zfs.c revision 3f1f80124f2b2b91c4c06303305e5badae5228e8
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <mdb/mdb_ctf.h>
#include <sys/zfs_context.h>
#include <sys/mdb_modapi.h>
#include <sys/dbuf.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/list.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zap_leaf.h>
#include <sys/zap_impl.h>
#include <ctype.h>
#ifndef _KERNEL
#include "../genunix/list.h"
#endif
#ifdef _KERNEL
#define ZFS_OBJ_NAME "zfs"
#else
#define ZFS_OBJ_NAME "libzpool.so.1"
#endif
static int
getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
const char *member, int len, void *buf)
{
mdb_ctf_id_t id;
ulong_t off;
char name[64];
if (idp == NULL) {
if (mdb_ctf_lookup_by_name(type, &id) == -1) {
mdb_warn("couldn't find type %s", type);
return (DCMD_ERR);
}
idp = &id;
} else {
type = name;
mdb_ctf_type_name(*idp, name, sizeof (name));
}
if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
mdb_warn("couldn't find member %s of type %s\n", member, type);
return (DCMD_ERR);
}
if (off % 8 != 0) {
mdb_warn("member %s of type %s is unsupported bitfield",
member, type);
return (DCMD_ERR);
}
off /= 8;
if (mdb_vread(buf, len, addr + off) == -1) {
mdb_warn("failed to read %s from %s at %p",
member, type, addr + off);
return (DCMD_ERR);
}
/* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
return (0);
}
#define GETMEMB(addr, type, member, dest) \
getmember(addr, #type, NULL, #member, sizeof (dest), &(dest))
#define GETMEMBID(addr, ctfid, member, dest) \
getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
static int
getrefcount(uintptr_t addr, mdb_ctf_id_t *id,
const char *member, uint64_t *rc)
{
static int gotid;
static mdb_ctf_id_t rc_id;
ulong_t off;
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct refcount", &rc_id) == -1) {
mdb_warn("couldn't find struct refcount");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (mdb_ctf_offsetof(*id, member, &off) == -1) {
char name[64];
mdb_ctf_type_name(*id, name, sizeof (name));
mdb_warn("couldn't find member %s of type %s\n", member, name);
return (DCMD_ERR);
}
off /= 8;
return (GETMEMBID(addr + off, &rc_id, rc_count, *rc));
}
static int verbose;
static int
freelist_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("must supply starting address\n");
return (WALK_ERR);
}
wsp->walk_data = 0; /* Index into the freelist */
return (WALK_NEXT);
}
static int
freelist_walk_step(mdb_walk_state_t *wsp)
{
uint64_t entry;
uintptr_t number = (uintptr_t)wsp->walk_data;
char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
"INVALID", "INVALID", "INVALID", "INVALID" };
int mapshift = SPA_MINBLOCKSHIFT;
if (mdb_vread(&entry, sizeof (entry), wsp->walk_addr) == -1) {
mdb_warn("failed to read freelist entry %p", wsp->walk_addr);
return (WALK_DONE);
}
wsp->walk_addr += sizeof (entry);
wsp->walk_data = (void *)(number + 1);
if (SM_DEBUG_DECODE(entry)) {
mdb_printf("DEBUG: %3u %10s: txg=%llu pass=%llu\n",
number,
ddata[SM_DEBUG_ACTION_DECODE(entry)],
SM_DEBUG_TXG_DECODE(entry),
SM_DEBUG_SYNCPASS_DECODE(entry));
} else {
mdb_printf("Entry: %3u offsets=%08llx-%08llx type=%c "
"size=%06llx", number,
SM_OFFSET_DECODE(entry) << mapshift,
(SM_OFFSET_DECODE(entry) + SM_RUN_DECODE(entry)) <<
mapshift,
SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F',
SM_RUN_DECODE(entry) << mapshift);
if (verbose)
mdb_printf(" (raw=%012llx)\n", entry);
mdb_printf("\n");
}
return (WALK_NEXT);
}
static int
dataset_name(uintptr_t addr, char *buf)
{
static int gotid;
static mdb_ctf_id_t dd_id;
uintptr_t dd_parent;
char dd_myname[MAXNAMELEN];
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct dsl_dir",
&dd_id) == -1) {
mdb_warn("couldn't find struct dsl_dir");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
return (DCMD_ERR);
}
if (dd_parent) {
if (dataset_name(dd_parent, buf))
return (DCMD_ERR);
strcat(buf, "/");
}
if (dd_myname[0])
strcat(buf, dd_myname);
else
strcat(buf, "???");
return (0);
}
static int
objset_name(uintptr_t addr, char *buf)
{
static int gotid;
static mdb_ctf_id_t os_id, ds_id;
uintptr_t os_dsl_dataset;
char ds_snapname[MAXNAMELEN];
uintptr_t ds_dir;
buf[0] = '\0';
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct objset",
&os_id) == -1) {
mdb_warn("couldn't find struct objset");
return (DCMD_ERR);
}
if (mdb_ctf_lookup_by_name("struct dsl_dataset",
&ds_id) == -1) {
mdb_warn("couldn't find struct dsl_dataset");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
return (DCMD_ERR);
if (os_dsl_dataset == 0) {
strcat(buf, "mos");
return (0);
}
if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
return (DCMD_ERR);
}
if (ds_dir && dataset_name(ds_dir, buf))
return (DCMD_ERR);
if (ds_snapname[0]) {
strcat(buf, "@");
strcat(buf, ds_snapname);
}
return (0);
}
static void
enum_lookup(char *out, size_t size, mdb_ctf_id_t id, int val,
const char *prefix)
{
const char *cp;
size_t len = strlen(prefix);
if ((cp = mdb_ctf_enum_name(id, val)) != NULL) {
if (strncmp(cp, prefix, len) == 0)
cp += len;
(void) strncpy(out, cp, size);
} else {
mdb_snprintf(out, size, "? (%d)", val);
}
}
/* ARGSUSED */
static int
zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
/*
* This table can be approximately generated by running:
* egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
*/
static const char *params[] = {
"arc_reduce_dnlc_percent",
"zfs_arc_max",
"zfs_arc_min",
"arc_shrink_shift",
"zfs_mdcomp_disable",
"zfs_prefetch_disable",
"zfetch_max_streams",
"zfetch_min_sec_reap",
"zfetch_block_cap",
"zfetch_array_rd_sz",
"zfs_default_bs",
"zfs_default_ibs",
"metaslab_aliquot",
"reference_tracking_enable",
"reference_history",
"spa_max_replication_override",
"spa_mode_global",
"zfs_flags",
"zfs_txg_synctime",
"zfs_txg_timeout",
"zfs_write_limit_min",
"zfs_write_limit_max",
"zfs_write_limit_shift",
"zfs_write_limit_override",
"zfs_no_write_throttle",
"zfs_vdev_cache_max",
"zfs_vdev_cache_size",
"zfs_vdev_cache_bshift",
"vdev_mirror_shift",
"zfs_vdev_max_pending",
"zfs_vdev_min_pending",
"zfs_scrub_limit",
"zfs_no_scrub_io",
"zfs_no_scrub_prefetch",
"zfs_vdev_time_shift",
"zfs_vdev_ramp_rate",
"zfs_vdev_aggregation_limit",
"fzap_default_block_shift",
"zfs_immediate_write_sz",
"zfs_read_chunk_size",
"zil_disable",
"zfs_nocacheflush",
"metaslab_gang_bang",
"metaslab_df_alloc_threshold",
"metaslab_df_free_pct",
"zio_injection_enabled",
"zvol_immediate_write_sz",
};
for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
int sz;
uint64_t val64;
uint32_t *val32p = (uint32_t *)&val64;
sz = mdb_readvar(&val64, params[i]);
if (sz == 4) {
mdb_printf("%s = 0x%x\n", params[i], *val32p);
} else if (sz == 8) {
mdb_printf("%s = 0x%llx\n", params[i], val64);
} else {
mdb_warn("variable %s not found", params[i]);
}
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_ctf_id_t type_enum, checksum_enum, compress_enum;
char type[80], checksum[80], compress[80];
blkptr_t blk, *bp = &blk;
char buf[BP_SPRINTF_LEN];
if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
mdb_warn("failed to read blkptr_t");
return (DCMD_ERR);
}
if (mdb_ctf_lookup_by_name("enum dmu_object_type", &type_enum) == -1 ||
mdb_ctf_lookup_by_name("enum zio_checksum", &checksum_enum) == -1 ||
mdb_ctf_lookup_by_name("enum zio_compress", &compress_enum) == -1) {
mdb_warn("Could not find blkptr enumerated types");
return (DCMD_ERR);
}
enum_lookup(type, sizeof (type), type_enum,
BP_GET_TYPE(bp), "DMU_OT_");
enum_lookup(checksum, sizeof (checksum), checksum_enum,
BP_GET_CHECKSUM(bp), "ZIO_CHECKSUM_");
enum_lookup(compress, sizeof (compress), compress_enum,
BP_GET_COMPRESS(bp), "ZIO_COMPRESS_");
SPRINTF_BLKPTR(mdb_snprintf, '\n', buf, bp, type, checksum, compress);
mdb_printf("%s\n", buf);
return (DCMD_OK);
}
/* ARGSUSED */
static int
dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_ctf_id_t id;
dmu_buf_t db;
uintptr_t objset;
uint8_t level;
uint64_t blkid;
uint64_t holds;
char objectname[32];
char blkidname[32];
char path[MAXNAMELEN];
if (DCMD_HDRSPEC(flags)) {
mdb_printf(" addr object lvl blkid holds os\n");
}
if (mdb_ctf_lookup_by_name("struct dmu_buf_impl", &id) == -1) {
mdb_warn("couldn't find struct dmu_buf_impl_t");
return (DCMD_ERR);
}
if (GETMEMBID(addr, &id, db_objset, objset) ||
GETMEMBID(addr, &id, db, db) ||
GETMEMBID(addr, &id, db_level, level) ||
GETMEMBID(addr, &id, db_blkid, blkid)) {
return (WALK_ERR);
}
if (getrefcount(addr, &id, "db_holds", &holds)) {
return (WALK_ERR);
}
if (db.db_object == DMU_META_DNODE_OBJECT)
(void) strcpy(objectname, "mdn");
else
(void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
(u_longlong_t)db.db_object);
if (blkid == DB_BONUS_BLKID)
(void) strcpy(blkidname, "bonus");
else
(void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
(u_longlong_t)blkid);
if (objset_name(objset, path)) {
return (WALK_ERR);
}
mdb_printf("%p %8s %1u %9s %2llu %s\n",
addr, objectname, level, blkidname, holds, path);
return (DCMD_OK);
}
/* ARGSUSED */
static int
dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
#define HISTOSZ 32
uintptr_t dbp;
dmu_buf_impl_t db;
dbuf_hash_table_t ht;
uint64_t bucket, ndbufs;
uint64_t histo[HISTOSZ];
uint64_t histo2[HISTOSZ];
int i, maxidx;
if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
mdb_warn("failed to read 'dbuf_hash_table'");
return (DCMD_ERR);
}
for (i = 0; i < HISTOSZ; i++) {
histo[i] = 0;
histo2[i] = 0;
}
ndbufs = 0;
for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
int len;
if (mdb_vread(&dbp, sizeof (void *),
(uintptr_t)(ht.hash_table+bucket)) == -1) {
mdb_warn("failed to read hash bucket %u at %p",
bucket, ht.hash_table+bucket);
return (DCMD_ERR);
}
len = 0;
while (dbp != 0) {
if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
dbp) == -1) {
mdb_warn("failed to read dbuf at %p", dbp);
return (DCMD_ERR);
}
dbp = (uintptr_t)db.db_hash_next;
for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
histo2[i]++;
len++;
ndbufs++;
}
if (len >= HISTOSZ)
len = HISTOSZ-1;
histo[len]++;
}
mdb_printf("hash table has %llu buckets, %llu dbufs "
"(avg %llu buckets/dbuf)\n",
ht.hash_table_mask+1, ndbufs,
(ht.hash_table_mask+1)/ndbufs);
mdb_printf("\n");
maxidx = 0;
for (i = 0; i < HISTOSZ; i++)
if (histo[i] > 0)
maxidx = i;
mdb_printf("hash chain length number of buckets\n");
for (i = 0; i <= maxidx; i++)
mdb_printf("%u %llu\n", i, histo[i]);
mdb_printf("\n");
maxidx = 0;
for (i = 0; i < HISTOSZ; i++)
if (histo2[i] > 0)
maxidx = i;
mdb_printf("hash chain depth number of dbufs\n");
for (i = 0; i <= maxidx; i++)
mdb_printf("%u or more %llu %llu%%\n",
i, histo2[i], histo2[i]*100/ndbufs);
return (DCMD_OK);
}
#define CHAIN_END 0xffff
/*
* ::zap_leaf [-v]
*
* Print a zap_leaf_phys_t, assumed to be 16k
*/
/* ARGSUSED */
static int
zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
char buf[16*1024];
int verbose = B_FALSE;
int four = B_FALSE;
zap_leaf_t l;
zap_leaf_phys_t *zlp = (void *)buf;
int i;
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
'4', MDB_OPT_SETBITS, TRUE, &four,
NULL) != argc)
return (DCMD_USAGE);
l.l_phys = zlp;
l.l_bs = 14; /* assume 16k blocks */
if (four)
l.l_bs = 12;
if (!(flags & DCMD_ADDRSPEC)) {
return (DCMD_USAGE);
}
if (mdb_vread(buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
return (DCMD_ERR);
}
if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
mdb_warn("This does not appear to be a zap_leaf_phys_t");
return (DCMD_ERR);
}
mdb_printf("zap_leaf_phys_t at %p:\n", addr);
mdb_printf(" lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
mdb_printf(" lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
mdb_printf(" lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
mdb_printf(" lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
mdb_printf(" lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
mdb_printf(" lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
"ENTRIES_CDSORTED" : "");
if (verbose) {
mdb_printf(" hash table:\n");
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
if (zlp->l_hash[i] != CHAIN_END)
mdb_printf(" %u: %u\n", i, zlp->l_hash[i]);
}
}
mdb_printf(" chunks:\n");
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
/* LINTED: alignment */
zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
switch (zlc->l_entry.le_type) {
case ZAP_CHUNK_FREE:
if (verbose) {
mdb_printf(" %u: free; lf_next = %u\n",
i, zlc->l_free.lf_next);
}
break;
case ZAP_CHUNK_ENTRY:
mdb_printf(" %u: entry\n", i);
if (verbose) {
mdb_printf(" le_next = %u\n",
zlc->l_entry.le_next);
}
mdb_printf(" le_name_chunk = %u\n",
zlc->l_entry.le_name_chunk);
mdb_printf(" le_name_numints = %u\n",
zlc->l_entry.le_name_numints);
mdb_printf(" le_value_chunk = %u\n",
zlc->l_entry.le_value_chunk);
mdb_printf(" le_value_intlen = %u\n",
zlc->l_entry.le_value_intlen);
mdb_printf(" le_value_numints = %u\n",
zlc->l_entry.le_value_numints);
mdb_printf(" le_cd = %u\n",
zlc->l_entry.le_cd);
mdb_printf(" le_hash = %llx\n",
zlc->l_entry.le_hash);
break;
case ZAP_CHUNK_ARRAY:
mdb_printf(" %u: array \"%s\"\n",
i, zlc->l_array.la_array);
if (verbose) {
int j;
mdb_printf(" ");
for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
mdb_printf("%02x ",
zlc->l_array.la_array[j]);
}
mdb_printf("\n");
}
if (zlc->l_array.la_next != CHAIN_END) {
mdb_printf(" lf_next = %u\n",
zlc->l_array.la_next);
}
break;
default:
mdb_printf(" %u: undefined type %u\n",
zlc->l_entry.le_type);
}
}
return (DCMD_OK);
}
typedef struct dbufs_data {
mdb_ctf_id_t id;
uint64_t objset;
uint64_t object;
uint64_t level;
uint64_t blkid;
char *osname;
} dbufs_data_t;
#define DBUFS_UNSET (0xbaddcafedeadbeefULL)
/* ARGSUSED */
static int
dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
{
dbufs_data_t *data = arg;
uintptr_t objset;
dmu_buf_t db;
uint8_t level;
uint64_t blkid;
char osname[MAXNAMELEN];
if (GETMEMBID(addr, &data->id, db_objset, objset) ||
GETMEMBID(addr, &data->id, db, db) ||
GETMEMBID(addr, &data->id, db_level, level) ||
GETMEMBID(addr, &data->id, db_blkid, blkid)) {
return (WALK_ERR);
}
if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
(data->osname == NULL || (objset_name(objset, osname) == 0 &&
strcmp(data->osname, osname) == 0)) &&
(data->object == DBUFS_UNSET || data->object == db.db_object) &&
(data->level == DBUFS_UNSET || data->level == level) &&
(data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
mdb_printf("%#lr\n", addr);
}
return (WALK_NEXT);
}
/* ARGSUSED */
static int
dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dbufs_data_t data;
char *object = NULL;
char *blkid = NULL;
data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
data.osname = NULL;
if (mdb_getopts(argc, argv,
'O', MDB_OPT_UINT64, &data.objset,
'n', MDB_OPT_STR, &data.osname,
'o', MDB_OPT_STR, &object,
'l', MDB_OPT_UINT64, &data.level,
'b', MDB_OPT_STR, &blkid) != argc) {
return (DCMD_USAGE);
}
if (object) {
if (strcmp(object, "mdn") == 0) {
data.object = DMU_META_DNODE_OBJECT;
} else {
data.object = mdb_strtoull(object);
}
}
if (blkid) {
if (strcmp(blkid, "bonus") == 0) {
data.blkid = DB_BONUS_BLKID;
} else {
data.blkid = mdb_strtoull(blkid);
}
}
if (mdb_ctf_lookup_by_name("struct dmu_buf_impl", &data.id) == -1) {
mdb_warn("couldn't find struct dmu_buf_impl_t");
return (DCMD_ERR);
}
if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
mdb_warn("can't walk dbufs");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct abuf_find_data {
dva_t dva;
mdb_ctf_id_t id;
} abuf_find_data_t;
/* ARGSUSED */
static int
abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
{
abuf_find_data_t *data = arg;
dva_t dva;
if (GETMEMBID(addr, &data->id, b_dva, dva)) {
return (WALK_ERR);
}
if (dva.dva_word[0] == data->dva.dva_word[0] &&
dva.dva_word[1] == data->dva.dva_word[1]) {
mdb_printf("%#lr\n", addr);
}
return (WALK_NEXT);
}
/* ARGSUSED */
static int
abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
abuf_find_data_t data;
GElf_Sym sym;
int i;
const char *syms[] = {
"ARC_mru",
"ARC_mru_ghost",
"ARC_mfu",
"ARC_mfu_ghost",
};
if (argc != 2)
return (DCMD_USAGE);
for (i = 0; i < 2; i ++) {
switch (argv[i].a_type) {
case MDB_TYPE_STRING:
data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
break;
case MDB_TYPE_IMMEDIATE:
data.dva.dva_word[i] = argv[i].a_un.a_val;
break;
default:
return (DCMD_USAGE);
}
}
if (mdb_ctf_lookup_by_name("struct arc_buf_hdr", &data.id) == -1) {
mdb_warn("couldn't find struct arc_buf_hdr");
return (DCMD_ERR);
}
for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
if (mdb_lookup_by_name(syms[i], &sym)) {
mdb_warn("can't find symbol %s", syms[i]);
return (DCMD_ERR);
}
if (mdb_pwalk("list", abuf_find_cb, &data, sym.st_value) != 0) {
mdb_warn("can't walk %s", syms[i]);
return (DCMD_ERR);
}
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kstat_named_t *stats;
GElf_Sym sym;
int nstats, i;
uint_t opt_a = FALSE;
uint_t opt_b = FALSE;
uint_t shift = 0;
const char *suffix;
static const char *bytestats[] = {
"p", "c", "c_min", "c_max", "size", NULL
};
static const char *extras[] = {
"arc_no_grow", "arc_tempreserve",
"arc_meta_used", "arc_meta_limit", "arc_meta_max",
NULL
};
if (mdb_lookup_by_name("arc_stats", &sym) == -1) {
mdb_warn("failed to find 'arc_stats'");
return (DCMD_ERR);
}
stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
return (DCMD_ERR);
}
nstats = sym.st_size / sizeof (kstat_named_t);
/* NB: -a / opt_a are ignored for backwards compatability */
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &opt_a,
'b', MDB_OPT_SETBITS, TRUE, &opt_b,
'k', MDB_OPT_SETBITS, 10, &shift,
'm', MDB_OPT_SETBITS, 20, &shift,
'g', MDB_OPT_SETBITS, 30, &shift,
NULL) != argc)
return (DCMD_USAGE);
if (!opt_b && !shift)
shift = 20;
switch (shift) {
case 0:
suffix = "B";
break;
case 10:
suffix = "KB";
break;
case 20:
suffix = "MB";
break;
case 30:
suffix = "GB";
break;
default:
suffix = "XX";
}
for (i = 0; i < nstats; i++) {
int j;
boolean_t bytes = B_FALSE;
for (j = 0; bytestats[j]; j++) {
if (strcmp(stats[i].name, bytestats[j]) == 0) {
bytes = B_TRUE;
break;
}
}
if (bytes) {
mdb_printf("%-25s = %9llu %s\n", stats[i].name,
stats[i].value.ui64 >> shift, suffix);
} else {
mdb_printf("%-25s = %9llu\n", stats[i].name,
stats[i].value.ui64);
}
}
for (i = 0; extras[i]; i++) {
uint64_t buf;
if (mdb_lookup_by_name(extras[i], &sym) == -1) {
mdb_warn("failed to find '%s'", extras[i]);
return (DCMD_ERR);
}
if (sym.st_size != sizeof (uint64_t) &&
sym.st_size != sizeof (uint32_t)) {
mdb_warn("expected scalar for variable '%s'\n",
extras[i]);
return (DCMD_ERR);
}
if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
mdb_warn("couldn't read '%s'", extras[i]);
return (DCMD_ERR);
}
mdb_printf("%-25s = ", extras[i]);
/* NB: all the 64-bit extras happen to be byte counts */
if (sym.st_size == sizeof (uint64_t))
mdb_printf("%9llu %s\n", buf >> shift, suffix);
if (sym.st_size == sizeof (uint32_t))
mdb_printf("%9d\n", *((uint32_t *)&buf));
}
return (DCMD_OK);
}
/*
* ::spa
*
* -c Print configuration information as well
* -v Print vdev state
* -e Print vdev error stats
*
* Print a summarized spa_t. When given no arguments, prints out a table of all
* active pools on the system.
*/
/* ARGSUSED */
static int
spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
spa_t spa;
const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
"SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
const char *state;
int config = FALSE;
int vdevs = FALSE;
int errors = FALSE;
if (mdb_getopts(argc, argv,
'c', MDB_OPT_SETBITS, TRUE, &config,
'v', MDB_OPT_SETBITS, TRUE, &vdevs,
'e', MDB_OPT_SETBITS, TRUE, &errors,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
mdb_warn("can't walk spa");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (flags & DCMD_PIPE_OUT) {
mdb_printf("%#lr\n", addr);
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
if (mdb_vread(&spa, sizeof (spa), addr) == -1) {
mdb_warn("failed to read spa_t at %p", addr);
return (DCMD_ERR);
}
if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
state = "UNKNOWN";
else
state = statetab[spa.spa_state];
mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
if (config) {
mdb_printf("\n");
mdb_inc_indent(4);
if (mdb_call_dcmd("spa_config", addr, flags, 0,
NULL) != DCMD_OK)
return (DCMD_ERR);
mdb_dec_indent(4);
}
if (vdevs || errors) {
mdb_arg_t v;
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = "-e";
mdb_printf("\n");
mdb_inc_indent(4);
if (mdb_call_dcmd("spa_vdevs", addr, flags, errors ? 1 : 0,
&v) != DCMD_OK)
return (DCMD_ERR);
mdb_dec_indent(4);
}
return (DCMD_OK);
}
/*
* ::spa_config
*
* Given a spa_t, print the configuration information stored in spa_config.
* Since it's just an nvlist, format it as an indented list of name=value pairs.
* We simply read the value of spa_config and pass off to ::nvlist.
*/
/* ARGSUSED */
static int
spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
spa_t spa;
if (argc != 0 || !(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_vread(&spa, sizeof (spa), addr) == -1) {
mdb_warn("failed to read spa_t at %p", addr);
return (DCMD_ERR);
}
if (spa.spa_config == NULL) {
mdb_printf("(none)\n");
return (DCMD_OK);
}
return (mdb_call_dcmd("nvlist", (uintptr_t)spa.spa_config, flags,
0, NULL));
}
/*
* ::vdev
*
* Print out a summarized vdev_t, in the following form:
*
* ADDR STATE AUX DESC
* fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0
*
* If '-r' is specified, recursively visit all children.
*
* With '-e', the statistics associated with the vdev are printed as well.
*/
static int
do_print_vdev(uintptr_t addr, int flags, int depth, int stats,
int recursive)
{
vdev_t vdev;
char desc[MAXNAMELEN];
int c, children;
uintptr_t *child;
const char *state, *aux;
if (mdb_vread(&vdev, sizeof (vdev), (uintptr_t)addr) == -1) {
mdb_warn("failed to read vdev_t at %p\n", (uintptr_t)addr);
return (DCMD_ERR);
}
if (flags & DCMD_PIPE_OUT) {
mdb_printf("%#lr", addr);
} else {
if (vdev.vdev_path != NULL) {
if (mdb_readstr(desc, sizeof (desc),
(uintptr_t)vdev.vdev_path) == -1) {
mdb_warn("failed to read vdev_path at %p\n",
vdev.vdev_path);
return (DCMD_ERR);
}
} else if (vdev.vdev_ops != NULL) {
vdev_ops_t ops;
if (mdb_vread(&ops, sizeof (ops),
(uintptr_t)vdev.vdev_ops) == -1) {
mdb_warn("failed to read vdev_ops at %p\n",
vdev.vdev_ops);
return (DCMD_ERR);
}
(void) strcpy(desc, ops.vdev_op_type);
} else {
(void) strcpy(desc, "<unknown>");
}
if (depth == 0 && DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
"ADDR", "STATE", "AUX",
sizeof (uintptr_t) == 4 ? 43 : 35,
"DESCRIPTION");
mdb_printf("%0?p ", addr);
switch (vdev.vdev_state) {
case VDEV_STATE_CLOSED:
state = "CLOSED";
break;
case VDEV_STATE_OFFLINE:
state = "OFFLINE";
break;
case VDEV_STATE_CANT_OPEN:
state = "CANT_OPEN";
break;
case VDEV_STATE_DEGRADED:
state = "DEGRADED";
break;
case VDEV_STATE_HEALTHY:
state = "HEALTHY";
break;
case VDEV_STATE_REMOVED:
state = "REMOVED";
break;
case VDEV_STATE_FAULTED:
state = "FAULTED";
break;
default:
state = "UNKNOWN";
break;
}
switch (vdev.vdev_stat.vs_aux) {
case VDEV_AUX_NONE:
aux = "-";
break;
case VDEV_AUX_OPEN_FAILED:
aux = "OPEN_FAILED";
break;
case VDEV_AUX_CORRUPT_DATA:
aux = "CORRUPT_DATA";
break;
case VDEV_AUX_NO_REPLICAS:
aux = "NO_REPLICAS";
break;
case VDEV_AUX_BAD_GUID_SUM:
aux = "BAD_GUID_SUM";
break;
case VDEV_AUX_TOO_SMALL:
aux = "TOO_SMALL";
break;
case VDEV_AUX_BAD_LABEL:
aux = "BAD_LABEL";
break;
case VDEV_AUX_VERSION_NEWER:
aux = "VERS_NEWER";
break;
case VDEV_AUX_VERSION_OLDER:
aux = "VERS_OLDER";
break;
case VDEV_AUX_SPARED:
aux = "SPARED";
break;
case VDEV_AUX_ERR_EXCEEDED:
aux = "ERR_EXCEEDED";
break;
case VDEV_AUX_IO_FAILURE:
aux = "IO_FAILURE";
break;
case VDEV_AUX_BAD_LOG:
aux = "BAD_LOG";
break;
case VDEV_AUX_EXTERNAL:
aux = "EXTERNAL";
break;
case VDEV_AUX_SPLIT_POOL:
aux = "SPLIT_POOL";
break;
default:
aux = "UNKNOWN";
break;
}
mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
if (stats) {
vdev_stat_t *vs = &vdev.vdev_stat;
int i;
mdb_inc_indent(4);
mdb_printf("\n");
mdb_printf("%<u> %12s %12s %12s %12s "
"%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
"IOCTL");
mdb_printf("OPS ");
for (i = 1; i < ZIO_TYPES; i++)
mdb_printf("%11#llx%s", vs->vs_ops[i],
i == ZIO_TYPES - 1 ? "" : " ");
mdb_printf("\n");
mdb_printf("BYTES ");
for (i = 1; i < ZIO_TYPES; i++)
mdb_printf("%11#llx%s", vs->vs_bytes[i],
i == ZIO_TYPES - 1 ? "" : " ");
mdb_printf("\n");
mdb_printf("EREAD %10#llx\n", vs->vs_read_errors);
mdb_printf("EWRITE %10#llx\n", vs->vs_write_errors);
mdb_printf("ECKSUM %10#llx\n",
vs->vs_checksum_errors);
mdb_dec_indent(4);
}
if (stats)
mdb_printf("\n");
}
children = vdev.vdev_children;
if (children == 0 || !recursive)
return (DCMD_OK);
child = mdb_alloc(children * sizeof (void *), UM_SLEEP | UM_GC);
if (mdb_vread(child, children * sizeof (void *),
(uintptr_t)vdev.vdev_child) == -1) {
mdb_warn("failed to read vdev children at %p", vdev.vdev_child);
return (DCMD_ERR);
}
for (c = 0; c < children; c++) {
if (do_print_vdev(child[c], flags, depth + 2, stats,
recursive))
return (DCMD_ERR);
}
return (DCMD_OK);
}
static int
vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int recursive = FALSE;
int stats = FALSE;
uint64_t depth = 0;
if (mdb_getopts(argc, argv,
'r', MDB_OPT_SETBITS, TRUE, &recursive,
'e', MDB_OPT_SETBITS, TRUE, &stats,
'd', MDB_OPT_UINT64, &depth,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("no vdev_t address given\n");
return (DCMD_ERR);
}
return (do_print_vdev(addr, flags, (int)depth, stats, recursive));
}
typedef struct metaslab_walk_data {
uint64_t mw_numvdevs;
uintptr_t *mw_vdevs;
int mw_curvdev;
uint64_t mw_nummss;
uintptr_t *mw_mss;
int mw_curms;
} metaslab_walk_data_t;
static int
metaslab_walk_step(mdb_walk_state_t *wsp)
{
metaslab_walk_data_t *mw = wsp->walk_data;
metaslab_t ms;
uintptr_t msp;
if (mw->mw_curvdev >= mw->mw_numvdevs)
return (WALK_DONE);
if (mw->mw_mss == NULL) {
uintptr_t mssp;
uintptr_t vdevp;
ASSERT(mw->mw_curms == 0);
ASSERT(mw->mw_nummss == 0);
vdevp = mw->mw_vdevs[mw->mw_curvdev];
if (GETMEMB(vdevp, struct vdev, vdev_ms, mssp) ||
GETMEMB(vdevp, struct vdev, vdev_ms_count, mw->mw_nummss)) {
return (WALK_ERR);
}
mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
UM_SLEEP | UM_GC);
if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
mssp) == -1) {
mdb_warn("failed to read vdev_ms at %p", mssp);
return (WALK_ERR);
}
}
if (mw->mw_curms >= mw->mw_nummss) {
mw->mw_mss = NULL;
mw->mw_curms = 0;
mw->mw_nummss = 0;
mw->mw_curvdev++;
return (WALK_NEXT);
}
msp = mw->mw_mss[mw->mw_curms];
if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
mdb_warn("failed to read metaslab_t at %p", msp);
return (WALK_ERR);
}
mw->mw_curms++;
return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
}
/* ARGSUSED */
static int
metaslab_walk_init(mdb_walk_state_t *wsp)
{
metaslab_walk_data_t *mw;
uintptr_t root_vdevp;
uintptr_t childp;
if (wsp->walk_addr == NULL) {
mdb_warn("must supply address of spa_t\n");
return (WALK_ERR);
}
mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
if (GETMEMB(wsp->walk_addr, struct spa, spa_root_vdev, root_vdevp) ||
GETMEMB(root_vdevp, struct vdev, vdev_children, mw->mw_numvdevs) ||
GETMEMB(root_vdevp, struct vdev, vdev_child, childp)) {
return (DCMD_ERR);
}
mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
UM_SLEEP | UM_GC);
if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
childp) == -1) {
mdb_warn("failed to read root vdev children at %p", childp);
return (DCMD_ERR);
}
wsp->walk_data = mw;
return (WALK_NEXT);
}
typedef struct mdb_spa {
uintptr_t spa_dsl_pool;
uintptr_t spa_root_vdev;
} mdb_spa_t;
typedef struct mdb_dsl_dir {
uintptr_t dd_phys;
int64_t dd_space_towrite[TXG_SIZE];
} mdb_dsl_dir_t;
typedef struct mdb_dsl_dir_phys {
uint64_t dd_used_bytes;
uint64_t dd_compressed_bytes;
uint64_t dd_uncompressed_bytes;
} mdb_dsl_dir_phys_t;
typedef struct mdb_vdev {
uintptr_t vdev_parent;
uintptr_t vdev_ms;
uint64_t vdev_ms_count;
vdev_stat_t vdev_stat;
} mdb_vdev_t;
typedef struct mdb_metaslab {
space_map_t ms_allocmap[TXG_SIZE];
space_map_t ms_freemap[TXG_SIZE];
space_map_t ms_map;
space_map_obj_t ms_smo;
space_map_obj_t ms_smo_syncing;
} mdb_metaslab_t;
typedef struct space_data {
uint64_t ms_allocmap[TXG_SIZE];
uint64_t ms_freemap[TXG_SIZE];
uint64_t ms_map;
uint64_t avail;
uint64_t nowavail;
} space_data_t;
/* ARGSUSED */
static int
space_cb(uintptr_t addr, const void *unknown, void *arg)
{
space_data_t *sd = arg;
mdb_metaslab_t ms;
if (GETMEMB(addr, struct metaslab, ms_allocmap, ms.ms_allocmap) ||
GETMEMB(addr, struct metaslab, ms_freemap, ms.ms_freemap) ||
GETMEMB(addr, struct metaslab, ms_map, ms.ms_map) ||
GETMEMB(addr, struct metaslab, ms_smo, ms.ms_smo) ||
GETMEMB(addr, struct metaslab, ms_smo_syncing, ms.ms_smo_syncing)) {
return (WALK_ERR);
}
sd->ms_allocmap[0] += ms.ms_allocmap[0].sm_space;
sd->ms_allocmap[1] += ms.ms_allocmap[1].sm_space;
sd->ms_allocmap[2] += ms.ms_allocmap[2].sm_space;
sd->ms_allocmap[3] += ms.ms_allocmap[3].sm_space;
sd->ms_freemap[0] += ms.ms_freemap[0].sm_space;
sd->ms_freemap[1] += ms.ms_freemap[1].sm_space;
sd->ms_freemap[2] += ms.ms_freemap[2].sm_space;
sd->ms_freemap[3] += ms.ms_freemap[3].sm_space;
sd->ms_map += ms.ms_map.sm_space;
sd->avail += ms.ms_map.sm_size - ms.ms_smo.smo_alloc;
sd->nowavail += ms.ms_map.sm_size - ms.ms_smo_syncing.smo_alloc;
return (WALK_NEXT);
}
/*
* ::spa_space [-b]
*
* Given a spa_t, print out it's on-disk space usage and in-core
* estimates of future usage. If -b is given, print space in bytes.
* Otherwise print in megabytes.
*/
/* ARGSUSED */
static int
spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_spa_t spa;
uintptr_t dp_root_dir;
mdb_dsl_dir_t dd;
mdb_dsl_dir_phys_t dsp;
uint64_t children;
uintptr_t childaddr;
space_data_t sd;
int shift = 20;
char *suffix = "M";
int bits = FALSE;
if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bits, NULL) !=
argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (bits) {
shift = 0;
suffix = "";
}
if (GETMEMB(addr, struct spa, spa_dsl_pool, spa.spa_dsl_pool) ||
GETMEMB(addr, struct spa, spa_root_vdev, spa.spa_root_vdev) ||
GETMEMB(spa.spa_root_vdev, struct vdev, vdev_children, children) ||
GETMEMB(spa.spa_root_vdev, struct vdev, vdev_child, childaddr) ||
GETMEMB(spa.spa_dsl_pool, struct dsl_pool,
dp_root_dir, dp_root_dir) ||
GETMEMB(dp_root_dir, struct dsl_dir, dd_phys, dd.dd_phys) ||
GETMEMB(dp_root_dir, struct dsl_dir,
dd_space_towrite, dd.dd_space_towrite) ||
GETMEMB(dd.dd_phys, struct dsl_dir_phys,
dd_used_bytes, dsp.dd_used_bytes) ||
GETMEMB(dd.dd_phys, struct dsl_dir_phys,
dd_compressed_bytes, dsp.dd_compressed_bytes) ||
GETMEMB(dd.dd_phys, struct dsl_dir_phys,
dd_uncompressed_bytes, dsp.dd_uncompressed_bytes)) {
return (DCMD_ERR);
}
mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
dd.dd_space_towrite[0] >> shift, suffix,
dd.dd_space_towrite[1] >> shift, suffix,
dd.dd_space_towrite[2] >> shift, suffix,
dd.dd_space_towrite[3] >> shift, suffix);
mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
dsp.dd_used_bytes >> shift, suffix);
mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
dsp.dd_compressed_bytes >> shift, suffix);
mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
dsp.dd_uncompressed_bytes >> shift, suffix);
bzero(&sd, sizeof (sd));
if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
mdb_warn("can't walk metaslabs");
return (DCMD_ERR);
}
mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
sd.ms_allocmap[0] >> shift, suffix,
sd.ms_allocmap[1] >> shift, suffix,
sd.ms_allocmap[2] >> shift, suffix,
sd.ms_allocmap[3] >> shift, suffix);
mdb_printf("ms_freemap = %llu%s %llu%s %llu%s %llu%s\n",
sd.ms_freemap[0] >> shift, suffix,
sd.ms_freemap[1] >> shift, suffix,
sd.ms_freemap[2] >> shift, suffix,
sd.ms_freemap[3] >> shift, suffix);
mdb_printf("ms_map = %llu%s\n", sd.ms_map >> shift, suffix);
mdb_printf("last synced avail = %llu%s\n", sd.avail >> shift, suffix);
mdb_printf("current syncing avail = %llu%s\n",
sd.nowavail >> shift, suffix);
return (DCMD_OK);
}
/*
* ::spa_verify
*
* Given a spa_t, verify that that the pool is self-consistent.
* Currently, it only checks to make sure that the vdev tree exists.
*/
/* ARGSUSED */
static int
spa_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
spa_t spa;
if (argc != 0 || !(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_vread(&spa, sizeof (spa), addr) == -1) {
mdb_warn("failed to read spa_t at %p", addr);
return (DCMD_ERR);
}
if (spa.spa_root_vdev == NULL) {
mdb_printf("no vdev tree present\n");
return (DCMD_OK);
}
return (DCMD_OK);
}
static int
spa_print_aux(spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
const char *name)
{
uintptr_t *aux;
size_t len;
int ret, i;
/*
* Iterate over aux vdevs and print those out as well. This is a
* little annoying because we don't have a root vdev to pass to ::vdev.
* Instead, we print a single line and then call it for each child
* vdev.
*/
if (sav->sav_count != 0) {
v[1].a_type = MDB_TYPE_STRING;
v[1].a_un.a_str = "-d";
v[2].a_type = MDB_TYPE_IMMEDIATE;
v[2].a_un.a_val = 2;
len = sav->sav_count * sizeof (uintptr_t);
aux = mdb_alloc(len, UM_SLEEP);
if (mdb_vread(aux, len,
(uintptr_t)sav->sav_vdevs) == -1) {
mdb_free(aux, len);
mdb_warn("failed to read l2cache vdevs at %p",
sav->sav_vdevs);
return (DCMD_ERR);
}
mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
for (i = 0; i < sav->sav_count; i++) {
ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
if (ret != DCMD_OK) {
mdb_free(aux, len);
return (ret);
}
}
mdb_free(aux, len);
}
return (0);
}
/*
* ::spa_vdevs
*
* -e Include error stats
*
* Print out a summarized list of vdevs for the given spa_t.
* This is accomplished by invoking "::vdev -re" on the root vdev, as well as
* iterating over the cache devices.
*/
/* ARGSUSED */
static int
spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
spa_t spa;
mdb_arg_t v[3];
int errors = FALSE;
int ret;
if (mdb_getopts(argc, argv,
'e', MDB_OPT_SETBITS, TRUE, &errors,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_vread(&spa, sizeof (spa), addr) == -1) {
mdb_warn("failed to read spa_t at %p", addr);
return (DCMD_ERR);
}
/*
* Unitialized spa_t structures can have a NULL root vdev.
*/
if (spa.spa_root_vdev == NULL) {
mdb_printf("no associated vdevs\n");
return (DCMD_OK);
}
v[0].a_type = MDB_TYPE_STRING;
v[0].a_un.a_str = errors ? "-re" : "-r";
ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
flags, 1, v);
if (ret != DCMD_OK)
return (ret);
if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
return (DCMD_ERR);
return (DCMD_OK);
}
/*
* ::zio
*
* Print a summary of zio_t and all its children. This is intended to display a
* zio tree, and hence we only pick the most important pieces of information for
* the main summary. More detailed information can always be found by doing a
* '::print zio' on the underlying zio_t. The columns we display are:
*
* ADDRESS TYPE STAGE WAITER
*
* The 'address' column is indented by one space for each depth level as we
* descend down the tree.
*/
#define ZIO_MAXINDENT 24
#define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
#define ZIO_WALK_SELF 0
#define ZIO_WALK_CHILD 1
#define ZIO_WALK_PARENT 2
typedef struct zio_print_args {
int zpa_current_depth;
int zpa_min_depth;
int zpa_max_depth;
int zpa_type;
uint_t zpa_flags;
} zio_print_args_t;
static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
static int
zio_print_cb(uintptr_t addr, const void *data, void *priv)
{
const zio_t *zio = data;
zio_print_args_t *zpa = priv;
mdb_ctf_id_t type_enum, stage_enum;
int indent = zpa->zpa_current_depth;
const char *type, *stage;
uintptr_t laddr;
if (indent > ZIO_MAXINDENT)
indent = ZIO_MAXINDENT;
if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
mdb_warn("failed to lookup zio enums");
return (WALK_ERR);
}
if ((type = mdb_ctf_enum_name(type_enum, zio->io_type)) != NULL)
type += sizeof ("ZIO_TYPE_") - 1;
else
type = "?";
if ((stage = mdb_ctf_enum_name(stage_enum, zio->io_stage)) != NULL)
stage += sizeof ("ZIO_STAGE_") - 1;
else
stage = "?";
if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
if (zpa->zpa_flags & DCMD_PIPE_OUT) {
mdb_printf("%?p\n", addr);
} else {
mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
ZIO_MAXWIDTH - indent, addr, type, stage);
if (zio->io_waiter)
mdb_printf("%?p\n", zio->io_waiter);
else
mdb_printf("-\n");
}
}
if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
return (WALK_NEXT);
if (zpa->zpa_type == ZIO_WALK_PARENT)
laddr = addr + OFFSETOF(zio_t, io_parent_list);
else
laddr = addr + OFFSETOF(zio_t, io_child_list);
zpa->zpa_current_depth++;
if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
mdb_warn("failed to walk zio_t children at %p\n", laddr);
return (WALK_ERR);
}
zpa->zpa_current_depth--;
return (WALK_NEXT);
}
/* ARGSUSED */
static int
zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
{
zio_link_t zl;
zio_t zio;
uintptr_t ziop;
zio_print_args_t *zpa = arg;
if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
mdb_warn("failed to read zio_link_t at %p", addr);
return (WALK_ERR);
}
if (zpa->zpa_type == ZIO_WALK_PARENT)
ziop = (uintptr_t)zl.zl_parent;
else
ziop = (uintptr_t)zl.zl_child;
if (mdb_vread(&zio, sizeof (zio_t), ziop) == -1) {
mdb_warn("failed to read zio_t at %p", ziop);
return (WALK_ERR);
}
return (zio_print_cb(ziop, &zio, arg));
}
/* ARGSUSED */
static int
zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
zio_t zio;
zio_print_args_t zpa = { 0 };
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
NULL) != argc)
return (DCMD_USAGE);
zpa.zpa_flags = flags;
if (zpa.zpa_max_depth != 0) {
if (zpa.zpa_type == ZIO_WALK_SELF)
zpa.zpa_type = ZIO_WALK_CHILD;
} else if (zpa.zpa_type != ZIO_WALK_SELF) {
zpa.zpa_min_depth = 1;
zpa.zpa_max_depth = 1;
}
if (mdb_vread(&zio, sizeof (zio_t), addr) == -1) {
mdb_warn("failed to read zio_t at %p", addr);
return (DCMD_ERR);
}
if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-*s %-5s %-16s %-?s%</u>\n", ZIO_MAXWIDTH,
"ADDRESS", "TYPE", "STAGE", "WAITER");
if (zio_print_cb(addr, &zio, &zpa) != WALK_NEXT)
return (DCMD_ERR);
return (DCMD_OK);
}
/*
* [addr]::zio_state
*
* Print a summary of all zio_t structures on the system, or for a particular
* pool. This is equivalent to '::walk zio_root | ::zio'.
*/
/*ARGSUSED*/
static int
zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
/*
* MDB will remember the last address of the pipeline, so if we don't
* zero this we'll end up trying to walk zio structures for a
* non-existent spa_t.
*/
if (!(flags & DCMD_ADDRSPEC))
addr = 0;
return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
}
typedef struct txg_list_walk_data {
uintptr_t lw_head[TXG_SIZE];
int lw_txgoff;
int lw_maxoff;
size_t lw_offset;
void *lw_obj;
} txg_list_walk_data_t;
static int
txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
{
txg_list_walk_data_t *lwd;
txg_list_t list;
int i;
lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
if (mdb_vread(&list, sizeof (txg_list_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
return (WALK_ERR);
}
for (i = 0; i < TXG_SIZE; i++)
lwd->lw_head[i] = (uintptr_t)list.tl_head[i];
lwd->lw_offset = list.tl_offset;
lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
UM_SLEEP | UM_GC);
lwd->lw_txgoff = txg;
lwd->lw_maxoff = maxoff;
wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
wsp->walk_data = lwd;
return (WALK_NEXT);
}
static int
txg_list_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
}
static int
txg_list0_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 0, 0));
}
static int
txg_list1_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 1, 1));
}
static int
txg_list2_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 2, 2));
}
static int
txg_list3_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 3, 3));
}
static int
txg_list_walk_step(mdb_walk_state_t *wsp)
{
txg_list_walk_data_t *lwd = wsp->walk_data;
uintptr_t addr;
txg_node_t *node;
int status;
while (wsp->walk_addr == NULL && lwd->lw_txgoff < lwd->lw_maxoff) {
lwd->lw_txgoff++;
wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
}
if (wsp->walk_addr == NULL)
return (WALK_DONE);
addr = wsp->walk_addr - lwd->lw_offset;
if (mdb_vread(lwd->lw_obj,
lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
mdb_warn("failed to read list element at %#lx", addr);
return (WALK_ERR);
}
status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
return (status);
}
/*
* ::walk spa
*
* Walk all named spa_t structures in the namespace. This is nothing more than
* a layered avl walk.
*/
static int
spa_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
if (wsp->walk_addr != NULL) {
mdb_warn("spa walk only supports global walks\n");
return (WALK_ERR);
}
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
mdb_warn("failed to find symbol 'spa_namespace_avl'");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
if (mdb_layered_walk("avl", wsp) == -1) {
mdb_warn("failed to walk 'avl'\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
spa_walk_step(mdb_walk_state_t *wsp)
{
spa_t spa;
if (mdb_vread(&spa, sizeof (spa), wsp->walk_addr) == -1) {
mdb_warn("failed to read spa_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
return (wsp->walk_callback(wsp->walk_addr, &spa, wsp->walk_cbdata));
}
/*
* [addr]::walk zio
*
* Walk all active zio_t structures on the system. This is simply a layered
* walk on top of ::walk zio_cache, with the optional ability to limit the
* structures to a particular pool.
*/
static int
zio_walk_init(mdb_walk_state_t *wsp)
{
wsp->walk_data = (void *)wsp->walk_addr;
if (mdb_layered_walk("zio_cache", wsp) == -1) {
mdb_warn("failed to walk 'zio_cache'\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
zio_walk_step(mdb_walk_state_t *wsp)
{
zio_t zio;
if (mdb_vread(&zio, sizeof (zio), wsp->walk_addr) == -1) {
mdb_warn("failed to read zio_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (wsp->walk_data != NULL && wsp->walk_data != zio.io_spa)
return (WALK_NEXT);
return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
}
/*
* [addr]::walk zio_root
*
* Walk only root zio_t structures, optionally for a particular spa_t.
*/
static int
zio_walk_root_step(mdb_walk_state_t *wsp)
{
zio_t zio;
if (mdb_vread(&zio, sizeof (zio), wsp->walk_addr) == -1) {
mdb_warn("failed to read zio_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (wsp->walk_data != NULL && wsp->walk_data != zio.io_spa)
return (WALK_NEXT);
/* If the parent list is not empty, ignore */
if (zio.io_parent_list.list_head.list_next !=
&((zio_t *)wsp->walk_addr)->io_parent_list.list_head)
return (WALK_NEXT);
return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
}
#define NICENUM_BUFLEN 6
static int
snprintfrac(char *buf, int len,
uint64_t numerator, uint64_t denom, int frac_digits)
{
int mul = 1;
int whole, frac, i;
for (i = frac_digits; i; i--)
mul *= 10;
whole = numerator / denom;
frac = mul * numerator / denom - mul * whole;
return (mdb_snprintf(buf, len, "%u.%0*u", whole, frac_digits, frac));
}
static void
mdb_nicenum(uint64_t num, char *buf)
{
uint64_t n = num;
int index = 0;
char *u;
while (n >= 1024) {
n = (n + (1024 / 2)) / 1024; /* Round up or down */
index++;
}
u = &" \0K\0M\0G\0T\0P\0E\0"[index*2];
if (index == 0) {
(void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu",
(u_longlong_t)n);
} else if (n < 10 && (num & (num - 1)) != 0) {
(void) snprintfrac(buf, NICENUM_BUFLEN,
num, 1ULL << 10 * index, 2);
strcat(buf, u);
} else if (n < 100 && (num & (num - 1)) != 0) {
(void) snprintfrac(buf, NICENUM_BUFLEN,
num, 1ULL << 10 * index, 1);
strcat(buf, u);
} else {
(void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu%s",
(u_longlong_t)n, u);
}
}
/*
* ::zfs_blkstats
*
* -v print verbose per-level information
*
*/
static int
zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
boolean_t verbose = B_FALSE;
zfs_all_blkstats_t stats;
dmu_object_type_t t;
zfs_blkstat_t *tzb;
uint64_t ditto;
dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES + 10];
/* +10 in case it grew */
if (mdb_readvar(&dmu_ot, "dmu_ot") == -1) {
mdb_warn("failed to read 'dmu_ot'");
return (DCMD_ERR);
}
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (GETMEMB(addr, struct spa, spa_dsl_pool, addr) ||
GETMEMB(addr, struct dsl_pool, dp_blkstats, addr) ||
mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
mdb_warn("failed to read data at %p;", addr);
mdb_printf("maybe no stats? run \"zpool scrub\" first.");
return (DCMD_ERR);
}
tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_NUMTYPES];
if (tzb->zb_gangs != 0) {
mdb_printf("Ganged blocks: %llu\n",
(longlong_t)tzb->zb_gangs);
}
ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
tzb->zb_ditto_3_of_3_samevdev;
if (ditto != 0) {
mdb_printf("Dittoed blocks on same vdev: %llu\n",
(longlong_t)ditto);
}
mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
"\t avg\t comp\t%%Total\tType\n");
for (t = 0; t <= DMU_OT_NUMTYPES; t++) {
char csize[NICENUM_BUFLEN], lsize[NICENUM_BUFLEN];
char psize[NICENUM_BUFLEN], asize[NICENUM_BUFLEN];
char avg[NICENUM_BUFLEN];
char comp[NICENUM_BUFLEN], pct[NICENUM_BUFLEN];
char typename[64];
int l;
if (t == DMU_OT_DEFERRED)
strcpy(typename, "deferred free");
else if (t == DMU_OT_TOTAL)
strcpy(typename, "Total");
else if (mdb_readstr(typename, sizeof (typename),
(uintptr_t)dmu_ot[t].ot_name) == -1) {
mdb_warn("failed to read type name");
return (DCMD_ERR);
}
if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
continue;
for (l = -1; l < DN_MAX_LEVELS; l++) {
int level = (l == -1 ? DN_MAX_LEVELS : l);
zfs_blkstat_t *zb = &stats.zab_type[level][t];
if (zb->zb_asize == 0)
continue;
/*
* Don't print each level unless requested.
*/
if (!verbose && level != DN_MAX_LEVELS)
continue;
/*
* If all the space is level 0, don't print the
* level 0 separately.
*/
if (level == 0 && zb->zb_asize ==
stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
continue;
mdb_nicenum(zb->zb_count, csize);
mdb_nicenum(zb->zb_lsize, lsize);
mdb_nicenum(zb->zb_psize, psize);
mdb_nicenum(zb->zb_asize, asize);
mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
(void) snprintfrac(comp, NICENUM_BUFLEN,
zb->zb_lsize, zb->zb_psize, 2);
(void) snprintfrac(pct, NICENUM_BUFLEN,
100 * zb->zb_asize, tzb->zb_asize, 2);
mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
"\t%5s\t%6s\t",
csize, lsize, psize, asize, avg, comp, pct);
if (level == DN_MAX_LEVELS)
mdb_printf("%s\n", typename);
else
mdb_printf(" L%d %s\n",
level, typename);
}
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
reference_cb(uintptr_t addr, const void *ignored, void *arg)
{
static int gotid;
static mdb_ctf_id_t ref_id;
uintptr_t ref_holder;
uintptr_t ref_removed;
uint64_t ref_number;
boolean_t holder_is_str;
char holder_str[128];
boolean_t removed = (boolean_t)arg;
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct reference", &ref_id) == -1) {
mdb_warn("couldn't find struct reference");
return (WALK_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &ref_id, ref_holder, ref_holder) ||
GETMEMBID(addr, &ref_id, ref_removed, ref_removed) ||
GETMEMBID(addr, &ref_id, ref_number, ref_number))
return (WALK_ERR);
if (mdb_readstr(holder_str, sizeof (holder_str), ref_holder) != -1) {
char *cp;
holder_is_str = B_TRUE;
for (cp = holder_str; *cp; cp++) {
if (!isprint(*cp)) {
holder_is_str = B_FALSE;
break;
}
}
} else {
holder_is_str = B_FALSE;
}
if (removed)
mdb_printf("removed ");
mdb_printf("reference ");
if (ref_number != 1)
mdb_printf("with count=%llu ", ref_number);
mdb_printf("with tag %p", (void*)ref_holder);
if (holder_is_str)
mdb_printf(" \"%s\"", holder_str);
mdb_printf(", held at:\n");
(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
if (removed) {
mdb_printf("removed at:\n");
(void) mdb_call_dcmd("whatis", ref_removed,
DCMD_ADDRSPEC, 0, NULL);
}
mdb_printf("\n");
return (WALK_NEXT);
}
/* ARGSUSED */
static int
refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint64_t rc_count, rc_removed_count;
uintptr_t rc_list, rc_removed;
static int gotid;
static mdb_ctf_id_t rc_id;
ulong_t off;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct refcount", &rc_id) == -1) {
mdb_warn("couldn't find struct refcount");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &rc_id, rc_count, rc_count) ||
GETMEMBID(addr, &rc_id, rc_removed_count, rc_removed_count))
return (DCMD_ERR);
mdb_printf("refcount_t at %p has %llu current holds, "
"%llu recently released holds\n",
addr, (longlong_t)rc_count, (longlong_t)rc_removed_count);
if (rc_count > 0)
mdb_printf("current holds:\n");
if (mdb_ctf_offsetof(rc_id, "rc_list", &off) == -1)
return (DCMD_ERR);
rc_list = addr + off/NBBY;
mdb_pwalk("list", reference_cb, (void*)B_FALSE, rc_list);
if (rc_removed_count > 0)
mdb_printf("released holds:\n");
if (mdb_ctf_offsetof(rc_id, "rc_removed", &off) == -1)
return (DCMD_ERR);
rc_removed = addr + off/NBBY;
mdb_pwalk("list", reference_cb, (void*)B_TRUE, rc_removed);
return (DCMD_OK);
}
/*
* MDB module linkage information:
*
* We declare a list of structures describing our dcmds, and a function
* named _mdb_init to return a pointer to our module information.
*/
static const mdb_dcmd_t dcmds[] = {
{ "arc", "[-bkmg]", "print ARC variables", arc_print },
{ "blkptr", ":", "print blkptr_t", blkptr },
{ "dbuf", ":", "print dmu_buf_impl_t", dbuf },
{ "dbuf_stats", ":", "dbuf stats", dbuf_stats },
{ "dbufs",
"\t[-O objset_t*] [-n objset_name | \"mos\"] "
"[-o object | \"mdn\"] \n"
"\t[-l level] [-b blkid | \"bonus\"]",
"find dmu_buf_impl_t's that match specified criteria", dbufs },
{ "abuf_find", "dva_word[0] dva_word[1]",
"find arc_buf_hdr_t of a specified DVA",
abuf_find },
{ "spa", "?[-cv]", "spa_t summary", spa_print },
{ "spa_config", ":", "print spa_t configuration", spa_print_config },
{ "spa_verify", ":", "verify spa_t consistency", spa_verify },
{ "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
{ "spa_vdevs", ":", "given a spa_t, print vdev summary", spa_vdevs },
{ "vdev", ":[-re]\n"
"\t-r display recursively\n"
"\t-e print statistics",
"vdev_t summary", vdev_print },
{ "zio", ":[cpr]\n"
"\t-c display children\n"
"\t-p display parents\n"
"\t-r display recursively",
"zio_t summary", zio_print },
{ "zio_state", "?", "print out all zio_t structures on system or "
"for a particular pool", zio_state },
{ "zfs_blkstats", ":[-v]",
"given a spa_t, print block type stats from last scrub",
zfs_blkstats },
{ "zfs_params", "", "print zfs tunable parameters", zfs_params },
{ "refcount", "", "print refcount_t holders", refcount },
{ "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
{ NULL }
};
static const mdb_walker_t walkers[] = {
/*
* In userland, there is no generic provider of list_t walkers, so we
* need to add it.
*/
#ifndef _KERNEL
{ LIST_WALK_NAME, LIST_WALK_DESC,
list_walk_init, list_walk_step, list_walk_fini },
#endif
{ "zms_freelist", "walk ZFS metaslab freelist",
freelist_walk_init, freelist_walk_step, NULL },
{ "txg_list", "given any txg_list_t *, walk all entries in all txgs",
txg_list_walk_init, txg_list_walk_step, NULL },
{ "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
txg_list0_walk_init, txg_list_walk_step, NULL },
{ "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
txg_list1_walk_init, txg_list_walk_step, NULL },
{ "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
txg_list2_walk_init, txg_list_walk_step, NULL },
{ "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
txg_list3_walk_init, txg_list_walk_step, NULL },
{ "zio", "walk all zio structures, optionally for a particular spa_t",
zio_walk_init, zio_walk_step, NULL },
{ "zio_root", "walk all root zio_t structures, optionally for a "
"particular spa_t",
zio_walk_init, zio_walk_root_step, NULL },
{ "spa", "walk all spa_t entries in the namespace",
spa_walk_init, spa_walk_step, NULL },
{ "metaslab", "given a spa_t *, walk all metaslab_t structures",
metaslab_walk_init, metaslab_walk_step, NULL },
{ NULL }
};
static const mdb_modinfo_t modinfo = {
MDB_API_VERSION, dcmds, walkers
};
const mdb_modinfo_t *
_mdb_init(void)
{
return (&modinfo);
}