/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2011, 2016 by Delphix. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <mdb/mdb_ctf.h>
#include <sys/zfs_context.h>
#include <sys/mdb_modapi.h>
#include <sys/dbuf.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/list.h>
#include <sys/vdev_impl.h>
#include <sys/zap_leaf.h>
#include <sys/zap_impl.h>
#include <ctype.h>
#include <sys/zfs_acl.h>
#include <sys/sa_impl.h>
#include <sys/multilist.h>
#ifdef _KERNEL
#define ZFS_OBJ_NAME "zfs"
extern int64_t mdb_gethrtime(void);
#else
#define ZFS_OBJ_NAME "libzpool.so.1"
#endif
#define ZFS_STRUCT "struct " ZFS_OBJ_NAME "`"
#ifndef _KERNEL
int aok;
#endif
enum spa_flags {
SPA_FLAG_CONFIG = 1 << 0,
SPA_FLAG_VDEVS = 1 << 1,
SPA_FLAG_ERRORS = 1 << 2,
SPA_FLAG_METASLAB_GROUPS = 1 << 3,
SPA_FLAG_METASLABS = 1 << 4,
SPA_FLAG_HISTOGRAMS = 1 << 5
};
/*
* If any of these flags are set, call spa_vdevs in spa_print
*/
#define SPA_FLAG_ALL_VDEV \
(SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
SPA_FLAG_METASLABS)
static int
getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
const char *member, int len, void *buf)
{
mdb_ctf_id_t id;
ulong_t off;
char name[64];
if (idp == NULL) {
if (mdb_ctf_lookup_by_name(type, &id) == -1) {
mdb_warn("couldn't find type %s", type);
return (DCMD_ERR);
}
idp = &id;
} else {
type = name;
mdb_ctf_type_name(*idp, name, sizeof (name));
}
if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
mdb_warn("couldn't find member %s of type %s\n", member, type);
return (DCMD_ERR);
}
if (off % 8 != 0) {
mdb_warn("member %s of type %s is unsupported bitfield",
member, type);
return (DCMD_ERR);
}
off /= 8;
if (mdb_vread(buf, len, addr + off) == -1) {
mdb_warn("failed to read %s from %s at %p",
member, type, addr + off);
return (DCMD_ERR);
}
/* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
return (0);
}
#define GETMEMB(addr, structname, member, dest) \
getmember(addr, ZFS_STRUCT structname, NULL, #member, \
sizeof (dest), &(dest))
#define GETMEMBID(addr, ctfid, member, dest) \
getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
static boolean_t
strisprint(const char *cp)
{
for (; *cp; cp++) {
if (!isprint(*cp))
return (B_FALSE);
}
return (B_TRUE);
}
#define NICENUM_BUFLEN 6
static int
snprintfrac(char *buf, int len,
uint64_t numerator, uint64_t denom, int frac_digits)
{
int mul = 1;
int whole, frac, i;
for (i = frac_digits; i; i--)
mul *= 10;
whole = numerator / denom;
frac = mul * numerator / denom - mul * whole;
return (mdb_snprintf(buf, len, "%u.%0*u", whole, frac_digits, frac));
}
static void
mdb_nicenum(uint64_t num, char *buf)
{
uint64_t n = num;
int index = 0;
char *u;
while (n >= 1024) {
n = (n + (1024 / 2)) / 1024; /* Round up or down */
index++;
}
u = &" \0K\0M\0G\0T\0P\0E\0"[index*2];
if (index == 0) {
(void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu",
(u_longlong_t)n);
} else if (n < 10 && (num & (num - 1)) != 0) {
(void) snprintfrac(buf, NICENUM_BUFLEN,
num, 1ULL << 10 * index, 2);
strcat(buf, u);
} else if (n < 100 && (num & (num - 1)) != 0) {
(void) snprintfrac(buf, NICENUM_BUFLEN,
num, 1ULL << 10 * index, 1);
strcat(buf, u);
} else {
(void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu%s",
(u_longlong_t)n, u);
}
}
static int verbose;
static int
freelist_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("must supply starting address\n");
return (WALK_ERR);
}
wsp->walk_data = 0; /* Index into the freelist */
return (WALK_NEXT);
}
static int
freelist_walk_step(mdb_walk_state_t *wsp)
{
uint64_t entry;
uintptr_t number = (uintptr_t)wsp->walk_data;
char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
"INVALID", "INVALID", "INVALID", "INVALID" };
int mapshift = SPA_MINBLOCKSHIFT;
if (mdb_vread(&entry, sizeof (entry), wsp->walk_addr) == -1) {
mdb_warn("failed to read freelist entry %p", wsp->walk_addr);
return (WALK_DONE);
}
wsp->walk_addr += sizeof (entry);
wsp->walk_data = (void *)(number + 1);
if (SM_DEBUG_DECODE(entry)) {
mdb_printf("DEBUG: %3u %10s: txg=%llu pass=%llu\n",
number,
ddata[SM_DEBUG_ACTION_DECODE(entry)],
SM_DEBUG_TXG_DECODE(entry),
SM_DEBUG_SYNCPASS_DECODE(entry));
} else {
mdb_printf("Entry: %3u offsets=%08llx-%08llx type=%c "
"size=%06llx", number,
SM_OFFSET_DECODE(entry) << mapshift,
(SM_OFFSET_DECODE(entry) + SM_RUN_DECODE(entry)) <<
mapshift,
SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F',
SM_RUN_DECODE(entry) << mapshift);
if (verbose)
mdb_printf(" (raw=%012llx)\n", entry);
mdb_printf("\n");
}
return (WALK_NEXT);
}
static int
mdb_dsl_dir_name(uintptr_t addr, char *buf)
{
static int gotid;
static mdb_ctf_id_t dd_id;
uintptr_t dd_parent;
char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
if (!gotid) {
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
&dd_id) == -1) {
mdb_warn("couldn't find struct dsl_dir");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
return (DCMD_ERR);
}
if (dd_parent) {
if (mdb_dsl_dir_name(dd_parent, buf))
return (DCMD_ERR);
strcat(buf, "/");
}
if (dd_myname[0])
strcat(buf, dd_myname);
else
strcat(buf, "???");
return (0);
}
static int
objset_name(uintptr_t addr, char *buf)
{
static int gotid;
static mdb_ctf_id_t os_id, ds_id;
uintptr_t os_dsl_dataset;
char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
uintptr_t ds_dir;
buf[0] = '\0';
if (!gotid) {
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
&os_id) == -1) {
mdb_warn("couldn't find struct objset");
return (DCMD_ERR);
}
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
&ds_id) == -1) {
mdb_warn("couldn't find struct dsl_dataset");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
return (DCMD_ERR);
if (os_dsl_dataset == 0) {
strcat(buf, "mos");
return (0);
}
if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
return (DCMD_ERR);
}
if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
return (DCMD_ERR);
if (ds_snapname[0]) {
strcat(buf, "@");
strcat(buf, ds_snapname);
}
return (0);
}
static int
enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
{
const char *cp;
size_t len = strlen(prefix);
mdb_ctf_id_t enum_type;
if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
mdb_warn("Could not find enum for %s", type);
return (-1);
}
if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
if (strncmp(cp, prefix, len) == 0)
cp += len;
(void) strncpy(out, cp, size);
} else {
mdb_snprintf(out, size, "? (%d)", val);
}
return (0);
}
/* ARGSUSED */
static int
zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
/*
* This table can be approximately generated by running:
* egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
*/
static const char *params[] = {
"arc_reduce_dnlc_percent",
"arc_lotsfree_percent",
"zfs_dirty_data_max",
"zfs_dirty_data_sync",
"zfs_delay_max_ns",
"zfs_delay_min_dirty_percent",
"zfs_delay_scale",
"zfs_vdev_max_active",
"zfs_vdev_sync_read_min_active",
"zfs_vdev_sync_read_max_active",
"zfs_vdev_sync_write_min_active",
"zfs_vdev_sync_write_max_active",
"zfs_vdev_async_read_min_active",
"zfs_vdev_async_read_max_active",
"zfs_vdev_async_write_min_active",
"zfs_vdev_async_write_max_active",
"zfs_vdev_scrub_min_active",
"zfs_vdev_scrub_max_active",
"zfs_vdev_async_write_active_min_dirty_percent",
"zfs_vdev_async_write_active_max_dirty_percent",
"spa_asize_inflation",
"zfs_arc_max",
"zfs_arc_min",
"arc_shrink_shift",
"zfs_mdcomp_disable",
"zfs_prefetch_disable",
"zfetch_max_streams",
"zfetch_min_sec_reap",
"zfetch_block_cap",
"zfetch_array_rd_sz",
"zfs_default_bs",
"zfs_default_ibs",
"metaslab_aliquot",
"reference_tracking_enable",
"reference_history",
"spa_max_replication_override",
"spa_mode_global",
"zfs_flags",
"zfs_txg_timeout",
"zfs_vdev_cache_max",
"zfs_vdev_cache_size",
"zfs_vdev_cache_bshift",
"vdev_mirror_shift",
"zfs_scrub_limit",
"zfs_no_scrub_io",
"zfs_no_scrub_prefetch",
"zfs_vdev_aggregation_limit",
"fzap_default_block_shift",
"zfs_immediate_write_sz",
"zfs_read_chunk_size",
"zfs_nocacheflush",
"zil_replay_disable",
"metaslab_gang_bang",
"metaslab_df_alloc_threshold",
"metaslab_df_free_pct",
"zio_injection_enabled",
"zvol_immediate_write_sz",
};
for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
int sz;
uint64_t val64;
uint32_t *val32p = (uint32_t *)&val64;
sz = mdb_readvar(&val64, params[i]);
if (sz == 4) {
mdb_printf("%s = 0x%x\n", params[i], *val32p);
} else if (sz == 8) {
mdb_printf("%s = 0x%llx\n", params[i], val64);
} else {
mdb_warn("variable %s not found", params[i]);
}
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
char type[80], checksum[80], compress[80];
blkptr_t blk, *bp = &blk;
char buf[BP_SPRINTF_LEN];
if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
mdb_warn("failed to read blkptr_t");
return (DCMD_ERR);
}
if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
sizeof (type), type) == -1 ||
enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
"ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
"ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
mdb_warn("Could not find blkptr enumerated types");
return (DCMD_ERR);
}
SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
checksum, compress);
mdb_printf("%s\n", buf);
return (DCMD_OK);
}
typedef struct mdb_dmu_buf_impl {
struct {
uint64_t db_object;
uintptr_t db_data;
} db;
uintptr_t db_objset;
uint64_t db_level;
uint64_t db_blkid;
struct {
uint64_t rc_count;
} db_holds;
} mdb_dmu_buf_impl_t;
/* ARGSUSED */
static int
dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_dmu_buf_impl_t db;
char objectname[32];
char blkidname[32];
char path[ZFS_MAX_DATASET_NAME_LEN];
int ptr_width = (int)(sizeof (void *)) * 2;
if (DCMD_HDRSPEC(flags))
mdb_printf("%*s %8s %3s %9s %5s %s\n",
ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
addr, 0) == -1)
return (DCMD_ERR);
if (db.db.db_object == DMU_META_DNODE_OBJECT)
(void) strcpy(objectname, "mdn");
else
(void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
(u_longlong_t)db.db.db_object);
if (db.db_blkid == DMU_BONUS_BLKID)
(void) strcpy(blkidname, "bonus");
else
(void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
(u_longlong_t)db.db_blkid);
if (objset_name(db.db_objset, path)) {
return (DCMD_ERR);
}
mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
objectname, (int)db.db_level, blkidname,
db.db_holds.rc_count, path);
return (DCMD_OK);
}
/* ARGSUSED */
static int
dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
#define HISTOSZ 32
uintptr_t dbp;
dmu_buf_impl_t db;
dbuf_hash_table_t ht;
uint64_t bucket, ndbufs;
uint64_t histo[HISTOSZ];
uint64_t histo2[HISTOSZ];
int i, maxidx;
if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
mdb_warn("failed to read 'dbuf_hash_table'");
return (DCMD_ERR);
}
for (i = 0; i < HISTOSZ; i++) {
histo[i] = 0;
histo2[i] = 0;
}
ndbufs = 0;
for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
int len;
if (mdb_vread(&dbp, sizeof (void *),
(uintptr_t)(ht.hash_table+bucket)) == -1) {
mdb_warn("failed to read hash bucket %u at %p",
bucket, ht.hash_table+bucket);
return (DCMD_ERR);
}
len = 0;
while (dbp != 0) {
if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
dbp) == -1) {
mdb_warn("failed to read dbuf at %p", dbp);
return (DCMD_ERR);
}
dbp = (uintptr_t)db.db_hash_next;
for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
histo2[i]++;
len++;
ndbufs++;
}
if (len >= HISTOSZ)
len = HISTOSZ-1;
histo[len]++;
}
mdb_printf("hash table has %llu buckets, %llu dbufs "
"(avg %llu buckets/dbuf)\n",
ht.hash_table_mask+1, ndbufs,
(ht.hash_table_mask+1)/ndbufs);
mdb_printf("\n");
maxidx = 0;
for (i = 0; i < HISTOSZ; i++)
if (histo[i] > 0)
maxidx = i;
mdb_printf("hash chain length number of buckets\n");
for (i = 0; i <= maxidx; i++)
mdb_printf("%u %llu\n", i, histo[i]);
mdb_printf("\n");
maxidx = 0;
for (i = 0; i < HISTOSZ; i++)
if (histo2[i] > 0)
maxidx = i;
mdb_printf("hash chain depth number of dbufs\n");
for (i = 0; i <= maxidx; i++)
mdb_printf("%u or more %llu %llu%%\n",
i, histo2[i], histo2[i]*100/ndbufs);
return (DCMD_OK);
}
#define CHAIN_END 0xffff
/*
* ::zap_leaf [-v]
*
* Print a zap_leaf_phys_t, assumed to be 16k
*/
/* ARGSUSED */
static int
zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
char buf[16*1024];
int verbose = B_FALSE;
int four = B_FALSE;
dmu_buf_t l_dbuf;
zap_leaf_t l;
zap_leaf_phys_t *zlp = (void *)buf;
int i;
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
'4', MDB_OPT_SETBITS, TRUE, &four,
NULL) != argc)
return (DCMD_USAGE);
l_dbuf.db_data = zlp;
l.l_dbuf = &l_dbuf;
l.l_bs = 14; /* assume 16k blocks */
if (four)
l.l_bs = 12;
if (!(flags & DCMD_ADDRSPEC)) {
return (DCMD_USAGE);
}
if (mdb_vread(buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
return (DCMD_ERR);
}
if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
mdb_warn("This does not appear to be a zap_leaf_phys_t");
return (DCMD_ERR);
}
mdb_printf("zap_leaf_phys_t at %p:\n", addr);
mdb_printf(" lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
mdb_printf(" lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
mdb_printf(" lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
mdb_printf(" lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
mdb_printf(" lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
mdb_printf(" lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
"ENTRIES_CDSORTED" : "");
if (verbose) {
mdb_printf(" hash table:\n");
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
if (zlp->l_hash[i] != CHAIN_END)
mdb_printf(" %u: %u\n", i, zlp->l_hash[i]);
}
}
mdb_printf(" chunks:\n");
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
/* LINTED: alignment */
zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
switch (zlc->l_entry.le_type) {
case ZAP_CHUNK_FREE:
if (verbose) {
mdb_printf(" %u: free; lf_next = %u\n",
i, zlc->l_free.lf_next);
}
break;
case ZAP_CHUNK_ENTRY:
mdb_printf(" %u: entry\n", i);
if (verbose) {
mdb_printf(" le_next = %u\n",
zlc->l_entry.le_next);
}
mdb_printf(" le_name_chunk = %u\n",
zlc->l_entry.le_name_chunk);
mdb_printf(" le_name_numints = %u\n",
zlc->l_entry.le_name_numints);
mdb_printf(" le_value_chunk = %u\n",
zlc->l_entry.le_value_chunk);
mdb_printf(" le_value_intlen = %u\n",
zlc->l_entry.le_value_intlen);
mdb_printf(" le_value_numints = %u\n",
zlc->l_entry.le_value_numints);
mdb_printf(" le_cd = %u\n",
zlc->l_entry.le_cd);
mdb_printf(" le_hash = %llx\n",
zlc->l_entry.le_hash);
break;
case ZAP_CHUNK_ARRAY:
mdb_printf(" %u: array", i);
if (strisprint((char *)zlc->l_array.la_array))
mdb_printf(" \"%s\"", zlc->l_array.la_array);
mdb_printf("\n");
if (verbose) {
int j;
mdb_printf(" ");
for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
mdb_printf("%02x ",
zlc->l_array.la_array[j]);
}
mdb_printf("\n");
}
if (zlc->l_array.la_next != CHAIN_END) {
mdb_printf(" lf_next = %u\n",
zlc->l_array.la_next);
}
break;
default:
mdb_printf(" %u: undefined type %u\n",
zlc->l_entry.le_type);
}
}
return (DCMD_OK);
}
typedef struct dbufs_data {
mdb_ctf_id_t id;
uint64_t objset;
uint64_t object;
uint64_t level;
uint64_t blkid;
char *osname;
} dbufs_data_t;
#define DBUFS_UNSET (0xbaddcafedeadbeefULL)
/* ARGSUSED */
static int
dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
{
dbufs_data_t *data = arg;
uintptr_t objset;
dmu_buf_t db;
uint8_t level;
uint64_t blkid;
char osname[ZFS_MAX_DATASET_NAME_LEN];
if (GETMEMBID(addr, &data->id, db_objset, objset) ||
GETMEMBID(addr, &data->id, db, db) ||
GETMEMBID(addr, &data->id, db_level, level) ||
GETMEMBID(addr, &data->id, db_blkid, blkid)) {
return (WALK_ERR);
}
if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
(data->osname == NULL || (objset_name(objset, osname) == 0 &&
strcmp(data->osname, osname) == 0)) &&
(data->object == DBUFS_UNSET || data->object == db.db_object) &&
(data->level == DBUFS_UNSET || data->level == level) &&
(data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
mdb_printf("%#lr\n", addr);
}
return (WALK_NEXT);
}
/* ARGSUSED */
static int
dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dbufs_data_t data;
char *object = NULL;
char *blkid = NULL;
data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
data.osname = NULL;
if (mdb_getopts(argc, argv,
'O', MDB_OPT_UINT64, &data.objset,
'n', MDB_OPT_STR, &data.osname,
'o', MDB_OPT_STR, &object,
'l', MDB_OPT_UINT64, &data.level,
'b', MDB_OPT_STR, &blkid) != argc) {
return (DCMD_USAGE);
}
if (object) {
if (strcmp(object, "mdn") == 0) {
data.object = DMU_META_DNODE_OBJECT;
} else {
data.object = mdb_strtoull(object);
}
}
if (blkid) {
if (strcmp(blkid, "bonus") == 0) {
data.blkid = DMU_BONUS_BLKID;
} else {
data.blkid = mdb_strtoull(blkid);
}
}
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
mdb_warn("couldn't find struct dmu_buf_impl_t");
return (DCMD_ERR);
}
if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
mdb_warn("can't walk dbufs");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct abuf_find_data {
dva_t dva;
mdb_ctf_id_t id;
} abuf_find_data_t;
/* ARGSUSED */
static int
abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
{
abuf_find_data_t *data = arg;
dva_t dva;
if (GETMEMBID(addr, &data->id, b_dva, dva)) {
return (WALK_ERR);
}
if (dva.dva_word[0] == data->dva.dva_word[0] &&
dva.dva_word[1] == data->dva.dva_word[1]) {
mdb_printf("%#lr\n", addr);
}
return (WALK_NEXT);
}
/* ARGSUSED */
static int
abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
abuf_find_data_t data;
GElf_Sym sym;
int i;
const char *syms[] = {
"ARC_mru",
"ARC_mru_ghost",
"ARC_mfu",
"ARC_mfu_ghost",
};
if (argc != 2)
return (DCMD_USAGE);
for (i = 0; i < 2; i ++) {
switch (argv[i].a_type) {
case MDB_TYPE_STRING:
data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
break;
case MDB_TYPE_IMMEDIATE:
data.dva.dva_word[i] = argv[i].a_un.a_val;
break;
default:
return (DCMD_USAGE);
}
}
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
mdb_warn("couldn't find struct arc_buf_hdr");
return (DCMD_ERR);
}
for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
mdb_warn("can't find symbol %s", syms[i]);
return (DCMD_ERR);
}
if (mdb_pwalk("list", abuf_find_cb, &data, sym.st_value) != 0) {
mdb_warn("can't walk %s", syms[i]);
return (DCMD_ERR);
}
}
return (DCMD_OK);
}
typedef struct dbgmsg_arg {
boolean_t da_verbose;
boolean_t da_address;
} dbgmsg_arg_t;
/* ARGSUSED */
static int
dbgmsg_cb(uintptr_t addr, const void *unknown, void *arg)
{
static mdb_ctf_id_t id;
static boolean_t gotid;
static ulong_t off;
dbgmsg_arg_t *da = arg;
time_t timestamp;
char buf[1024];
if (!gotid) {
if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
-1) {
mdb_warn("couldn't find struct zfs_dbgmsg");
return (WALK_ERR);
}
gotid = TRUE;
if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
mdb_warn("couldn't find zdm_msg");
return (WALK_ERR);
}
off /= 8;
}
if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
return (WALK_ERR);
}
if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
mdb_warn("failed to read zdm_msg at %p\n", addr + off);
return (DCMD_ERR);
}
if (da->da_address)
mdb_printf("%p ", addr);
if (da->da_verbose)
mdb_printf("%Y ", timestamp);
mdb_printf("%s\n", buf);
if (da->da_verbose)
(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
return (WALK_NEXT);
}
/* ARGSUSED */
static int
dbgmsg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
GElf_Sym sym;
dbgmsg_arg_t da = { 0 };
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, B_TRUE, &da.da_verbose,
'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
NULL) != argc)
return (DCMD_USAGE);
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
mdb_warn("can't find zfs_dbgmsgs");
return (DCMD_ERR);
}
if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
mdb_warn("can't walk zfs_dbgmsgs");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kstat_named_t *stats;
GElf_Sym sym;
int nstats, i;
uint_t opt_a = FALSE;
uint_t opt_b = FALSE;
uint_t shift = 0;
const char *suffix;
static const char *bytestats[] = {
"p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
"arc_meta_used", "arc_meta_limit", "arc_meta_max",
"arc_meta_min", "hdr_size", "data_size", "metadata_size",
"other_size", "anon_size", "anon_evictable_data",
"anon_evictable_metadata", "mru_size", "mru_evictable_data",
"mru_evictable_metadata", "mru_ghost_size",
"mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
"mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
"mfu_ghost_size", "mfu_ghost_evictable_data",
"mfu_ghost_evictable_metadata", "evict_l2_cached",
"evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
"l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
"compressed_size", "uncompressed_size", "overhead_size",
NULL
};
static const char *extras[] = {
"arc_no_grow", "arc_tempreserve",
NULL
};
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
mdb_warn("failed to find 'arc_stats'");
return (DCMD_ERR);
}
stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
return (DCMD_ERR);
}
nstats = sym.st_size / sizeof (kstat_named_t);
/* NB: -a / opt_a are ignored for backwards compatability */
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &opt_a,
'b', MDB_OPT_SETBITS, TRUE, &opt_b,
'k', MDB_OPT_SETBITS, 10, &shift,
'm', MDB_OPT_SETBITS, 20, &shift,
'g', MDB_OPT_SETBITS, 30, &shift,
NULL) != argc)
return (DCMD_USAGE);
if (!opt_b && !shift)
shift = 20;
switch (shift) {
case 0:
suffix = "B";
break;
case 10:
suffix = "KB";
break;
case 20:
suffix = "MB";
break;
case 30:
suffix = "GB";
break;
default:
suffix = "XX";
}
for (i = 0; i < nstats; i++) {
int j;
boolean_t bytes = B_FALSE;
for (j = 0; bytestats[j]; j++) {
if (strcmp(stats[i].name, bytestats[j]) == 0) {
bytes = B_TRUE;
break;
}
}
if (bytes) {
mdb_printf("%-25s = %9llu %s\n", stats[i].name,
stats[i].value.ui64 >> shift, suffix);
} else {
mdb_printf("%-25s = %9llu\n", stats[i].name,
stats[i].value.ui64);
}
}
for (i = 0; extras[i]; i++) {
uint64_t buf;
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
mdb_warn("failed to find '%s'", extras[i]);
return (DCMD_ERR);
}
if (sym.st_size != sizeof (uint64_t) &&
sym.st_size != sizeof (uint32_t)) {
mdb_warn("expected scalar for variable '%s'\n",
extras[i]);
return (DCMD_ERR);
}
if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
mdb_warn("couldn't read '%s'", extras[i]);
return (DCMD_ERR);
}
mdb_printf("%-25s = ", extras[i]);
/* NB: all the 64-bit extras happen to be byte counts */
if (sym.st_size == sizeof (uint64_t))
mdb_printf("%9llu %s\n", buf >> shift, suffix);
if (sym.st_size == sizeof (uint32_t))
mdb_printf("%9d\n", *((uint32_t *)&buf));
}
return (DCMD_OK);
}
typedef struct mdb_spa_print {
pool_state_t spa_state;
char spa_name[ZFS_MAX_DATASET_NAME_LEN];
uintptr_t spa_normal_class;
} mdb_spa_print_t;
const char histo_stars[] = "****************************************";
const int histo_width = sizeof (histo_stars) - 1;
static void
dump_histogram(const uint64_t *histo, int size, int offset)
{
int i;
int minidx = size - 1;
int maxidx = 0;
uint64_t max = 0;
for (i = 0; i < size; i++) {
if (histo[i] > max)
max = histo[i];
if (histo[i] > 0 && i > maxidx)
maxidx = i;
if (histo[i] > 0 && i < minidx)
minidx = i;
}
if (max < histo_width)
max = histo_width;
for (i = minidx; i <= maxidx; i++) {
mdb_printf("%3u: %6llu %s\n",
i + offset, (u_longlong_t)histo[i],
&histo_stars[(max - histo[i]) * histo_width / max]);
}
}
typedef struct mdb_metaslab_class {
uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
} mdb_metaslab_class_t;
/*
* spa_class_histogram(uintptr_t class_addr)
*
* Prints free space histogram for a device class
*
* Returns DCMD_OK, or DCMD_ERR.
*/
static int
spa_class_histogram(uintptr_t class_addr)
{
mdb_metaslab_class_t mc;
if (mdb_ctf_vread(&mc, "metaslab_class_t",
"mdb_metaslab_class_t", class_addr, 0) == -1)
return (DCMD_ERR);
mdb_inc_indent(4);
dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
mdb_dec_indent(4);
return (DCMD_OK);
}
/*
* ::spa
*
* -c Print configuration information as well
* -v Print vdev state
* -e Print vdev error stats
* -m Print vdev metaslab info
* -M print vdev metaslab group info
* -h Print histogram info (must be combined with -m or -M)
*
* Print a summarized spa_t. When given no arguments, prints out a table of all
* active pools on the system.
*/
/* ARGSUSED */
static int
spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
"SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
const char *state;
int spa_flags = 0;
if (mdb_getopts(argc, argv,
'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
mdb_warn("can't walk spa");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (flags & DCMD_PIPE_OUT) {
mdb_printf("%#lr\n", addr);
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
mdb_spa_print_t spa;
if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
return (DCMD_ERR);
if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
state = "UNKNOWN";
else
state = statetab[spa.spa_state];
mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
if (spa_flags & SPA_FLAG_HISTOGRAMS)
spa_class_histogram(spa.spa_normal_class);
if (spa_flags & SPA_FLAG_CONFIG) {
mdb_printf("\n");
mdb_inc_indent(4);
if (mdb_call_dcmd("spa_config", addr, flags, 0,
NULL) != DCMD_OK)
return (DCMD_ERR);
mdb_dec_indent(4);
}
if (spa_flags & SPA_FLAG_ALL_VDEV) {
mdb_arg_t v;
char opts[100] = "-";
int args =
(spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
if (spa_flags & SPA_FLAG_ERRORS)
strcat(opts, "e");
if (spa_flags & SPA_FLAG_METASLABS)
strcat(opts, "m");
if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
strcat(opts, "M");
if (spa_flags & SPA_FLAG_HISTOGRAMS)
strcat(opts, "h");
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = opts;
mdb_printf("\n");
mdb_inc_indent(4);
if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
&v) != DCMD_OK)
return (DCMD_ERR);
mdb_dec_indent(4);
}
return (DCMD_OK);
}
typedef struct mdb_spa_config_spa {
uintptr_t spa_config;
} mdb_spa_config_spa_t;
/*
* ::spa_config
*
* Given a spa_t, print the configuration information stored in spa_config.
* Since it's just an nvlist, format it as an indented list of name=value pairs.
* We simply read the value of spa_config and pass off to ::nvlist.
*/
/* ARGSUSED */
static int
spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_spa_config_spa_t spa;
if (argc != 0 || !(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
addr, 0) == -1)
return (DCMD_ERR);
if (spa.spa_config == 0) {
mdb_printf("(none)\n");
return (DCMD_OK);
}
return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
0, NULL));
}
typedef struct mdb_range_tree {
uint64_t rt_space;
} mdb_range_tree_t;
typedef struct mdb_metaslab_group {
uint64_t mg_fragmentation;
uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
uintptr_t mg_vd;
} mdb_metaslab_group_t;
typedef struct mdb_metaslab {
uint64_t ms_id;
uint64_t ms_start;
uint64_t ms_size;
int64_t ms_deferspace;
uint64_t ms_fragmentation;
uint64_t ms_weight;
uintptr_t ms_alloctree[TXG_SIZE];
uintptr_t ms_freetree[TXG_SIZE];
uintptr_t ms_tree;
uintptr_t ms_sm;
} mdb_metaslab_t;
typedef struct mdb_space_map_phys_t {
uint64_t smp_alloc;
uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
} mdb_space_map_phys_t;
typedef struct mdb_space_map {
uint64_t sm_size;
uint8_t sm_shift;
uint64_t sm_alloc;
uintptr_t sm_phys;
} mdb_space_map_t;
typedef struct mdb_vdev {
uintptr_t vdev_path;
uintptr_t vdev_ms;
uintptr_t vdev_ops;
uint64_t vdev_ms_count;
uint64_t vdev_id;
vdev_stat_t vdev_stat;
} mdb_vdev_t;
typedef struct mdb_vdev_ops {
char vdev_op_type[16];
} mdb_vdev_ops_t;
static int
metaslab_stats(uintptr_t addr, int spa_flags)
{
mdb_vdev_t vdev;
uintptr_t *vdev_ms;
if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
(uintptr_t)addr, 0) == -1) {
mdb_warn("failed to read vdev at %p\n", addr);
return (DCMD_ERR);
}
mdb_inc_indent(4);
mdb_printf("%<u>%-?s %6s %20s %10s %9s%</u>\n", "ADDR", "ID",
"OFFSET", "FREE", "FRAGMENTATION");
vdev_ms = mdb_alloc(vdev.vdev_ms_count * sizeof (void *),
UM_SLEEP | UM_GC);
if (mdb_vread(vdev_ms, vdev.vdev_ms_count * sizeof (void *),
(uintptr_t)vdev.vdev_ms) == -1) {
mdb_warn("failed to read vdev_ms at %p\n", vdev.vdev_ms);
return (DCMD_ERR);
}
for (int m = 0; m < vdev.vdev_ms_count; m++) {
mdb_metaslab_t ms;
mdb_space_map_t sm = { 0 };
char free[NICENUM_BUFLEN];
if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
(uintptr_t)vdev_ms[m], 0) == -1)
return (DCMD_ERR);
if (ms.ms_sm != NULL &&
mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
ms.ms_sm, 0) == -1)
return (DCMD_ERR);
mdb_nicenum(ms.ms_size - sm.sm_alloc, free);
mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
ms.ms_start, free);
if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
mdb_printf("%9s\n", "-");
else
mdb_printf("%9llu%%\n", ms.ms_fragmentation);
if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != NULL) {
mdb_space_map_phys_t smp;
if (sm.sm_phys == NULL)
continue;
(void) mdb_ctf_vread(&smp, "space_map_phys_t",
"mdb_space_map_phys_t", sm.sm_phys, 0);
dump_histogram(smp.smp_histogram,
SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
}
}
mdb_dec_indent(4);
return (DCMD_OK);
}
static int
metaslab_group_stats(uintptr_t addr, int spa_flags)
{
mdb_metaslab_group_t mg;
if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
(uintptr_t)addr, 0) == -1) {
mdb_warn("failed to read vdev_mg at %p\n", addr);
return (DCMD_ERR);
}
mdb_inc_indent(4);
mdb_printf("%<u>%-?s %15s%</u>\n", "ADDR", "FRAGMENTATION");
if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
mdb_printf("%0?p %15s\n", addr, "-");
else
mdb_printf("%0?p %15llu%%\n", addr, mg.mg_fragmentation);
if (spa_flags & SPA_FLAG_HISTOGRAMS)
dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
mdb_dec_indent(4);
return (DCMD_OK);
}
/*
* ::vdev
*
* Print out a summarized vdev_t, in the following form:
*
* ADDR STATE AUX DESC
* fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0
*
* If '-r' is specified, recursively visit all children.
*
* With '-e', the statistics associated with the vdev are printed as well.
*/
static int
do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
int spa_flags)
{
vdev_t vdev;
char desc[MAXNAMELEN];
int c, children;
uintptr_t *child;
const char *state, *aux;
if (mdb_vread(&vdev, sizeof (vdev), (uintptr_t)addr) == -1) {
mdb_warn("failed to read vdev_t at %p\n", (uintptr_t)addr);
return (DCMD_ERR);
}
if (flags & DCMD_PIPE_OUT) {
mdb_printf("%#lr\n", addr);
} else {
if (vdev.vdev_path != NULL) {
if (mdb_readstr(desc, sizeof (desc),
(uintptr_t)vdev.vdev_path) == -1) {
mdb_warn("failed to read vdev_path at %p\n",
vdev.vdev_path);
return (DCMD_ERR);
}
} else if (vdev.vdev_ops != NULL) {
vdev_ops_t ops;
if (mdb_vread(&ops, sizeof (ops),
(uintptr_t)vdev.vdev_ops) == -1) {
mdb_warn("failed to read vdev_ops at %p\n",
vdev.vdev_ops);
return (DCMD_ERR);
}
(void) strcpy(desc, ops.vdev_op_type);
} else {
(void) strcpy(desc, "<unknown>");
}
if (depth == 0 && DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
"ADDR", "STATE", "AUX",
sizeof (uintptr_t) == 4 ? 43 : 35,
"DESCRIPTION");
mdb_printf("%0?p ", addr);
switch (vdev.vdev_state) {
case VDEV_STATE_CLOSED:
state = "CLOSED";
break;
case VDEV_STATE_OFFLINE:
state = "OFFLINE";
break;
case VDEV_STATE_CANT_OPEN:
state = "CANT_OPEN";
break;
case VDEV_STATE_DEGRADED:
state = "DEGRADED";
break;
case VDEV_STATE_HEALTHY:
state = "HEALTHY";
break;
case VDEV_STATE_REMOVED:
state = "REMOVED";
break;
case VDEV_STATE_FAULTED:
state = "FAULTED";
break;
default:
state = "UNKNOWN";
break;
}
switch (vdev.vdev_stat.vs_aux) {
case VDEV_AUX_NONE:
aux = "-";
break;
case VDEV_AUX_OPEN_FAILED:
aux = "OPEN_FAILED";
break;
case VDEV_AUX_CORRUPT_DATA:
aux = "CORRUPT_DATA";
break;
case VDEV_AUX_NO_REPLICAS:
aux = "NO_REPLICAS";
break;
case VDEV_AUX_BAD_GUID_SUM:
aux = "BAD_GUID_SUM";
break;
case VDEV_AUX_TOO_SMALL:
aux = "TOO_SMALL";
break;
case VDEV_AUX_BAD_LABEL:
aux = "BAD_LABEL";
break;
case VDEV_AUX_VERSION_NEWER:
aux = "VERS_NEWER";
break;
case VDEV_AUX_VERSION_OLDER:
aux = "VERS_OLDER";
break;
case VDEV_AUX_UNSUP_FEAT:
aux = "UNSUP_FEAT";
break;
case VDEV_AUX_SPARED:
aux = "SPARED";
break;
case VDEV_AUX_ERR_EXCEEDED:
aux = "ERR_EXCEEDED";
break;
case VDEV_AUX_IO_FAILURE:
aux = "IO_FAILURE";
break;
case VDEV_AUX_BAD_LOG:
aux = "BAD_LOG";
break;
case VDEV_AUX_EXTERNAL:
aux = "EXTERNAL";
break;
case VDEV_AUX_SPLIT_POOL:
aux = "SPLIT_POOL";
break;
default:
aux = "UNKNOWN";
break;
}
mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
if (spa_flags & SPA_FLAG_ERRORS) {
vdev_stat_t *vs = &vdev.vdev_stat;
int i;
mdb_inc_indent(4);
mdb_printf("\n");
mdb_printf("%<u> %12s %12s %12s %12s "
"%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
"IOCTL");
mdb_printf("OPS ");
for (i = 1; i < ZIO_TYPES; i++)
mdb_printf("%11#llx%s", vs->vs_ops[i],
i == ZIO_TYPES - 1 ? "" : " ");
mdb_printf("\n");
mdb_printf("BYTES ");
for (i = 1; i < ZIO_TYPES; i++)
mdb_printf("%11#llx%s", vs->vs_bytes[i],
i == ZIO_TYPES - 1 ? "" : " ");
mdb_printf("\n");
mdb_printf("EREAD %10#llx\n", vs->vs_read_errors);
mdb_printf("EWRITE %10#llx\n", vs->vs_write_errors);
mdb_printf("ECKSUM %10#llx\n",
vs->vs_checksum_errors);
mdb_dec_indent(4);
mdb_printf("\n");
}
if (spa_flags & SPA_FLAG_METASLAB_GROUPS &&
vdev.vdev_mg != NULL) {
metaslab_group_stats((uintptr_t)vdev.vdev_mg,
spa_flags);
}
if (spa_flags & SPA_FLAG_METASLABS && vdev.vdev_ms != NULL) {
metaslab_stats((uintptr_t)addr, spa_flags);
}
}
children = vdev.vdev_children;
if (children == 0 || !recursive)
return (DCMD_OK);
child = mdb_alloc(children * sizeof (void *), UM_SLEEP | UM_GC);
if (mdb_vread(child, children * sizeof (void *),
(uintptr_t)vdev.vdev_child) == -1) {
mdb_warn("failed to read vdev children at %p", vdev.vdev_child);
return (DCMD_ERR);
}
for (c = 0; c < children; c++) {
if (do_print_vdev(child[c], flags, depth + 2, recursive,
spa_flags)) {
return (DCMD_ERR);
}
}
return (DCMD_OK);
}
static int
vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint64_t depth = 0;
boolean_t recursive = B_FALSE;
int spa_flags = 0;
if (mdb_getopts(argc, argv,
'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
'r', MDB_OPT_SETBITS, TRUE, &recursive,
'd', MDB_OPT_UINT64, &depth, NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("no vdev_t address given\n");
return (DCMD_ERR);
}
return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
}
typedef struct mdb_metaslab_alloc_trace {
uintptr_t mat_mg;
uintptr_t mat_msp;
uint64_t mat_size;
uint64_t mat_weight;
uint64_t mat_offset;
uint32_t mat_dva_id;
} mdb_metaslab_alloc_trace_t;
static void
metaslab_print_weight(uint64_t weight)
{
char buf[100];
if (WEIGHT_IS_SPACEBASED(weight)) {
mdb_nicenum(
weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
buf);
} else {
char size[NICENUM_BUFLEN];
mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
(void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
WEIGHT_GET_COUNT(weight), size);
}
mdb_printf("%11s ", buf);
}
/* ARGSUSED */
static int
metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint64_t weight = 0;
char active;
if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
mdb_warn("failed to read weight at %p\n", addr);
return (DCMD_ERR);
}
} else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
weight = (argv[0].a_type == MDB_TYPE_IMMEDIATE) ?
argv[0].a_un.a_val : mdb_strtoull(argv[0].a_un.a_str);
} else {
return (DCMD_USAGE);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-6s %9s %9s%</u>\n",
"ACTIVE", "ALGORITHM", "WEIGHT");
}
if (weight & METASLAB_WEIGHT_PRIMARY)
active = 'P';
else if (weight & METASLAB_WEIGHT_SECONDARY)
active = 'S';
else
active = '-';
mdb_printf("%6c %8s ", active,
WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
metaslab_print_weight(weight);
mdb_printf("\n");
return (DCMD_OK);
}
/* ARGSUSED */
static int
metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_metaslab_alloc_trace_t mat;
mdb_metaslab_group_t mg = { 0 };
char result_type[100];
if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
"mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
return (DCMD_ERR);
}
if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%6s %6s %8s %11s %18s %18s%</u>\n",
"MSID", "DVA", "ASIZE", "WEIGHT", "RESULT", "VDEV");
}
if (mat.mat_msp != NULL) {
mdb_metaslab_t ms;
if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
mat.mat_msp, 0) == -1) {
return (DCMD_ERR);
}
mdb_printf("%6llu ", ms.ms_id);
} else {
mdb_printf("%6s ", "-");
}
mdb_printf("%6d %8llx ", mat.mat_dva_id, mat.mat_size);
metaslab_print_weight(mat.mat_weight);
if ((int64_t)mat.mat_offset < 0) {
if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
"TRACE_", sizeof (result_type), result_type) == -1) {
mdb_warn("Could not find enum for trace_alloc_type");
return (DCMD_ERR);
}
mdb_printf("%18s ", result_type);
} else {
mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
}
if (mat.mat_mg != NULL &&
mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
mat.mat_mg, 0) == -1) {
return (DCMD_ERR);
}
if (mg.mg_vd != NULL) {
mdb_vdev_t vdev;
char desc[MAXNAMELEN];
if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
mg.mg_vd, 0) == -1) {
return (DCMD_ERR);
}
if (vdev.vdev_path != NULL) {
char path[MAXNAMELEN];
if (mdb_readstr(path, sizeof (path),
vdev.vdev_path) == -1) {
mdb_warn("failed to read vdev_path at %p\n",
vdev.vdev_path);
return (DCMD_ERR);
}
char *slash;
if ((slash = strrchr(path, '/')) != NULL) {
strcpy(desc, slash + 1);
} else {
strcpy(desc, path);
}
} else if (vdev.vdev_ops != NULL) {
mdb_vdev_ops_t ops;
if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
vdev.vdev_ops, 0) == -1) {
mdb_warn("failed to read vdev_ops at %p\n",
vdev.vdev_ops);
return (DCMD_ERR);
}
(void) mdb_snprintf(desc, sizeof (desc),
"%s-%llu", ops.vdev_op_type, vdev.vdev_id);
} else {
(void) strcpy(desc, "<unknown>");
}
mdb_printf("%18s\n", desc);
}
return (DCMD_OK);
}
typedef struct metaslab_walk_data {
uint64_t mw_numvdevs;
uintptr_t *mw_vdevs;
int mw_curvdev;
uint64_t mw_nummss;
uintptr_t *mw_mss;
int mw_curms;
} metaslab_walk_data_t;
static int
metaslab_walk_step(mdb_walk_state_t *wsp)
{
metaslab_walk_data_t *mw = wsp->walk_data;
metaslab_t ms;
uintptr_t msp;
if (mw->mw_curvdev >= mw->mw_numvdevs)
return (WALK_DONE);
if (mw->mw_mss == NULL) {
uintptr_t mssp;
uintptr_t vdevp;
ASSERT(mw->mw_curms == 0);
ASSERT(mw->mw_nummss == 0);
vdevp = mw->mw_vdevs[mw->mw_curvdev];
if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
return (WALK_ERR);
}
mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
UM_SLEEP | UM_GC);
if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
mssp) == -1) {
mdb_warn("failed to read vdev_ms at %p", mssp);
return (WALK_ERR);
}
}
if (mw->mw_curms >= mw->mw_nummss) {
mw->mw_mss = NULL;
mw->mw_curms = 0;
mw->mw_nummss = 0;
mw->mw_curvdev++;
return (WALK_NEXT);
}
msp = mw->mw_mss[mw->mw_curms];
if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
mdb_warn("failed to read metaslab_t at %p", msp);
return (WALK_ERR);
}
mw->mw_curms++;
return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
}
static int
metaslab_walk_init(mdb_walk_state_t *wsp)
{
metaslab_walk_data_t *mw;
uintptr_t root_vdevp;
uintptr_t childp;
if (wsp->walk_addr == NULL) {
mdb_warn("must supply address of spa_t\n");
return (WALK_ERR);
}
mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
return (DCMD_ERR);
}
mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
UM_SLEEP | UM_GC);
if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
childp) == -1) {
mdb_warn("failed to read root vdev children at %p", childp);
return (DCMD_ERR);
}
wsp->walk_data = mw;
return (WALK_NEXT);
}
typedef struct mdb_spa {
uintptr_t spa_dsl_pool;
uintptr_t spa_root_vdev;
} mdb_spa_t;
typedef struct mdb_dsl_pool {
uintptr_t dp_root_dir;
} mdb_dsl_pool_t;
typedef struct mdb_dsl_dir {
uintptr_t dd_dbuf;
int64_t dd_space_towrite[TXG_SIZE];
} mdb_dsl_dir_t;
typedef struct mdb_dsl_dir_phys {
uint64_t dd_used_bytes;
uint64_t dd_compressed_bytes;
uint64_t dd_uncompressed_bytes;
} mdb_dsl_dir_phys_t;
typedef struct space_data {
uint64_t ms_alloctree[TXG_SIZE];
uint64_t ms_freetree[TXG_SIZE];
uint64_t ms_tree;
int64_t ms_deferspace;
uint64_t avail;
uint64_t nowavail;
} space_data_t;
/* ARGSUSED */
static int
space_cb(uintptr_t addr, const void *unknown, void *arg)
{
space_data_t *sd = arg;
mdb_metaslab_t ms;
mdb_range_tree_t rt;
mdb_space_map_t sm = { 0 };
mdb_space_map_phys_t smp = { 0 };
int i;
if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
addr, 0) == -1)
return (WALK_ERR);
for (i = 0; i < TXG_SIZE; i++) {
if (mdb_ctf_vread(&rt, "range_tree_t",
"mdb_range_tree_t", ms.ms_alloctree[i], 0) == -1)
return (WALK_ERR);
sd->ms_alloctree[i] += rt.rt_space;
if (mdb_ctf_vread(&rt, "range_tree_t",
"mdb_range_tree_t", ms.ms_freetree[i], 0) == -1)
return (WALK_ERR);
sd->ms_freetree[i] += rt.rt_space;
}
if (mdb_ctf_vread(&rt, "range_tree_t",
"mdb_range_tree_t", ms.ms_tree, 0) == -1)
return (WALK_ERR);
if (ms.ms_sm != NULL &&
mdb_ctf_vread(&sm, "space_map_t",
"mdb_space_map_t", ms.ms_sm, 0) == -1)
return (WALK_ERR);
if (sm.sm_phys != NULL) {
(void) mdb_ctf_vread(&smp, "space_map_phys_t",
"mdb_space_map_phys_t", sm.sm_phys, 0);
}
sd->ms_deferspace += ms.ms_deferspace;
sd->ms_tree += rt.rt_space;
sd->avail += sm.sm_size - sm.sm_alloc;
sd->nowavail += sm.sm_size - smp.smp_alloc;
return (WALK_NEXT);
}
/*
* ::spa_space [-b]
*
* Given a spa_t, print out it's on-disk space usage and in-core
* estimates of future usage. If -b is given, print space in bytes.
* Otherwise print in megabytes.
*/
/* ARGSUSED */
static int
spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_spa_t spa;
mdb_dsl_pool_t dp;
mdb_dsl_dir_t dd;
mdb_dmu_buf_impl_t db;
mdb_dsl_dir_phys_t dsp;
space_data_t sd;
int shift = 20;
char *suffix = "M";
int bytes = B_FALSE;
if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (bytes) {
shift = 0;
suffix = "";
}
if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
addr, 0) == -1 ||
mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
spa.spa_dsl_pool, 0) == -1 ||
mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
dp.dp_root_dir, 0) == -1 ||
mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
dd.dd_dbuf, 0) == -1 ||
mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
"mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
return (DCMD_ERR);
}
mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
dd.dd_space_towrite[0] >> shift, suffix,
dd.dd_space_towrite[1] >> shift, suffix,
dd.dd_space_towrite[2] >> shift, suffix,
dd.dd_space_towrite[3] >> shift, suffix);
mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
dsp.dd_used_bytes >> shift, suffix);
mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
dsp.dd_compressed_bytes >> shift, suffix);
mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
dsp.dd_uncompressed_bytes >> shift, suffix);
bzero(&sd, sizeof (sd));
if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
mdb_warn("can't walk metaslabs");
return (DCMD_ERR);
}
mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
sd.ms_alloctree[0] >> shift, suffix,
sd.ms_alloctree[1] >> shift, suffix,
sd.ms_alloctree[2] >> shift, suffix,
sd.ms_alloctree[3] >> shift, suffix);
mdb_printf("ms_freemap = %llu%s %llu%s %llu%s %llu%s\n",
sd.ms_freetree[0] >> shift, suffix,
sd.ms_freetree[1] >> shift, suffix,
sd.ms_freetree[2] >> shift, suffix,
sd.ms_freetree[3] >> shift, suffix);
mdb_printf("ms_tree = %llu%s\n", sd.ms_tree >> shift, suffix);
mdb_printf("ms_deferspace = %llu%s\n",
sd.ms_deferspace >> shift, suffix);
mdb_printf("last synced avail = %llu%s\n", sd.avail >> shift, suffix);
mdb_printf("current syncing avail = %llu%s\n",
sd.nowavail >> shift, suffix);
return (DCMD_OK);
}
typedef struct mdb_spa_aux_vdev {
int sav_count;
uintptr_t sav_vdevs;
} mdb_spa_aux_vdev_t;
typedef struct mdb_spa_vdevs {
uintptr_t spa_root_vdev;
mdb_spa_aux_vdev_t spa_l2cache;
mdb_spa_aux_vdev_t spa_spares;
} mdb_spa_vdevs_t;
static int
spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
const char *name)
{
uintptr_t *aux;
size_t len;
int ret, i;
/*
* Iterate over aux vdevs and print those out as well. This is a
* little annoying because we don't have a root vdev to pass to ::vdev.
* Instead, we print a single line and then call it for each child
* vdev.
*/
if (sav->sav_count != 0) {
v[1].a_type = MDB_TYPE_STRING;
v[1].a_un.a_str = "-d";
v[2].a_type = MDB_TYPE_IMMEDIATE;
v[2].a_un.a_val = 2;
len = sav->sav_count * sizeof (uintptr_t);
aux = mdb_alloc(len, UM_SLEEP);
if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
mdb_free(aux, len);
mdb_warn("failed to read l2cache vdevs at %p",
sav->sav_vdevs);
return (DCMD_ERR);
}
mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
for (i = 0; i < sav->sav_count; i++) {
ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
if (ret != DCMD_OK) {
mdb_free(aux, len);
return (ret);
}
}
mdb_free(aux, len);
}
return (0);
}
/*
* ::spa_vdevs
*
* -e Include error stats
* -m Include metaslab information
* -M Include metaslab group information
* -h Include histogram information (requires -m or -M)
*
* Print out a summarized list of vdevs for the given spa_t.
* This is accomplished by invoking "::vdev -re" on the root vdev, as well as
* iterating over the cache devices.
*/
/* ARGSUSED */
static int
spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_arg_t v[3];
int ret;
char opts[100] = "-r";
int spa_flags = 0;
if (mdb_getopts(argc, argv,
'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
mdb_spa_vdevs_t spa;
if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
return (DCMD_ERR);
/*
* Unitialized spa_t structures can have a NULL root vdev.
*/
if (spa.spa_root_vdev == NULL) {
mdb_printf("no associated vdevs\n");
return (DCMD_OK);
}
if (spa_flags & SPA_FLAG_ERRORS)
strcat(opts, "e");
if (spa_flags & SPA_FLAG_METASLABS)
strcat(opts, "m");
if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
strcat(opts, "M");
if (spa_flags & SPA_FLAG_HISTOGRAMS)
strcat(opts, "h");
v[0].a_type = MDB_TYPE_STRING;
v[0].a_un.a_str = opts;
ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
flags, 1, v);
if (ret != DCMD_OK)
return (ret);
if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
return (DCMD_ERR);
return (DCMD_OK);
}
/*
* ::zio
*
* Print a summary of zio_t and all its children. This is intended to display a
* zio tree, and hence we only pick the most important pieces of information for
* the main summary. More detailed information can always be found by doing a
* '::print zio' on the underlying zio_t. The columns we display are:
*
* ADDRESS TYPE STAGE WAITER TIME_ELAPSED
*
* The 'address' column is indented by one space for each depth level as we
* descend down the tree.
*/
#define ZIO_MAXINDENT 7
#define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
#define ZIO_WALK_SELF 0
#define ZIO_WALK_CHILD 1
#define ZIO_WALK_PARENT 2
typedef struct zio_print_args {
int zpa_current_depth;
int zpa_min_depth;
int zpa_max_depth;
int zpa_type;
uint_t zpa_flags;
} zio_print_args_t;
typedef struct mdb_zio {
enum zio_type io_type;
enum zio_stage io_stage;
uintptr_t io_waiter;
uintptr_t io_spa;
struct {
struct {
uintptr_t list_next;
} list_head;
} io_parent_list;
int io_error;
} mdb_zio_t;
typedef struct mdb_zio_timestamp {
hrtime_t io_timestamp;
} mdb_zio_timestamp_t;
static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
static int
zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
{
mdb_ctf_id_t type_enum, stage_enum;
int indent = zpa->zpa_current_depth;
const char *type, *stage;
uintptr_t laddr;
mdb_zio_t zio;
mdb_zio_timestamp_t zio_timestamp = { 0 };
if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
return (WALK_ERR);
(void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
"mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
if (indent > ZIO_MAXINDENT)
indent = ZIO_MAXINDENT;
if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
mdb_warn("failed to lookup zio enums");
return (WALK_ERR);
}
if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
type += sizeof ("ZIO_TYPE_") - 1;
else
type = "?";
if (zio.io_error == 0) {
stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
if (stage != NULL)
stage += sizeof ("ZIO_STAGE_") - 1;
else
stage = "?";
} else {
stage = "FAILED";
}
if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
if (zpa->zpa_flags & DCMD_PIPE_OUT) {
mdb_printf("%?p\n", addr);
} else {
mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
ZIO_MAXWIDTH - indent, addr, type, stage);
if (zio.io_waiter != 0)
mdb_printf("%-16lx ", zio.io_waiter);
else
mdb_printf("%-16s ", "-");
#ifdef _KERNEL
if (zio_timestamp.io_timestamp != 0) {
mdb_printf("%llums", (mdb_gethrtime() -
zio_timestamp.io_timestamp) /
1000000);
} else {
mdb_printf("%-12s ", "-");
}
#else
mdb_printf("%-12s ", "-");
#endif
mdb_printf("\n");
}
}
if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
return (WALK_NEXT);
if (zpa->zpa_type == ZIO_WALK_PARENT)
laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
"io_parent_list");
else
laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
"io_child_list");
zpa->zpa_current_depth++;
if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
mdb_warn("failed to walk zio_t children at %p\n", laddr);
return (WALK_ERR);
}
zpa->zpa_current_depth--;
return (WALK_NEXT);
}
/* ARGSUSED */
static int
zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
{
zio_link_t zl;
uintptr_t ziop;
zio_print_args_t *zpa = arg;
if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
mdb_warn("failed to read zio_link_t at %p", addr);
return (WALK_ERR);
}
if (zpa->zpa_type == ZIO_WALK_PARENT)
ziop = (uintptr_t)zl.zl_parent;
else
ziop = (uintptr_t)zl.zl_child;
return (zio_print_cb(ziop, zpa));
}
/* ARGSUSED */
static int
zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
zio_print_args_t zpa = { 0 };
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
NULL) != argc)
return (DCMD_USAGE);
zpa.zpa_flags = flags;
if (zpa.zpa_max_depth != 0) {
if (zpa.zpa_type == ZIO_WALK_SELF)
zpa.zpa_type = ZIO_WALK_CHILD;
} else if (zpa.zpa_type != ZIO_WALK_SELF) {
zpa.zpa_min_depth = 1;
zpa.zpa_max_depth = 1;
}
if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
"TIME_ELAPSED");
}
if (zio_print_cb(addr, &zpa) != WALK_NEXT)
return (DCMD_ERR);
return (DCMD_OK);
}
/*
* [addr]::zio_state
*
* Print a summary of all zio_t structures on the system, or for a particular
* pool. This is equivalent to '::walk zio_root | ::zio'.
*/
/*ARGSUSED*/
static int
zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
/*
* MDB will remember the last address of the pipeline, so if we don't
* zero this we'll end up trying to walk zio structures for a
* non-existent spa_t.
*/
if (!(flags & DCMD_ADDRSPEC))
addr = 0;
return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
}
typedef struct mdb_multilist {
uint64_t ml_num_sublists;
uintptr_t ml_sublists;
} mdb_multilist_t;
typedef struct multilist_walk_data {
uint64_t mwd_idx;
mdb_multilist_t mwd_ml;
} multilist_walk_data_t;
/* ARGSUSED */
static int
multilist_print_cb(uintptr_t addr, const void *unknown, void *arg)
{
mdb_printf("%#lr\n", addr);
return (WALK_NEXT);
}
static int
multilist_walk_step(mdb_walk_state_t *wsp)
{
multilist_walk_data_t *mwd = wsp->walk_data;
if (mwd->mwd_idx >= mwd->mwd_ml.ml_num_sublists)
return (WALK_DONE);
wsp->walk_addr = mwd->mwd_ml.ml_sublists +
mdb_ctf_sizeof_by_name("multilist_sublist_t") * mwd->mwd_idx +
mdb_ctf_offsetof_by_name("multilist_sublist_t", "mls_list");
mdb_pwalk("list", multilist_print_cb, (void*)NULL, wsp->walk_addr);
mwd->mwd_idx++;
return (WALK_NEXT);
}
static int
multilist_walk_init(mdb_walk_state_t *wsp)
{
multilist_walk_data_t *mwd;
if (wsp->walk_addr == NULL) {
mdb_warn("must supply address of multilist_t\n");
return (WALK_ERR);
}
mwd = mdb_zalloc(sizeof (multilist_walk_data_t), UM_SLEEP | UM_GC);
if (mdb_ctf_vread(&mwd->mwd_ml, "multilist_t", "mdb_multilist_t",
wsp->walk_addr, 0) == -1) {
return (WALK_ERR);
}
if (mwd->mwd_ml.ml_num_sublists == 0 ||
mwd->mwd_ml.ml_sublists == NULL) {
mdb_warn("invalid or uninitialized multilist at %#lx\n",
wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_data = mwd;
return (WALK_NEXT);
}
typedef struct txg_list_walk_data {
uintptr_t lw_head[TXG_SIZE];
int lw_txgoff;
int lw_maxoff;
size_t lw_offset;
void *lw_obj;
} txg_list_walk_data_t;
static int
txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
{
txg_list_walk_data_t *lwd;
txg_list_t list;
int i;
lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
if (mdb_vread(&list, sizeof (txg_list_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
return (WALK_ERR);
}
for (i = 0; i < TXG_SIZE; i++)
lwd->lw_head[i] = (uintptr_t)list.tl_head[i];
lwd->lw_offset = list.tl_offset;
lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
UM_SLEEP | UM_GC);
lwd->lw_txgoff = txg;
lwd->lw_maxoff = maxoff;
wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
wsp->walk_data = lwd;
return (WALK_NEXT);
}
static int
txg_list_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
}
static int
txg_list0_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 0, 0));
}
static int
txg_list1_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 1, 1));
}
static int
txg_list2_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 2, 2));
}
static int
txg_list3_walk_init(mdb_walk_state_t *wsp)
{
return (txg_list_walk_init_common(wsp, 3, 3));
}
static int
txg_list_walk_step(mdb_walk_state_t *wsp)
{
txg_list_walk_data_t *lwd = wsp->walk_data;
uintptr_t addr;
txg_node_t *node;
int status;
while (wsp->walk_addr == NULL && lwd->lw_txgoff < lwd->lw_maxoff) {
lwd->lw_txgoff++;
wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
}
if (wsp->walk_addr == NULL)
return (WALK_DONE);
addr = wsp->walk_addr - lwd->lw_offset;
if (mdb_vread(lwd->lw_obj,
lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
mdb_warn("failed to read list element at %#lx", addr);
return (WALK_ERR);
}
status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
return (status);
}
/*
* ::walk spa
*
* Walk all named spa_t structures in the namespace. This is nothing more than
* a layered avl walk.
*/
static int
spa_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
if (wsp->walk_addr != NULL) {
mdb_warn("spa walk only supports global walks\n");
return (WALK_ERR);
}
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
mdb_warn("failed to find symbol 'spa_namespace_avl'");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
if (mdb_layered_walk("avl", wsp) == -1) {
mdb_warn("failed to walk 'avl'\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
spa_walk_step(mdb_walk_state_t *wsp)
{
return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
}
/*
* [addr]::walk zio
*
* Walk all active zio_t structures on the system. This is simply a layered
* walk on top of ::walk zio_cache, with the optional ability to limit the
* structures to a particular pool.
*/
static int
zio_walk_init(mdb_walk_state_t *wsp)
{
wsp->walk_data = (void *)wsp->walk_addr;
if (mdb_layered_walk("zio_cache", wsp) == -1) {
mdb_warn("failed to walk 'zio_cache'\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
zio_walk_step(mdb_walk_state_t *wsp)
{
mdb_zio_t zio;
uintptr_t spa = (uintptr_t)wsp->walk_data;
if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
wsp->walk_addr, 0) == -1)
return (WALK_ERR);
if (spa != 0 && spa != zio.io_spa)
return (WALK_NEXT);
return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
}
/*
* [addr]::walk zio_root
*
* Walk only root zio_t structures, optionally for a particular spa_t.
*/
static int
zio_walk_root_step(mdb_walk_state_t *wsp)
{
mdb_zio_t zio;
uintptr_t spa = (uintptr_t)wsp->walk_data;
if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
wsp->walk_addr, 0) == -1)
return (WALK_ERR);
if (spa != 0 && spa != zio.io_spa)
return (WALK_NEXT);
/* If the parent list is not empty, ignore */
if (zio.io_parent_list.list_head.list_next !=
wsp->walk_addr +
mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
mdb_ctf_offsetof_by_name("struct list", "list_head"))
return (WALK_NEXT);
return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
}
/*
* ::zfs_blkstats
*
* -v print verbose per-level information
*
*/
static int
zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
boolean_t verbose = B_FALSE;
zfs_all_blkstats_t stats;
dmu_object_type_t t;
zfs_blkstat_t *tzb;
uint64_t ditto;
dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES + 10];
/* +10 in case it grew */
if (mdb_readvar(&dmu_ot, "dmu_ot") == -1) {
mdb_warn("failed to read 'dmu_ot'");
return (DCMD_ERR);
}
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
mdb_warn("failed to read data at %p;", addr);
mdb_printf("maybe no stats? run \"zpool scrub\" first.");
return (DCMD_ERR);
}
tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
if (tzb->zb_gangs != 0) {
mdb_printf("Ganged blocks: %llu\n",
(longlong_t)tzb->zb_gangs);
}
ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
tzb->zb_ditto_3_of_3_samevdev;
if (ditto != 0) {
mdb_printf("Dittoed blocks on same vdev: %llu\n",
(longlong_t)ditto);
}
mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
"\t avg\t comp\t%%Total\tType\n");
for (t = 0; t <= DMU_OT_TOTAL; t++) {
char csize[NICENUM_BUFLEN], lsize[NICENUM_BUFLEN];
char psize[NICENUM_BUFLEN], asize[NICENUM_BUFLEN];
char avg[NICENUM_BUFLEN];
char comp[NICENUM_BUFLEN], pct[NICENUM_BUFLEN];
char typename[64];
int l;
if (t == DMU_OT_DEFERRED)
strcpy(typename, "deferred free");
else if (t == DMU_OT_OTHER)
strcpy(typename, "other");
else if (t == DMU_OT_TOTAL)
strcpy(typename, "Total");
else if (mdb_readstr(typename, sizeof (typename),
(uintptr_t)dmu_ot[t].ot_name) == -1) {
mdb_warn("failed to read type name");
return (DCMD_ERR);
}
if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
continue;
for (l = -1; l < DN_MAX_LEVELS; l++) {
int level = (l == -1 ? DN_MAX_LEVELS : l);
zfs_blkstat_t *zb = &stats.zab_type[level][t];
if (zb->zb_asize == 0)
continue;
/*
* Don't print each level unless requested.
*/
if (!verbose && level != DN_MAX_LEVELS)
continue;
/*
* If all the space is level 0, don't print the
* level 0 separately.
*/
if (level == 0 && zb->zb_asize ==
stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
continue;
mdb_nicenum(zb->zb_count, csize);
mdb_nicenum(zb->zb_lsize, lsize);
mdb_nicenum(zb->zb_psize, psize);
mdb_nicenum(zb->zb_asize, asize);
mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
(void) snprintfrac(comp, NICENUM_BUFLEN,
zb->zb_lsize, zb->zb_psize, 2);
(void) snprintfrac(pct, NICENUM_BUFLEN,
100 * zb->zb_asize, tzb->zb_asize, 2);
mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
"\t%5s\t%6s\t",
csize, lsize, psize, asize, avg, comp, pct);
if (level == DN_MAX_LEVELS)
mdb_printf("%s\n", typename);
else
mdb_printf(" L%d %s\n",
level, typename);
}
}
return (DCMD_OK);
}
typedef struct mdb_reference {
uintptr_t ref_holder;
uintptr_t ref_removed;
uint64_t ref_number;
} mdb_reference_t;
/* ARGSUSED */
static int
reference_cb(uintptr_t addr, const void *ignored, void *arg)
{
mdb_reference_t ref;
boolean_t holder_is_str = B_FALSE;
char holder_str[128];
boolean_t removed = (boolean_t)arg;
if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
0) == -1)
return (DCMD_ERR);
if (mdb_readstr(holder_str, sizeof (holder_str),
ref.ref_holder) != -1)
holder_is_str = strisprint(holder_str);
if (removed)
mdb_printf("removed ");
mdb_printf("reference ");
if (ref.ref_number != 1)
mdb_printf("with count=%llu ", ref.ref_number);
mdb_printf("with tag %lx", ref.ref_holder);
if (holder_is_str)
mdb_printf(" \"%s\"", holder_str);
mdb_printf(", held at:\n");
(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
if (removed) {
mdb_printf("removed at:\n");
(void) mdb_call_dcmd("whatis", ref.ref_removed,
DCMD_ADDRSPEC, 0, NULL);
}
mdb_printf("\n");
return (WALK_NEXT);
}
typedef struct mdb_refcount {
uint64_t rc_count;
} mdb_refcount_t;
typedef struct mdb_refcount_removed {
uint64_t rc_removed_count;
} mdb_refcount_removed_t;
typedef struct mdb_refcount_tracked {
boolean_t rc_tracked;
} mdb_refcount_tracked_t;
/* ARGSUSED */
static int
refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_refcount_t rc;
mdb_refcount_removed_t rcr;
mdb_refcount_tracked_t rct;
int off;
boolean_t released = B_FALSE;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'r', MDB_OPT_SETBITS, B_TRUE, &released,
NULL) != argc)
return (DCMD_USAGE);
if (mdb_ctf_vread(&rc, "refcount_t", "mdb_refcount_t", addr,
0) == -1)
return (DCMD_ERR);
if (mdb_ctf_vread(&rcr, "refcount_t", "mdb_refcount_removed_t", addr,
MDB_CTF_VREAD_QUIET) == -1) {
mdb_printf("refcount_t at %p has %llu holds (untracked)\n",
addr, (longlong_t)rc.rc_count);
return (DCMD_OK);
}
if (mdb_ctf_vread(&rct, "refcount_t", "mdb_refcount_tracked_t", addr,
MDB_CTF_VREAD_QUIET) == -1) {
/* If this is an old target, it might be tracked. */
rct.rc_tracked = B_TRUE;
}
mdb_printf("refcount_t at %p has %llu current holds, "
"%llu recently released holds\n",
addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
if (rct.rc_tracked && rc.rc_count > 0)
mdb_printf("current holds:\n");
off = mdb_ctf_offsetof_by_name("refcount_t", "rc_list");
if (off == -1)
return (DCMD_ERR);
mdb_pwalk("list", reference_cb, (void*)B_FALSE, addr + off);
if (released && rcr.rc_removed_count > 0) {
mdb_printf("released holds:\n");
off = mdb_ctf_offsetof_by_name("refcount_t", "rc_removed");
if (off == -1)
return (DCMD_ERR);
mdb_pwalk("list", reference_cb, (void*)B_TRUE, addr + off);
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
sa_attr_table_t *table;
sa_os_t sa_os;
char *name;
int i;
if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
mdb_warn("failed to read sa_os at %p", addr);
return (DCMD_ERR);
}
table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
UM_SLEEP | UM_GC);
name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
(uintptr_t)sa_os.sa_attr_table) == -1) {
mdb_warn("failed to read sa_os at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
"ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
for (i = 0; i != sa_os.sa_num_attrs; i++) {
mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
mdb_printf("%5x %8x %8x %8x %-s\n",
(int)table[i].sa_attr, (int)table[i].sa_registered,
(int)table[i].sa_length, table[i].sa_byteswap, name);
}
return (DCMD_OK);
}
static int
sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
{
uintptr_t idx_table;
if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
mdb_printf("can't find offset table in sa_idx_tab\n");
return (-1);
}
*off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
UM_SLEEP | UM_GC);
if (mdb_vread(*off_tab,
attr_count * sizeof (uint32_t), idx_table) == -1) {
mdb_warn("failed to attribute offset table %p", idx_table);
return (-1);
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint32_t *offset_tab;
int attr_count;
uint64_t attr_id;
uintptr_t attr_addr;
uintptr_t bonus_tab, spill_tab;
uintptr_t db_bonus, db_spill;
uintptr_t os, os_sa;
uintptr_t db_data;
if (argc != 1)
return (DCMD_USAGE);
if (argv[0].a_type == MDB_TYPE_STRING)
attr_id = mdb_strtoull(argv[0].a_un.a_str);
else
return (DCMD_USAGE);
if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
GETMEMB(addr, "sa_handle", sa_os, os) ||
GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
mdb_printf("Can't find necessary information in sa_handle "
"in sa_handle\n");
return (DCMD_ERR);
}
if (GETMEMB(os, "objset", os_sa, os_sa)) {
mdb_printf("Can't find os_sa in objset\n");
return (DCMD_ERR);
}
if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
mdb_printf("Can't find sa_num_attrs\n");
return (DCMD_ERR);
}
if (attr_id > attr_count) {
mdb_printf("attribute id number is out of range\n");
return (DCMD_ERR);
}
if (bonus_tab) {
if (sa_get_off_table(bonus_tab, &offset_tab,
attr_count) == -1) {
return (DCMD_ERR);
}
if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
mdb_printf("can't find db_data in bonus dbuf\n");
return (DCMD_ERR);
}
}
if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
spill_tab == NULL) {
mdb_printf("Attribute does not exist\n");
return (DCMD_ERR);
} else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
if (sa_get_off_table(spill_tab, &offset_tab,
attr_count) == -1) {
return (DCMD_ERR);
}
if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
mdb_printf("can't find db_data in spill dbuf\n");
return (DCMD_ERR);
}
if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
mdb_printf("Attribute does not exist\n");
return (DCMD_ERR);
}
}
attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
mdb_printf("%p\n", attr_addr);
return (DCMD_OK);
}
/* ARGSUSED */
static int
zfs_ace_print_common(uintptr_t addr, uint_t flags,
uint64_t id, uint32_t access_mask, uint16_t ace_flags,
uint16_t ace_type, int verbose)
{
if (DCMD_HDRSPEC(flags) && !verbose)
mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
"ADDR", "FLAGS", "MASK", "TYPE", "ID");
if (!verbose) {
mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
ace_flags, access_mask, ace_type, id);
return (DCMD_OK);
}
switch (ace_flags & ACE_TYPE_FLAGS) {
case ACE_OWNER:
mdb_printf("owner@:");
break;
case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
mdb_printf("group@:");
break;
case ACE_EVERYONE:
mdb_printf("everyone@:");
break;
case ACE_IDENTIFIER_GROUP:
mdb_printf("group:%llx:", (u_longlong_t)id);
break;
case 0: /* User entry */
mdb_printf("user:%llx:", (u_longlong_t)id);
break;
}
/* print out permission mask */
if (access_mask & ACE_READ_DATA)
mdb_printf("r");
else
mdb_printf("-");
if (access_mask & ACE_WRITE_DATA)
mdb_printf("w");
else
mdb_printf("-");
if (access_mask & ACE_EXECUTE)
mdb_printf("x");
else
mdb_printf("-");
if (access_mask & ACE_APPEND_DATA)
mdb_printf("p");
else
mdb_printf("-");
if (access_mask & ACE_DELETE)
mdb_printf("d");
else
mdb_printf("-");
if (access_mask & ACE_DELETE_CHILD)
mdb_printf("D");
else
mdb_printf("-");
if (access_mask & ACE_READ_ATTRIBUTES)
mdb_printf("a");
else
mdb_printf("-");
if (access_mask & ACE_WRITE_ATTRIBUTES)
mdb_printf("A");
else
mdb_printf("-");
if (access_mask & ACE_READ_NAMED_ATTRS)
mdb_printf("R");
else
mdb_printf("-");
if (access_mask & ACE_WRITE_NAMED_ATTRS)
mdb_printf("W");
else
mdb_printf("-");
if (access_mask & ACE_READ_ACL)
mdb_printf("c");
else
mdb_printf("-");
if (access_mask & ACE_WRITE_ACL)
mdb_printf("C");
else
mdb_printf("-");
if (access_mask & ACE_WRITE_OWNER)
mdb_printf("o");
else
mdb_printf("-");
if (access_mask & ACE_SYNCHRONIZE)
mdb_printf("s");
else
mdb_printf("-");
mdb_printf(":");
/* Print out inheritance flags */
if (ace_flags & ACE_FILE_INHERIT_ACE)
mdb_printf("f");
else
mdb_printf("-");
if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
mdb_printf("d");
else
mdb_printf("-");
if (ace_flags & ACE_INHERIT_ONLY_ACE)
mdb_printf("i");
else
mdb_printf("-");
if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
mdb_printf("n");
else
mdb_printf("-");
if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
mdb_printf("S");
else
mdb_printf("-");
if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
mdb_printf("F");
else
mdb_printf("-");
if (ace_flags & ACE_INHERITED_ACE)
mdb_printf("I");
else
mdb_printf("-");
switch (ace_type) {
case ACE_ACCESS_ALLOWED_ACE_TYPE:
mdb_printf(":allow\n");
break;
case ACE_ACCESS_DENIED_ACE_TYPE:
mdb_printf(":deny\n");
break;
case ACE_SYSTEM_AUDIT_ACE_TYPE:
mdb_printf(":audit\n");
break;
case ACE_SYSTEM_ALARM_ACE_TYPE:
mdb_printf(":alarm\n");
break;
default:
mdb_printf(":?\n");
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
zfs_ace_t zace;
int verbose = FALSE;
uint64_t id;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
mdb_warn("failed to read zfs_ace_t");
return (DCMD_ERR);
}
if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
(zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
id = zace.z_fuid;
else
id = -1;
return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
}
/* ARGSUSED */
static int
zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
ace_t ace;
uint64_t id;
int verbose = FALSE;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
mdb_warn("failed to read ace_t");
return (DCMD_ERR);
}
if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
(ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
id = ace.a_who;
else
id = -1;
return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
ace.a_flags, ace.a_type, verbose));
}
typedef struct acl_dump_args {
int a_argc;
const mdb_arg_t *a_argv;
uint16_t a_version;
int a_flags;
} acl_dump_args_t;
/* ARGSUSED */
static int
acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
{
acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
if (acl_args->a_version == 1) {
if (mdb_call_dcmd("zfs_ace", addr,
DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
acl_args->a_argv) != DCMD_OK) {
return (WALK_ERR);
}
} else {
if (mdb_call_dcmd("zfs_ace0", addr,
DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
acl_args->a_argv) != DCMD_OK) {
return (WALK_ERR);
}
}
acl_args->a_flags = DCMD_LOOP;
return (WALK_NEXT);
}
/* ARGSUSED */
static int
acl_cb(uintptr_t addr, const void *unknown, void *arg)
{
acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
if (acl_args->a_version == 1) {
if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
arg, addr) != 0) {
mdb_warn("can't walk ACEs");
return (DCMD_ERR);
}
} else {
if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
arg, addr) != 0) {
mdb_warn("can't walk ACEs");
return (DCMD_ERR);
}
}
return (WALK_NEXT);
}
/* ARGSUSED */
static int
zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
zfs_acl_t zacl;
int verbose = FALSE;
acl_dump_args_t acl_args;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
mdb_warn("failed to read zfs_acl_t");
return (DCMD_ERR);
}
acl_args.a_argc = argc;
acl_args.a_argv = argv;
acl_args.a_version = zacl.z_version;
acl_args.a_flags = DCMD_LOOPFIRST;
if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
mdb_warn("can't walk ACL");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/* ARGSUSED */
static int
zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("must supply address of zfs_acl_node_t\n");
return (WALK_ERR);
}
wsp->walk_addr +=
mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
if (mdb_layered_walk("list", wsp) == -1) {
mdb_warn("failed to walk 'list'\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
{
zfs_acl_node_t aclnode;
if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
wsp->walk_addr) == -1) {
mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
return (WALK_ERR);
}
return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
}
typedef struct ace_walk_data {
int ace_count;
int ace_version;
} ace_walk_data_t;
static int
zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
int ace_count, uintptr_t ace_data)
{
ace_walk_data_t *ace_walk_data;
if (wsp->walk_addr == NULL) {
mdb_warn("must supply address of zfs_acl_node_t\n");
return (WALK_ERR);
}
ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
ace_walk_data->ace_count = ace_count;
ace_walk_data->ace_version = version;
wsp->walk_addr = ace_data;
wsp->walk_data = ace_walk_data;
return (WALK_NEXT);
}
static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
{
static int gotid;
static mdb_ctf_id_t acl_id;
int z_ace_count;
uintptr_t z_acldata;
if (!gotid) {
if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
&acl_id) == -1) {
mdb_warn("couldn't find struct zfs_acl_node");
return (DCMD_ERR);
}
gotid = TRUE;
}
if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
return (DCMD_ERR);
}
if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
return (DCMD_ERR);
}
return (zfs_aces_walk_init_common(wsp, version,
z_ace_count, z_acldata));
}
/* ARGSUSED */
static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
{
return (zfs_acl_node_aces_walk_init_common(wsp, 1));
}
/* ARGSUSED */
static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
{
return (zfs_acl_node_aces_walk_init_common(wsp, 0));
}
static int
zfs_aces_walk_step(mdb_walk_state_t *wsp)
{
ace_walk_data_t *ace_data = wsp->walk_data;
zfs_ace_t zace;
ace_t *acep;
int status;
int entry_type;
int allow_type;
uintptr_t ptr;
if (ace_data->ace_count == 0)
return (WALK_DONE);
if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read zfs_ace_t at %#lx",
wsp->walk_addr);
return (WALK_ERR);
}
switch (ace_data->ace_version) {
case 0:
acep = (ace_t *)&zace;
entry_type = acep->a_flags & ACE_TYPE_FLAGS;
allow_type = acep->a_type;
break;
case 1:
entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
allow_type = zace.z_hdr.z_type;
break;
default:
return (WALK_ERR);
}
ptr = (uintptr_t)wsp->walk_addr;
switch (entry_type) {
case ACE_OWNER:
case ACE_EVERYONE:
case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
ptr += ace_data->ace_version == 0 ?
sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
break;
case ACE_IDENTIFIER_GROUP:
default:
switch (allow_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
ptr += ace_data->ace_version == 0 ?
sizeof (ace_t) : sizeof (zfs_object_ace_t);
break;
default:
ptr += ace_data->ace_version == 0 ?
sizeof (ace_t) : sizeof (zfs_ace_t);
break;
}
}
ace_data->ace_count--;
status = wsp->walk_callback(wsp->walk_addr,
(void *)(uintptr_t)&zace, wsp->walk_cbdata);
wsp->walk_addr = ptr;
return (status);
}
typedef struct mdb_zfs_rrwlock {
uintptr_t rr_writer;
boolean_t rr_writer_wanted;
} mdb_zfs_rrwlock_t;
static uint_t rrw_key;
/* ARGSUSED */
static int
rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_zfs_rrwlock_t rrw;
if (rrw_key == 0) {
if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
return (DCMD_ERR);
}
if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
0) == -1)
return (DCMD_ERR);
if (rrw.rr_writer != 0) {
mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
return (DCMD_OK);
}
if (rrw.rr_writer_wanted) {
mdb_printf("writer wanted\n");
}
mdb_printf("anonymous references:\n");
(void) mdb_call_dcmd("refcount", addr +
mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
DCMD_ADDRSPEC, 0, NULL);
mdb_printf("linked references:\n");
(void) mdb_call_dcmd("refcount", addr +
mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
DCMD_ADDRSPEC, 0, NULL);
/*
* XXX This should find references from
* "::walk thread | ::tsd -v <rrw_key>", but there is no support
* for programmatic consumption of dcmds, so this would be
* difficult, potentially requiring reimplementing ::tsd (both
* user and kernel versions) in this MDB module.
*/
return (DCMD_OK);
}
typedef struct mdb_arc_buf_hdr_t {
uint16_t b_psize;
uint16_t b_lsize;
struct {
uint32_t b_bufcnt;
uintptr_t b_state;
uintptr_t b_pdata;
} b_l1hdr;
} mdb_arc_buf_hdr_t;
enum arc_cflags {
ARC_CFLAG_VERBOSE = 1 << 0,
ARC_CFLAG_ANON = 1 << 1,
ARC_CFLAG_MRU = 1 << 2,
ARC_CFLAG_MFU = 1 << 3,
ARC_CFLAG_BUFS = 1 << 4,
};
typedef struct arc_compression_stats_data {
GElf_Sym anon_sym; /* ARC_anon symbol */
GElf_Sym mru_sym; /* ARC_mru symbol */
GElf_Sym mrug_sym; /* ARC_mru_ghost symbol */
GElf_Sym mfu_sym; /* ARC_mfu symbol */
GElf_Sym mfug_sym; /* ARC_mfu_ghost symbol */
GElf_Sym l2c_sym; /* ARC_l2c_only symbol */
uint64_t *anon_c_hist; /* histogram of compressed sizes in anon */
uint64_t *anon_u_hist; /* histogram of uncompressed sizes in anon */
uint64_t *anon_bufs; /* histogram of buffer counts in anon state */
uint64_t *mru_c_hist; /* histogram of compressed sizes in mru */
uint64_t *mru_u_hist; /* histogram of uncompressed sizes in mru */
uint64_t *mru_bufs; /* histogram of buffer counts in mru */
uint64_t *mfu_c_hist; /* histogram of compressed sizes in mfu */
uint64_t *mfu_u_hist; /* histogram of uncompressed sizes in mfu */
uint64_t *mfu_bufs; /* histogram of buffer counts in mfu */
uint64_t *all_c_hist; /* histogram of compressed anon + mru + mfu */
uint64_t *all_u_hist; /* histogram of uncompressed anon + mru + mfu */
uint64_t *all_bufs; /* histogram of buffer counts in all states */
int arc_cflags; /* arc compression flags, specified by user */
int hist_nbuckets; /* number of buckets in each histogram */
} arc_compression_stats_data_t;
int
highbit64(uint64_t i)
{
int h = 1;
if (i == 0)
return (0);
if (i & 0xffffffff00000000ULL) {
h += 32; i >>= 32;
}
if (i & 0xffff0000) {
h += 16; i >>= 16;
}
if (i & 0xff00) {
h += 8; i >>= 8;
}
if (i & 0xf0) {
h += 4; i >>= 4;
}
if (i & 0xc) {
h += 2; i >>= 2;
}
if (i & 0x2) {
h += 1;
}
return (h);
}
/* ARGSUSED */
static int
arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
{
arc_compression_stats_data_t *data = arg;
mdb_arc_buf_hdr_t hdr;
int cbucket, ubucket, bufcnt;
if (mdb_ctf_vread(&hdr, "arc_buf_hdr_t", "mdb_arc_buf_hdr_t",
addr, 0) == -1) {
return (WALK_ERR);
}
/*
* Headers in the ghost states, or the l2c_only state don't have
* arc buffers linked off of them. Thus, their compressed size
* is meaningless, so we skip these from the stats.
*/
if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
return (WALK_NEXT);
}
/*
* The physical size (compressed) and logical size
* (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
* we use the log2 of this value (rounded down to the nearest
* integer) to determine the bucket to assign this header to.
* Thus, the histogram is logarithmic with respect to the size
* of the header. For example, the following is a mapping of the
* bucket numbers and the range of header sizes they correspond to:
*
* 0: 0 byte headers
* 1: 512 byte headers
* 2: [1024 - 2048) byte headers
* 3: [2048 - 4096) byte headers
* 4: [4096 - 8192) byte headers
* 5: [8192 - 16394) byte headers
* 6: [16384 - 32768) byte headers
* 7: [32768 - 65536) byte headers
* 8: [65536 - 131072) byte headers
* 9: 131072 byte headers
*
* If the ARC_CFLAG_VERBOSE flag was specified, we use the
* physical and logical sizes directly. Thus, the histogram will
* no longer be logarithmic; instead it will be linear with
* respect to the size of the header. The following is a mapping
* of the first many bucket numbers and the header size they
* correspond to:
*
* 0: 0 byte headers
* 1: 512 byte headers
* 2: 1024 byte headers
* 3: 1536 byte headers
* 4: 2048 byte headers
* 5: 2560 byte headers
* 6: 3072 byte headers
*
* And so on. Keep in mind that a range of sizes isn't used in
* the case of linear scale because the headers can only
* increment or decrement in sizes of 512 bytes. So, it's not
* possible for a header to be sized in between whats listed
* above.
*
* Also, the above mapping values were calculated assuming a
* SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
*/
if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
cbucket = hdr.b_psize;
ubucket = hdr.b_lsize;
} else {
cbucket = highbit64(hdr.b_psize);
ubucket = highbit64(hdr.b_lsize);
}
bufcnt = hdr.b_l1hdr.b_bufcnt;
if (bufcnt >= data->hist_nbuckets)
bufcnt = data->hist_nbuckets - 1;
/* Ensure we stay within the bounds of the histogram array */
ASSERT3U(cbucket, <, data->hist_nbuckets);
ASSERT3U(ubucket, <, data->hist_nbuckets);
if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
data->anon_c_hist[cbucket]++;
data->anon_u_hist[ubucket]++;
data->anon_bufs[bufcnt]++;
} else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
data->mru_c_hist[cbucket]++;
data->mru_u_hist[ubucket]++;
data->mru_bufs[bufcnt]++;
} else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
data->mfu_c_hist[cbucket]++;
data->mfu_u_hist[ubucket]++;
data->mfu_bufs[bufcnt]++;
}
data->all_c_hist[cbucket]++;
data->all_u_hist[ubucket]++;
data->all_bufs[bufcnt]++;
return (WALK_NEXT);
}
/* ARGSUSED */
static int
arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
const mdb_arg_t *argv)
{
arc_compression_stats_data_t data = { 0 };
unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
unsigned int hist_size;
char range[32];
int rc = DCMD_OK;
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags) != argc)
return (DCMD_USAGE);
if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
mdb_warn("can't find arc state symbol");
return (DCMD_ERR);
}
/*
* Determine the maximum expected size for any header, and use
* this to determine the number of buckets needed for each
* histogram. If ARC_CFLAG_VERBOSE is specified, this value is
* used directly; otherwise the log2 of the maximum size is
* used. Thus, if using a log2 scale there's a maximum of 10
* possible buckets, while the linear scale (when using
* ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
*/
if (data.arc_cflags & ARC_CFLAG_VERBOSE)
data.hist_nbuckets = max_shifted + 1;
else
data.hist_nbuckets = highbit64(max_shifted) + 1;
hist_size = sizeof (uint64_t) * data.hist_nbuckets;
data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
&data) != 0) {
mdb_warn("can't walk arc_buf_hdr's");
rc = DCMD_ERR;
goto out;
}
if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
rc = mdb_snprintf(range, sizeof (range),
"[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
SPA_MINBLOCKSIZE);
} else {
rc = mdb_snprintf(range, sizeof (range),
"[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
SPA_MINBLOCKSIZE);
}
if (rc < 0) {
/* snprintf failed, abort the dcmd */
rc = DCMD_ERR;
goto out;
} else {
/* snprintf succeeded above, reset return code */
rc = DCMD_OK;
}
if (data.arc_cflags & ARC_CFLAG_ANON) {
if (data.arc_cflags & ARC_CFLAG_BUFS) {
mdb_printf("Histogram of the number of anon buffers "
"that are associated with an arc hdr.\n");
dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
mdb_printf("\n");
}
mdb_printf("Histogram of compressed anon buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
mdb_printf("Histogram of uncompressed anon buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
}
if (data.arc_cflags & ARC_CFLAG_MRU) {
if (data.arc_cflags & ARC_CFLAG_BUFS) {
mdb_printf("Histogram of the number of mru buffers "
"that are associated with an arc hdr.\n");
dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
mdb_printf("\n");
}
mdb_printf("Histogram of compressed mru buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
mdb_printf("Histogram of uncompressed mru buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
}
if (data.arc_cflags & ARC_CFLAG_MFU) {
if (data.arc_cflags & ARC_CFLAG_BUFS) {
mdb_printf("Histogram of the number of mfu buffers "
"that are associated with an arc hdr.\n");
dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
mdb_printf("\n");
}
mdb_printf("Histogram of compressed mfu buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
mdb_printf("Histogram of uncompressed mfu buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
}
if (data.arc_cflags & ARC_CFLAG_BUFS) {
mdb_printf("Histogram of all buffers that "
"are associated with an arc hdr.\n");
dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
mdb_printf("\n");
}
mdb_printf("Histogram of all compressed buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
mdb_printf("\n");
mdb_printf("Histogram of all uncompressed buffers.\n"
"Each bucket represents buffers of size: %s.\n", range);
dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
out:
mdb_free(data.anon_c_hist, hist_size);
mdb_free(data.anon_u_hist, hist_size);
mdb_free(data.anon_bufs, hist_size);
mdb_free(data.mru_c_hist, hist_size);
mdb_free(data.mru_u_hist, hist_size);
mdb_free(data.mru_bufs, hist_size);
mdb_free(data.mfu_c_hist, hist_size);
mdb_free(data.mfu_u_hist, hist_size);
mdb_free(data.mfu_bufs, hist_size);
mdb_free(data.all_c_hist, hist_size);
mdb_free(data.all_u_hist, hist_size);
mdb_free(data.all_bufs, hist_size);
return (rc);
}
/*
* MDB module linkage information:
*
* We declare a list of structures describing our dcmds, and a function
* named _mdb_init to return a pointer to our module information.
*/
static const mdb_dcmd_t dcmds[] = {
{ "arc", "[-bkmg]", "print ARC variables", arc_print },
{ "blkptr", ":", "print blkptr_t", blkptr },
{ "dbuf", ":", "print dmu_buf_impl_t", dbuf },
{ "dbuf_stats", ":", "dbuf stats", dbuf_stats },
{ "dbufs",
"\t[-O objset_t*] [-n objset_name | \"mos\"] "
"[-o object | \"mdn\"] \n"
"\t[-l level] [-b blkid | \"bonus\"]",
"find dmu_buf_impl_t's that match specified criteria", dbufs },
{ "abuf_find", "dva_word[0] dva_word[1]",
"find arc_buf_hdr_t of a specified DVA",
abuf_find },
{ "spa", "?[-cevmMh]\n"
"\t-c display spa config\n"
"\t-e display vdev statistics\n"
"\t-v display vdev information\n"
"\t-m display metaslab statistics\n"
"\t-M display metaslab group statistics\n"
"\t-h display histogram (requires -m or -M)\n",
"spa_t summary", spa_print },
{ "spa_config", ":", "print spa_t configuration", spa_print_config },
{ "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
{ "spa_vdevs", ":[-emMh]\n"
"\t-e display vdev statistics\n"
"\t-m dispaly metaslab statistics\n"
"\t-M display metaslab group statistic\n"
"\t-h display histogram (requires -m or -M)\n",
"given a spa_t, print vdev summary", spa_vdevs },
{ "vdev", ":[-remMh]\n"
"\t-r display recursively\n"
"\t-e display statistics\n"
"\t-m display metaslab statistics (top level vdev only)\n"
"\t-M display metaslab group statistics (top level vdev only)\n"
"\t-h display histogram (requires -m or -M)\n",
"vdev_t summary", vdev_print },
{ "zio", ":[-cpr]\n"
"\t-c display children\n"
"\t-p display parents\n"
"\t-r display recursively",
"zio_t summary", zio_print },
{ "zio_state", "?", "print out all zio_t structures on system or "
"for a particular pool", zio_state },
{ "zfs_blkstats", ":[-v]",
"given a spa_t, print block type stats from last scrub",
zfs_blkstats },
{ "zfs_params", "", "print zfs tunable parameters", zfs_params },
{ "refcount", ":[-r]\n"
"\t-r display recently removed references",
"print refcount_t holders", refcount },
{ "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
{ "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
zfs_acl_dump },
{ "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
{ "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
{ "sa_attr_table", ":", "print SA attribute table from sa_os_t",
sa_attr_table},
{ "sa_attr", ": attr_id",
"print SA attribute address when given sa_handle_t", sa_attr_print},
{ "zfs_dbgmsg", ":[-va]",
"print zfs debug log", dbgmsg},
{ "rrwlock", ":",
"print rrwlock_t, including readers", rrwlock},
{ "metaslab_weight", "weight",
"print metaslab weight", metaslab_weight},
{ "metaslab_trace", ":",
"print metaslab allocation trace records", metaslab_trace},
{ "arc_compression_stats", ":[-vabrf]\n"
"\t-v verbose, display a linearly scaled histogram\n"
"\t-a display ARC_anon state statistics individually\n"
"\t-r display ARC_mru state statistics individually\n"
"\t-f display ARC_mfu state statistics individually\n"
"\t-b display histogram of buffer counts\n",
"print a histogram of compressed arc buffer sizes",
arc_compression_stats},
{ NULL }
};
static const mdb_walker_t walkers[] = {
{ "zms_freelist", "walk ZFS metaslab freelist",
freelist_walk_init, freelist_walk_step, NULL },
{ "txg_list", "given any txg_list_t *, walk all entries in all txgs",
txg_list_walk_init, txg_list_walk_step, NULL },
{ "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
txg_list0_walk_init, txg_list_walk_step, NULL },
{ "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
txg_list1_walk_init, txg_list_walk_step, NULL },
{ "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
txg_list2_walk_init, txg_list_walk_step, NULL },
{ "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
txg_list3_walk_init, txg_list_walk_step, NULL },
{ "zio", "walk all zio structures, optionally for a particular spa_t",
zio_walk_init, zio_walk_step, NULL },
{ "zio_root",
"walk all root zio_t structures, optionally for a particular spa_t",
zio_walk_init, zio_walk_root_step, NULL },
{ "spa", "walk all spa_t entries in the namespace",
spa_walk_init, spa_walk_step, NULL },
{ "metaslab", "given a spa_t *, walk all metaslab_t structures",
metaslab_walk_init, metaslab_walk_step, NULL },
{ "multilist", "given a multilist_t *, walk all list_t structures",
multilist_walk_init, multilist_walk_step, NULL },
{ "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
{ "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
{ "zfs_acl_node_aces0",
"given a zfs_acl_node_t, walk all ACEs as ace_t",
zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
{ NULL }
};
static const mdb_modinfo_t modinfo = {
MDB_API_VERSION, dcmds, walkers
};
const mdb_modinfo_t *
_mdb_init(void)
{
return (&modinfo);
}