONT_FLAG;
int rval = SUCCESS; /* Return status. */
int next;
int i;
buffer_t buffer;
uint16_t error_mask = 0; /* 1 bit/byte in buf. Err when set */
bzero(buffer.bytes, sizeof (uint8_t) * DUMP_BUF_SIZE);
local_prg = *prg_p; /* Make local copy. */
/*
* Flip the bytes to proper order if reading on a big endian machine.
* Do this by reading big as little and vs.
*/
#if (NATIVE_ENDIAN == PCITOOL_ACC_ATTR_ENDN_BIG)
local_prg.acc_attr =
(PCITOOL_ACC_IS_BIG_ENDIAN(local_prg.acc_attr) ?
(local_prg.acc_attr & ~PCITOOL_ACC_ATTR_ENDN_BIG) :
(local_prg.acc_attr | PCITOOL_ACC_ATTR_ENDN_BIG));
#endif
/*
* Get offset into buffer for first store. Assumes the buffer size is
* a multiple of the read size. "next" is the next buffer index to do
* a store.
*/
skip_begin = local_prg.offset % DUMP_BUF_SIZE;
next = skip_begin / read_size;
print_bytedump_header(do_chardump);
while (dump_curr < dump_end) {
/* For reading from the next location. */
local_prg.offset = dump_curr;
/* Access the device. Abort on error. */
if (((rval = ioctl(fd, cmd, &local_prg)) != SUCCESS) &&
(!(continue_on_errs))) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"Ioctl failed:\n errno: %s\n status: %s\n",
strerror(errno),
strstatus(local_prg.status));
}
break;
}
/*
* Initialize print_addr first time through, in case printing
* is starting in the middle of the buffer. Also reinitialize
* when wrap.
*/
if (print_addr == 0) {
/*
* X86 config space doesn't return phys addr.
* Use offset instead in this case.
*/
if (local_prg.phys_addr == 0) { /* No phys addr ret */
print_addr = local_prg.offset -
(local_prg.offset % DUMP_BUF_SIZE);
} else {
print_addr = local_prg.phys_addr -
(local_prg.phys_addr % DUMP_BUF_SIZE);
}
}
/*
* Read error occurred.
* Shift the right number of error bits ((1 << read_size) - 1)
* into the right place (next * read_size)
*/
if (rval != SUCCESS) { /* Read error occurred */
error_mask |=
((1 << read_size) - 1) << (next * read_size);
} else { /* Save data to the buffer. */
switch (read_size) {
case 1:
buffer.bytes[next] = (uint8_t)local_prg.data;
break;
case 2:
buffer.shorts[next] = (uint16_t)local_prg.data;
break;
case 4:
buffer.dwords[next] = (uint32_t)local_prg.data;
break;
case 8:
buffer.longs[next] = (uint64_t)local_prg.data;
break;
default:
rval = EIO;
break;
}
}
next++;
/* Increment index for next store, and wrap. */
next %= wrap_size;
dump_curr += read_size;
/* Zero out the remainder of the buffer if done. */
if (dump_curr >= dump_end) {
if (next != 0) {
bzero(&buffer.bytes[next * read_size],
(wrap_size - next) * read_size);
skip_end = (wrap_size - next) * read_size;
next = 0; /* For printing below. */
}
}
/* Dump the buffer if full or if done. */
if (next == 0) {
skip_begin2 = skip_begin;
skip_end2 = skip_end;
(void) printf("\n0x%16.16" PRIx64 ":", print_addr);
for (i = DUMP_BUF_SIZE - 1; i >= 0; i--) {
if (skip_end) {
skip_end--;
(void) printf(" --");
} else if (skip_begin > i) {
skip_begin--;
(void) printf(" --");
} else if (error_mask & (1 << i)) {
(void) printf(" XX");
} else {
(void) printf(" %2.2x",
buffer.bytes[i]);
}
}
if (do_chardump) {
(void) putchar(' ');
for (i = 0; i < DUMP_BUF_SIZE; i++) {
if (skip_begin2) {
skip_begin2--;
(void) printf("-");
} else if (
(DUMP_BUF_SIZE - skip_end2) <= i) {
(void) printf("-");
} else if (error_mask & (1 << i)) {
(void) putchar('X');
} else if (isprint(buffer.bytes[i])) {
(void) putchar(buffer.bytes[i]);
} else {
(void) putchar('@');
}
}
}
if ((++lines_since_header == LINES_BTWN_HEADER) &&
(dump_curr < dump_end)) {
lines_since_header = 0;
(void) puts("");
print_bytedump_header(do_chardump);
}
print_addr += DUMP_BUF_SIZE;
error_mask = 0;
}
}
(void) printf("\n");
return (rval);
}
/* ************** Device and nexus access commands ************** */
/*
* Helper function to set access attributes. Assumes size is valid.
*/
static uint32_t
set_acc_attr(pcitool_uiargs_t *input_args_p)
{
uint32_t access_attrs;
switch (input_args_p->size) {
case 1:
access_attrs = PCITOOL_ACC_ATTR_SIZE_1;
break;
case 2:
access_attrs = PCITOOL_ACC_ATTR_SIZE_2;
break;
case 4:
access_attrs = PCITOOL_ACC_ATTR_SIZE_4;
break;
case 8:
access_attrs = PCITOOL_ACC_ATTR_SIZE_8;
break;
}
if (input_args_p->big_endian) {
access_attrs |= PCITOOL_ACC_ATTR_ENDN_BIG;
}
return (access_attrs);
}
static int
do_single_access(int fd, int cmd, pcitool_reg_t *prg_p,
pcitool_uiargs_t *input_args_p)
{
boolean_t is_write = B_FALSE;
int rval;
switch (cmd) {
case PCITOOL_NEXUS_SET_REG:
case PCITOOL_DEVICE_SET_REG:
is_write = B_TRUE;
break;
default:
break;
}
/* Do the access. Return on error. */
if ((rval = ioctl(fd, cmd, prg_p)) != SUCCESS) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"%s ioctl failed:\n errno: %s\n status: %s\n",
is_write ? "write" : "read",
strerror(errno), strstatus(prg_p->status));
}
return (rval);
}
/* Print on all verbose requests. */
if (IS_VERBOSE(input_args_p->flags)) {
/*
* Return offset on platforms which return phys_addr == 0
* for config space.
*/
if (prg_p->phys_addr == 0)
prg_p->phys_addr = input_args_p->offset;
(void) printf("Addr:0x%" PRIx64 ", %d-byte %s endian "
"register value: 0x%" PRIx64 "\n",
prg_p->phys_addr, input_args_p->size,
(input_args_p->big_endian ? "big" : "little"), prg_p->data);
/* Non-verbose, read requests. */
} else if (!(is_write)) {
(void) printf("0x%" PRIx64 "\n", prg_p->data);
}
return (rval);
}
/*
* fd is the file descriptor of the nexus to access, either to get its
* registers or to access a device through that nexus.
*
* input args are commandline arguments specified by the user.
*/
static int
do_device_or_nexus(int fd, pcitool_uiargs_t *input_args_p)
{
pcitool_reg_t prg; /* Request details given to the driver. */
uint32_t write_cmd = 0; /* Command given to the driver. */
uint32_t read_cmd = 0; /* Command given to the driver. */
int rval = SUCCESS; /* Return status. */
if (input_args_p->flags & WRITE_FLAG) {
prg.data = input_args_p->write_value;
if (input_args_p->flags & NEXUS_FLAG) {
write_cmd = PCITOOL_NEXUS_SET_REG;
} else {
write_cmd = PCITOOL_DEVICE_SET_REG;
}
}
if (input_args_p->flags & READ_FLAG) {
if (input_args_p->flags & NEXUS_FLAG) {
read_cmd = PCITOOL_NEXUS_GET_REG;
} else {
read_cmd = PCITOOL_DEVICE_GET_REG;
}
}
/* Finish initializing access details for driver. */
/*
* For nexus, barnum is the exact bank number, unless it is 0xFF, which
* indicates that it is inactive and a base_address should be read from
* the input_args instead.
*
* For devices, barnum is the offset to the desired BAR, or 0 for
* config space.
*/
if ((input_args_p->flags & (BASE_SPEC_FLAG | NEXUS_FLAG)) ==
(BASE_SPEC_FLAG | NEXUS_FLAG)) {
prg.barnum = PCITOOL_BASE;
prg.phys_addr = input_args_p->base_address;
} else
prg.barnum = input_args_p->bank;
prg.offset = input_args_p->offset;
prg.acc_attr = set_acc_attr(input_args_p);
prg.bus_no = input_args_p->bus;
prg.dev_no = input_args_p->device;
prg.func_no = input_args_p->function;
prg.user_version = PCITOOL_VERSION;
do {
/* Do a bytedump if desired, or else do single ioctl access. */
if (input_args_p->flags & BYTEDUMP_FLAG) {
if (IS_VERBOSE(input_args_p->flags)) {
(void) printf(
"\nDoing %d-byte %s endian reads:",
input_args_p->size,
input_args_p->big_endian ?
"big" : "little");
}
rval = bytedump_get(fd, read_cmd, &prg, input_args_p);
} else {
/* Single write and/or read. */
if (write_cmd != 0) {
rval = do_single_access(
fd, write_cmd, &prg, input_args_p);
}
if ((rval == SUCCESS) && (read_cmd != 0)) {
rval = do_single_access(
fd, read_cmd, &prg, input_args_p);
}
}
} while ((IS_LOOP(input_args_p->flags)) && (rval == SUCCESS) &&
(keep_looping));
return (rval != SUCCESS ? errno : SUCCESS);
}
/* *************** Interrupt routing ************** */
/*
* Display interrupt information.
* iget is filled in with the info to display
*/
static void
print_intr_info(pcitool_intr_get_t *iget_p)
{
int i;
for (i = 0; i < iget_p->num_devs; i++) {
if (iget_p->flags & PCITOOL_INTR_FLAG_GET_MSI)
(void) printf("0x%x,0x%x: %-10s%d\t %s\n",
iget_p->cpu_id, iget_p->msi & 0xff,
iget_p->dev[i].driver_name, iget_p->dev[i].dev_inst,
iget_p->dev[i].path);
else
(void) printf("0x%x,0x%x: %-10s%d\t %s\n",
iget_p->cpu_id, iget_p->ino & 0xff,
iget_p->dev[i].driver_name, iget_p->dev[i].dev_inst,
iget_p->dev[i].path);
}
}
/*
* Interrupt command support.
*
* fd is the file descriptor of the nexus being probed.
* input_args are commandline options entered by the user.
*/
static int
get_single_interrupt(int fd, pcitool_intr_get_t **iget_pp,
pcitool_uiargs_t *input_args_p)
{
pcitool_intr_get_t *iget_p = *iget_pp;
const char *str_type = NULL;
uint32_t intr;
if (input_args_p->flags & MSI_SPEC_FLAG) {
intr = input_args_p->intr_msi;
str_type = "msi";
} else {
intr = input_args_p->intr_ino;
str_type = "ino";
}
/*
* Check if interrupts are active on this ino/msi. Get as much
* device info as there is room for at the moment. If there
* is not enough room for all devices, will call again with a
* larger buffer.
*/
if (ioctl(fd, PCITOOL_DEVICE_GET_INTR, iget_p) != 0) {
/*
* Let EIO errors silently slip through, as
* some inos may not be viewable by design.
* We don't want to stop or print an error for these.
*/
if (errno == EIO) {
return (SUCCESS);
}
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr, "Ioctl to get %s 0x%x "
"info failed: %s\n", str_type, intr,
strerror(errno));
if (errno != EFAULT) {
(void) fprintf(stderr, "Pcitool status: %s\n",
strstatus(iget_p->status));
}
}
return (errno);
}
/* Nothing to report for this interrupt. */
if (iget_p->num_devs == 0) {
return (SUCCESS);
}
/* Need more room to return additional device info. */
if (iget_p->num_devs_ret < iget_p->num_devs) {
iget_p = *iget_pp =
realloc(iget_p, PCITOOL_IGET_SIZE(iget_p->num_devs));
iget_p->num_devs_ret = iget_p->num_devs;
if (ioctl(fd, PCITOOL_DEVICE_GET_INTR, iget_p) != 0) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr, "Ioctl to get %s 0x%x"
"device info failed: %s\n", str_type,
intr, strerror(errno));
if (errno != EFAULT) {
(void) fprintf(stderr,
"Pcitool status: %s\n",
strstatus(iget_p->status));
}
}
return (errno);
}
}
print_intr_info(iget_p);
return (SUCCESS);
}
#define INIT_NUM_DEVS 0
static int
get_interrupts(int fd, pcitool_uiargs_t *input_args_p)
{
int rval = SUCCESS; /* Return status. */
int ino, cpu_id;
/*
* Start with a struct with space for info of INIT_NUM_DEVS devs
* to be returned.
*/
pcitool_intr_get_t *iget_p = malloc(PCITOOL_IGET_SIZE(INIT_NUM_DEVS));
iget_p->num_devs_ret = INIT_NUM_DEVS;
iget_p->user_version = PCITOOL_VERSION;
/* Explicit MSI requested. */
if (input_args_p->flags & MSI_SPEC_FLAG) {
iget_p->msi = input_args_p->intr_msi;
iget_p->flags = PCITOOL_INTR_FLAG_GET_MSI;
rval = get_single_interrupt(fd, &iget_p, input_args_p);
/* Return all MSIs. */
} else if (input_args_p->flags & MSI_ALL_FLAG) {
pcitool_intr_info_t intr_info;
intr_info.flags = PCITOOL_INTR_FLAG_GET_MSI;
if (ioctl(fd, PCITOOL_SYSTEM_INTR_INFO, &intr_info) != 0) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"intr info ioctl failed: %s\n",
strerror(errno));
}
} else {
int msi;
/*
* Search through all interrupts.
* Display info on enabled ones.
*/
for (msi = 0;
((msi < intr_info.num_intr) && (rval == SUCCESS));
msi++) {
bzero(iget_p, sizeof (pcitool_intr_get_t));
iget_p->num_devs_ret = INIT_NUM_DEVS;
iget_p->user_version = PCITOOL_VERSION;
iget_p->flags = PCITOOL_INTR_FLAG_GET_MSI;
iget_p->msi = msi;
rval = get_single_interrupt(
fd, &iget_p, input_args_p);
}
}
/* Explicit INO requested. */
} else if (input_args_p->flags & INO_SPEC_FLAG) {
iget_p->ino = input_args_p->intr_ino;
iget_p->cpu_id = input_args_p->old_cpu;
rval = get_single_interrupt(fd, &iget_p, input_args_p);
/* Return all INOs. */
} else if (input_args_p->flags & INO_ALL_FLAG) {
pcitool_intr_info_t intr_info;
intr_info.flags = 0;
if (ioctl(fd, PCITOOL_SYSTEM_INTR_INFO, &intr_info) != 0) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"intr info ioctl failed: %s\n",
strerror(errno));
}
free(iget_p);
return (rval);
}
/*
* Search through all interrupts.
* Display info on enabled ones.
*/
if (intr_info.ctlr_type == PCITOOL_CTLR_TYPE_APIX) {
for (cpu_id = 0;
((cpu_id < intr_info.num_cpu) && (rval == SUCCESS));
cpu_id++) {
for (ino = 0;
((ino < intr_info.num_intr) &&
(rval == SUCCESS));
ino++) {
bzero(iget_p,
sizeof (pcitool_intr_get_t));
iget_p->num_devs_ret = INIT_NUM_DEVS;
iget_p->user_version = PCITOOL_VERSION;
iget_p->cpu_id = cpu_id;
iget_p->ino = ino;
rval = get_single_interrupt(
fd, &iget_p, input_args_p);
}
}
} else {
for (ino = 0;
(ino < intr_info.num_intr) && (rval == SUCCESS);
ino++) {
bzero(iget_p,
sizeof (pcitool_intr_get_t));
iget_p->num_devs_ret = INIT_NUM_DEVS;
iget_p->user_version = PCITOOL_VERSION;
iget_p->cpu_id = input_args_p->old_cpu;
iget_p->ino = ino;
rval = get_single_interrupt(
fd, &iget_p, input_args_p);
}
}
}
free(iget_p);
return (rval);
}
static int
get_interrupt_ctlr(int fd, pcitool_uiargs_t *input_args_p)
{
pcitool_intr_info_t intr_info;
char *ctlr_type = NULL;
int rval = SUCCESS;
intr_info.flags = 0;
if (ioctl(fd, PCITOOL_SYSTEM_INTR_INFO, &intr_info) != 0) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) perror("Ioctl to get intr ctlr info failed");
}
rval = errno;
} else {
(void) fputs("Controller type: ", stdout);
switch (intr_info.ctlr_type) {
case PCITOOL_CTLR_TYPE_RISC:
ctlr_type = "RISC";
break;
case PCITOOL_CTLR_TYPE_UPPC:
ctlr_type = "UPPC";
break;
case PCITOOL_CTLR_TYPE_PCPLUSMP:
ctlr_type = "PCPLUSMP";
break;
case PCITOOL_CTLR_TYPE_APIX:
ctlr_type = "APIX";
break;
default:
break;
}
if (ctlr_type == NULL) {
(void) printf("Unknown or new (%d)",
intr_info.ctlr_type);
} else {
(void) fputs(ctlr_type, stdout);
}
#ifdef __x86
if (intr_info.ctlr_type == PCITOOL_CTLR_TYPE_PCPLUSMP)
(void) printf(", IO APIC version: 0x%x, "
"local APIC version: 0x%x\n",
PSMAT_IO_APIC_VER(intr_info.ctlr_version),
PSMAT_LOCAL_APIC_VER(intr_info.ctlr_version));
else
#endif /* __x86 */
(void) printf(", version: %2.2x.%2.2x.%2.2x.%2.2x\n",
((intr_info.ctlr_version >> 24) & 0xff),
((intr_info.ctlr_version >> 16) & 0xff),
((intr_info.ctlr_version >> 8) & 0xff),
(intr_info.ctlr_version & 0xff));
}
return (rval);
}
/*
*
* fd is the file descriptor of the nexus being changed.
* input_args are commandline options entered by the user.
*/
static int
set_interrupts(int fd, pcitool_uiargs_t *input_args_p)
{
pcitool_intr_set_t iset;
const char *str_type = NULL;
uint32_t intr;
int rval = SUCCESS; /* Return status. */
/* Load interrupt number and cpu from commandline. */
if (input_args_p->flags & MSI_SPEC_FLAG) {
iset.msi = intr = input_args_p->intr_msi;
iset.flags = PCITOOL_INTR_FLAG_SET_MSI;
str_type = "msi";
} else {
iset.ino = intr = input_args_p->intr_ino;
iset.flags = 0;
str_type = "ino";
}
iset.cpu_id = input_args_p->intr_cpu;
iset.old_cpu = input_args_p->old_cpu;
iset.user_version = PCITOOL_VERSION;
iset.flags |= (input_args_p->flags & SETGRP_FLAG) ?
PCITOOL_INTR_FLAG_SET_GROUP : 0;
/* Do the deed. */
if (ioctl(fd, PCITOOL_DEVICE_SET_INTR, &iset) != 0) {
if (!(IS_QUIET(input_args_p->flags))) {
(void) fprintf(stderr,
"Ioctl to set %s 0x%x failed: %s\n",
str_type, intr, strerror(errno));
(void) fprintf(stderr, "pcitool status: %s\n",
strstatus(iset.status));
}
rval = errno;
} else {
if (input_args_p->flags & SETGRP_FLAG) {
if (iset.flags == PCITOOL_INTR_FLAG_SET_MSI)
(void) printf("0x%x,0x%x => 0x%x,0x%x\n",
iset.cpu_id,
(input_args_p->intr_msi) & 0xff,
input_args_p->intr_cpu, iset.msi);
else
(void) printf("0x%x,0x%x => 0x%x,0x%x\n",
iset.cpu_id,
(input_args_p->intr_ino) & 0xff,
input_args_p->intr_cpu, iset.ino);
} else {
if (iset.flags == PCITOOL_INTR_FLAG_SET_MSI)
(void) printf("0x%x,0x%x -> 0x%x,0x%x\n",
iset.cpu_id,
(input_args_p->intr_msi) & 0xff,
input_args_p->intr_cpu, iset.msi);
else
(void) printf("0x%x,0x%x -> 0x%x,0x%x\n",
iset.cpu_id,
(input_args_p->intr_ino) & 0xff,
input_args_p->intr_cpu, iset.ino);
}
}
return (rval);
}
static int
do_interrupts(int fd, pcitool_uiargs_t *input_args_p)
{
if (input_args_p->flags & READ_FLAG) {
int gic_rval = SUCCESS;
int gi_rval = SUCCESS;
if (input_args_p->flags & SHOWCTLR_FLAG) {
gic_rval = get_interrupt_ctlr(fd, input_args_p);
}
gi_rval = get_interrupts(fd, input_args_p);
return ((gi_rval != SUCCESS) ? gi_rval : gic_rval);
} else {
return (set_interrupts(fd, input_args_p));
}
}
/* *********** Where it all begins... ************* */
int
main(int argc, char **argv)
{
pcitool_uiargs_t input_args; /* Commandline args. */
int fd; /* Nexus file descriptor. */
int rval = SUCCESS; /* Return status value. */
/* Get commandline args and options from user. */
if (get_commandline_args(argc, argv, &input_args) != SUCCESS) {
return (EINVAL);
}
/* Help. */
if (!(input_args.flags & ALL_COMMANDS))
return (SUCCESS);
/*
* Probe mode.
* Nexus is provided as argv[1] unless PROBEALL mode.
*/
if (input_args.flags & PROBE_FLAGS) {
rval = do_probe_walk(&input_args,
((input_args.flags & PROBEALL_FLAG) ? NULL : argv[1]));
} else if ((fd = open_node(argv[1], &input_args)) >= 0) {
if (input_args.flags & (NEXUS_FLAG | LEAF_FLAG)) {
(void) signal(SIGINT, signal_handler);
(void) signal(SIGTERM, signal_handler);
rval = do_device_or_nexus(fd, &input_args);
} else if (input_args.flags & INTR_FLAG) {
rval = do_interrupts(fd, &input_args);
} else {
/* Should never see this. */
(void) fprintf(stderr, "Nothing to do.\n");
rval = ENOTTY;
}
(void) close(fd);
}
return (rval);
}