/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/mdb_modapi.h>
#include <sys/nsctl/nsctl.h>
#include <sys/unistat/spcs_s.h>
#include <sys/unistat/spcs_s_k.h>
#include <rpc/auth.h>
#include <rpc/auth_unix.h>
#include <rpc/auth_des.h>
#include <rpc/svc.h>
#include <rpc/xdr.h>
#include <rpc/svc_soc.h>
/* HACK HACK so we can bring in rdc_io.h and friends */
#define nstset_t char
#include <sys/nsctl/rdc.h>
#include <sys/nsctl/rdc_prot.h>
#include <sys/nsctl/rdc_ioctl.h>
#include <sys/nsctl/rdc_io.h>
#include <sys/nsctl/rdc_bitmap.h>
#include <sys/nsctl/nsvers.h>
/*
* Walker for an array of rdc_k_info_t structures.
* A global walk is assumed to start at rdc_k_info.
*/
struct rdc_kinfo_winfo {
uintptr_t start;
uintptr_t end;
};
char bitstr[33] = { '0' };
static int
rdc_k_info_winit(mdb_walk_state_t *wsp)
{
struct rdc_kinfo_winfo *winfo;
rdc_k_info_t *rdc_k_info;
int rdc_max_sets;
winfo = mdb_zalloc(sizeof (struct rdc_kinfo_winfo), UM_SLEEP);
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
mdb_free(winfo, sizeof (struct rdc_kinfo_winfo));
return (WALK_ERR);
}
if (mdb_readvar(&rdc_max_sets, "rdc_max_sets") == -1) {
mdb_warn("failed to read 'rdc_max_sets'");
mdb_free(winfo, sizeof (struct rdc_kinfo_winfo));
return (WALK_ERR);
}
winfo->start = (uintptr_t)rdc_k_info;
winfo->end = (uintptr_t)(rdc_k_info + rdc_max_sets);
if (wsp->walk_addr == NULL)
wsp->walk_addr = winfo->start;
wsp->walk_data = winfo;
return (WALK_NEXT);
}
static int
rdc_k_info_wstep(mdb_walk_state_t *wsp)
{
struct rdc_kinfo_winfo *winfo = wsp->walk_data;
int status;
if (wsp->walk_addr == NULL)
return (WALK_DONE);
if (wsp->walk_addr >= winfo->end)
return (WALK_DONE);
status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
wsp->walk_addr += sizeof (rdc_k_info_t);
return (status);
}
static void
rdc_k_info_wfini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (struct rdc_kinfo_winfo));
}
/*
* Walker for an array of rdc_u_info_t structures.
* A global walk is assumed to start at rdc_u_info.
*/
struct rdc_uinfo_winfo {
uintptr_t start;
uintptr_t end;
};
static int
rdc_u_info_winit(mdb_walk_state_t *wsp)
{
struct rdc_uinfo_winfo *winfo;
rdc_u_info_t *rdc_u_info;
int rdc_max_sets;
winfo = mdb_zalloc(sizeof (struct rdc_uinfo_winfo), UM_SLEEP);
if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) {
mdb_warn("failed to read 'rdc_u_info'");
mdb_free(winfo, sizeof (struct rdc_uinfo_winfo));
return (WALK_ERR);
}
if (mdb_readvar(&rdc_max_sets, "rdc_max_sets") == -1) {
mdb_warn("failed to read 'rdc_max_sets'");
mdb_free(winfo, sizeof (struct rdc_uinfo_winfo));
return (WALK_ERR);
}
winfo->start = (uintptr_t)rdc_u_info;
winfo->end = (uintptr_t)(rdc_u_info + rdc_max_sets);
if (wsp->walk_addr == NULL)
wsp->walk_addr = winfo->start;
wsp->walk_data = winfo;
return (WALK_NEXT);
}
static int
rdc_u_info_wstep(mdb_walk_state_t *wsp)
{
struct rdc_uinfo_winfo *winfo = wsp->walk_data;
int status;
if (wsp->walk_addr == NULL)
return (WALK_DONE);
if (wsp->walk_addr >= winfo->end)
return (WALK_DONE);
status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
wsp->walk_addr += sizeof (rdc_u_info_t);
return (status);
}
static void
rdc_u_info_wfini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (struct rdc_uinfo_winfo));
}
/*
* Walker for the rdc_if chain.
* A global walk is assumed to start at rdc_if_top.
*/
static int
rdc_if_winit(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL &&
mdb_readvar(&wsp->walk_addr, "rdc_if_top") == -1) {
mdb_warn("unable to read 'rdc_if_top'");
return (WALK_ERR);
}
wsp->walk_data = mdb_zalloc(sizeof (rdc_if_t), UM_SLEEP);
return (WALK_NEXT);
}
static int
rdc_if_wstep(mdb_walk_state_t *wsp)
{
int status;
if (wsp->walk_addr == NULL)
return (WALK_DONE);
if (mdb_vread(wsp->walk_data,
sizeof (rdc_if_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read rdc_if at %p", wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
wsp->walk_addr = (uintptr_t)(((rdc_if_t *)wsp->walk_data)->next);
return (status);
}
static void
rdc_if_wfini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (rdc_if_t));
}
/*
* Displays the asynchronous sleep q on the server.
*/
/*ARGSUSED*/
static int
rdc_sleepq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_sleepq_t sq;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
while (addr) {
if (mdb_vread(&sq, sizeof (sq), addr) != sizeof (sq)) {
mdb_warn("failed to read rdc_sleepq at %p", addr);
return (DCMD_ERR);
}
mdb_printf("sequence number %u qpos %d \n", sq.seq, sq.qpos);
addr = (uintptr_t)sq.next;
}
return (DCMD_OK);
}
/*
* display the header info for the pending diskq requests
*/
/*ARGSUSED*/
static int
rdc_iohdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
io_hdr hdr;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
while (addr) {
if (mdb_vread(&hdr, sizeof (io_hdr), addr) != sizeof (io_hdr)) {
mdb_warn("failed to read io_hdr at %p", addr);
return (DCMD_ERR);
}
mdb_printf("iohdr: type %d pos %d qpos %d len %d flag 0x%x"
" iostatus %x setid %d next %p\n", hdr.dat.type, hdr.dat.pos,
hdr.dat.qpos, hdr.dat.len, hdr.dat.flag, hdr.dat.iostatus,
hdr.dat.setid, hdr.dat.next);
addr = (uintptr_t)hdr.dat.next;
}
return (DCMD_OK);
}
/*
* Display a krdc->group.
* Requires an address.
*/
/*ARGSUSED*/
static int
rdc_group(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct rdc_group *group;
disk_queue *dq;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
group = mdb_zalloc(sizeof (*group), UM_GC);
if (mdb_vread(group, sizeof (*group), addr) != sizeof (*group)) {
mdb_warn("failed to read rdc_group at %p", addr);
return (DCMD_ERR);
}
#ifdef XXXJET
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%-?s %8T%-8s %8T%s\n", "ADDR", "MAJOR", "INUSE");
}
#endif
mdb_printf("count: %d %8Twriter: %d %8T flags: %d\n",
group->count, group->rdc_writer, group->flags);
mdb_printf("thread num %d\n", group->rdc_thrnum);
dq = &group->diskq;
if (RDC_IS_MEMQ(group)) {
mdb_printf("queue type: Memory based\n");
} else if (RDC_IS_DISKQ(group)) {
mdb_printf("queue type: Disk based %8Tqstate 0x%x\n",
QSTATE(dq));
}
mdb_printf("ra_queue head: 0x%p %8Ttail 0x%p\n",
group->ra_queue.net_qhead, group->ra_queue.net_qtail);
mdb_printf("ra_queue blocks: %d %8Titems %d\n",
group->ra_queue.blocks, group->ra_queue.nitems);
mdb_printf("ra_queue blockhwm: %d itemhwm: %d\n",
group->ra_queue.blocks_hwm, group->ra_queue.nitems_hwm);
mdb_printf("ra_queue hwmhit: %d qfillsleep: %d\n",
group->ra_queue.hwmhit, group->ra_queue.qfill_sleeping);
mdb_printf("ra_queue throttle: %ld\n",
group->ra_queue.throttle_delay);
if (RDC_IS_DISKQ(group)) {
mdb_printf("head: %d %8Tnxtio: %d %8Ttail %d %8Tlastail: %d\n",
QHEAD(dq), QNXTIO(dq), QTAIL(dq), LASTQTAIL(dq));
mdb_printf("coalbounds: %d %8Tqwrap: %d\n", QCOALBOUNDS(dq),
QWRAP(dq));
mdb_printf("blocks: %d %8Titems %d qfflags 0x%x \n",
QBLOCKS(dq), QNITEMS(dq), group->ra_queue.qfflags);
mdb_printf("diskq throttle: %ld %8Tflags: %x\n",
dq->throttle_delay, group->flags);
mdb_printf("disk queue nitems_hwm: %d %8Tblocks_hwm: %d\n",
dq->nitems_hwm, dq->blocks_hwm);
mdb_printf("diskqfd: 0x%p %8Tdisqrsrv: %d lastio: 0x%p\n",
group->diskqfd, group->diskqrsrv, dq->lastio);
mdb_printf("outstanding req %d iohdrs 0x%p iohdrs_last 0x%p\n",
dq->hdrcnt, dq->iohdrs, dq->hdr_last);
}
mdb_printf("seq: %u\n", group->seq);
mdb_printf("seqack: %u\n", group->seqack);
mdb_printf("sleepq: 0x%p\n", group->sleepq);
mdb_printf("asyncstall %d\n", group->asyncstall);
mdb_printf("asyncdis %d\n", group->asyncdis);
mdb_inc_indent(4);
if (group->sleepq) {
rdc_sleepq((uintptr_t)group->sleepq, DCMD_ADDRSPEC,
0, 0);
}
mdb_dec_indent(4);
return (DCMD_OK);
}
/*
* Display a krdc->lsrv.
* Requires an address.
*/
/*ARGSUSED*/
static int
rdc_srv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_srv_t *lsrv;
char name[MAX_RDC_HOST_SIZE];
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
lsrv = mdb_zalloc(sizeof (*lsrv), UM_GC);
if (mdb_vread(lsrv, sizeof (*lsrv), addr) != sizeof (*lsrv)) {
mdb_warn("failed to read rdc_srv at %p", addr);
return (DCMD_ERR);
}
if (mdb_readstr(name, sizeof (name),
(uintptr_t)lsrv->ri_hostname) == -1) {
mdb_warn("failed to read ri_hostname name at %p", addr);
return (DCMD_ERR);
}
mdb_printf("host: %s %16Tri_knconf 0x%p\n", name, lsrv->ri_knconf);
mdb_printf("ri_addr: 0x%p %8Tsecdata 0x%p\n",
addr + OFFSETOF(rdc_srv_t, ri_addr), lsrv->ri_secdata);
return (DCMD_OK);
}
/*
* Display a rdc_if_t.
* Requires an address.
*/
static int
rdc_if(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_if_t *ifp;
if (!(flags & DCMD_ADDRSPEC)) {
/*
* paranoid mode on: qualify walker name with module name
* using '`' syntax.
*/
if (mdb_walk_dcmd("rdc`rdc_if",
"rdc`rdc_if", argc, argv) == -1) {
mdb_warn("failed to walk 'rdc_if'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
ifp = mdb_zalloc(sizeof (*ifp), UM_GC);
if (mdb_vread(ifp, sizeof (*ifp), addr) != sizeof (*ifp)) {
mdb_warn("failed to read rdc_srv at %p", addr);
return (DCMD_ERR);
}
mdb_printf("next: 0x%p %8Tsrv 0x%p\n", ifp->next, ifp->srv);
mdb_printf("if_addr: 0x%p %8Tr_ifaddr 0x%p\n",
addr + OFFSETOF(rdc_if_t, ifaddr),
addr + OFFSETOF(rdc_if_t, r_ifaddr));
mdb_printf("if_down: %d %8Tprimary %d %8Tsecondary %d\n",
ifp->if_down, ifp->isprimary, ifp->issecondary);
mdb_printf("version %d %8Tnoping %d\n", ifp->rpc_version,
ifp->no_ping);
mdb_printf("\n");
return (DCMD_OK);
}
/*
* Display a rdc_buf_t
* Requires an address.
*/
/*ARGSUSED*/
static int
rdc_buf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_buf_t *buf;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
buf = mdb_zalloc(sizeof (*buf), UM_GC);
if (mdb_vread(buf, sizeof (*buf), addr) != sizeof (*buf)) {
mdb_warn("failed to read rdc_buf at %p", addr);
return (DCMD_ERR);
}
mdb_printf("nsc_buf fd: 0x%p %8Tvec 0x%p\n",
buf->rdc_bufh.sb_fd, buf->rdc_bufh.sb_vec);
mdb_printf("nsc_buf pos: %d %8Tlen %d\n",
buf->rdc_bufh.sb_pos, buf->rdc_bufh.sb_len);
mdb_printf("nsc_buf flag: 0x%x %8Terror %d\n",
buf->rdc_bufh.sb_flag, buf->rdc_bufh.sb_error);
mdb_printf("anon_buf : 0x%p %8Tfd 0x%p %8Tbufp 0x%p\n",
buf->rdc_anon, buf->rdc_fd, buf->rdc_bufp);
mdb_printf("vsize: %d %8Tflags 0x%x\n",
buf->rdc_vsize, buf->rdc_flags);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
rdc_aio(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_aio_t *aio;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
aio = mdb_zalloc(sizeof (*aio), UM_GC);
if (mdb_vread(aio, sizeof (*aio), addr) != sizeof (*aio)) {
mdb_warn("failed to read rdc_aio at %p", addr);
return (DCMD_ERR);
}
mdb_printf("rdc_aio next: %p %8T nsc_buf: %p %8T nsc_qbuf %p\n",
aio->next, aio->handle, aio->qhandle);
mdb_printf("pos: %d len: %d qpos: %d flag: %x iostatus: %d index: %d"
" seq: %d\n", aio->pos, aio->len, aio->qpos, aio->flag,
aio->iostatus, aio->index, aio->seq);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
rdc_dset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_net_dataset_t *dset;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
dset = mdb_zalloc(sizeof (*dset), UM_GC);
if (mdb_vread(dset, sizeof (*dset), addr) != sizeof (*dset)) {
mdb_warn("failed to read dset at %p", addr);
return (DCMD_ERR);
}
mdb_printf("dset id: %d %8T dset inuse: %d %8T dset delpend: %d\n",
dset->id, dset->inuse, dset->delpend);
mdb_printf("dset items: %d %8T dset head %p %8T dset tail %p \n",
dset->nitems, dset->head, dset->tail);
mdb_printf("dset pos %d %8T dset len %d\n", dset->pos, dset->fbalen);
return (DCMD_OK);
}
/*
* Display a single rdc_k_info structure.
* If called with no address, performs a global walk of all rdc_k_info.
* -a : all (i.e. display all devices, even if disabled
* -v : verbose
*/
const mdb_bitmask_t sv_flag_bits[] = {
{ "NSC_DEVICE", NSC_DEVICE, NSC_DEVICE },
{ "NSC_CACHE", NSC_CACHE, NSC_CACHE },
{ NULL, 0, 0 }
};
static int
rdc_kinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *krdc;
rdc_u_info_t *rdc_u_info, *urdc;
int a_opt, v_opt;
int dev_t_chars;
a_opt = v_opt = FALSE;
dev_t_chars = sizeof (dev_t) * 2; /* # chars to display dev_t */
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &a_opt,
'v', MDB_OPT_SETBITS, TRUE, &v_opt) != argc)
return (DCMD_USAGE);
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
urdc = mdb_zalloc(sizeof (*urdc), UM_GC);
if (!(flags & DCMD_ADDRSPEC)) {
/*
* paranoid mode on: qualify walker name with module name
* using '`' syntax.
*/
if (mdb_walk_dcmd("rdc`rdc_kinfo",
"rdc`rdc_kinfo", argc, argv) == -1) {
mdb_warn("failed to walk 'rdc_kinfo'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%-?s %8T%-*s %8T%s\n", "ADDR",
dev_t_chars, "TFLAG", "STATE");
}
if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) {
mdb_warn("failed to read rdc_k_info at %p", addr);
return (DCMD_ERR);
}
if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) {
mdb_warn("failed to read 'rdc_u_info'");
return (DCMD_ERR);
}
urdc = &rdc_u_info[krdc->index];
if (!a_opt && ((krdc->type_flag & RDC_CONFIGURED) == 0))
return (DCMD_OK);
mdb_printf("%?p %8T%0*lx %8T", addr, dev_t_chars, krdc->type_flag);
if (krdc->type_flag & RDC_DISABLEPEND)
mdb_printf(" disable pending");
if (krdc->type_flag & RDC_ASYNCMODE)
mdb_printf(" async");
if (krdc->type_flag & RDC_RESUMEPEND)
mdb_printf(" resume pending");
if (krdc->type_flag & RDC_BUSYWAIT)
mdb_printf(" busywait");
#ifdef RDC_SMALLIO
if (krdc->type_flag & RDC_SMALLIO)
mdb_printf(" smallio");
#endif
mdb_printf("\n");
if (!v_opt)
return (DCMD_OK);
/*
* verbose - print the rest of the structure as well.
*/
mdb_inc_indent(4);
mdb_printf("index: %d %8Trindex: %d %8Tbusyc: %d %8Tmaxfbas: %d\n",
krdc->index, krdc->remote_index, krdc->busy_count, krdc->maxfbas);
mdb_printf("info_dev: 0x%p %8Tiodev: 0x%p %8T %8T vers %d\n",
krdc->devices, krdc->iodev, krdc->rpc_version);
mdb_printf("iokstats: 0x%p\n", krdc->io_kstats);
mdb_printf("group: 0x%p %8Tgroup_next: 0x%p\n",
krdc->group, krdc->group_next);
mdb_printf("group lock: 0x%p aux_state: %d\n",
&krdc->group->lock, krdc->aux_state);
mdb_inc_indent(4);
if (krdc->type_flag & RDC_ASYNCMODE) {
rdc_group((uintptr_t)krdc->group, DCMD_ADDRSPEC, 0, 0);
}
mdb_dec_indent(4);
mdb_printf("servinfo: 0x%p %8Tintf: 0x%p\nbitmap: 0x%p %8T"
"bitmap_ref: 0x%p\n",
krdc->lsrv, krdc->intf, krdc->dcio_bitmap, krdc->bitmap_ref);
mdb_printf("bmap_size: %d %8Tbmaprsrv: %d%8T bmap_write: %d\n",
krdc->bitmap_size, krdc->bmaprsrv, krdc->bitmap_write);
mdb_printf("bitmapfd: 0x%p %8Tremote_fd: 0x%p %8T\n", krdc->bitmapfd,
krdc->remote_fd);
mdb_printf("net_dataset: 0x%p %8Tdisk_status: %d %8T\n",
krdc->net_dataset, krdc->disk_status);
mdb_printf("many: 0x%p %8Tmulti: 0x%p %8T\n", krdc->many_next,
krdc->multi_next);
mdb_printf("rdc_uinfo: 0x%p\n\n", urdc);
mdb_dec_indent(4);
return (DCMD_OK);
}
static int
rdc_uinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_u_info_t *urdc;
rdc_k_info_t *rdc_k_info, *krdc, krdc1;
rdc_group_t grp;
disk_queue *dqp = NULL;
int a_opt, v_opt;
int dev_t_chars;
int rdcflags;
a_opt = v_opt = FALSE;
dev_t_chars = sizeof (dev_t) * 2; /* # chars to display dev_t */
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &a_opt,
'v', MDB_OPT_SETBITS, TRUE, &v_opt) != argc)
return (DCMD_USAGE);
urdc = mdb_zalloc(sizeof (*urdc), UM_GC);
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
if (!(flags & DCMD_ADDRSPEC)) {
/*
* paranoid mode on: qualify walker name with module name
* using '`' syntax.
*/
if (mdb_walk_dcmd("rdc`rdc_uinfo",
"rdc`rdc_uinfo", argc, argv) == -1) {
mdb_warn("failed to walk 'rdc_uinfo'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%-?s %8T%-*s %8T%s\n", "ADDR",
dev_t_chars, "FLAG", "STATE");
}
if (mdb_vread(urdc, sizeof (*urdc), addr) != sizeof (*urdc)) {
mdb_warn("failed to read rdc_u_info at %p", addr);
return (DCMD_ERR);
}
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
krdc = &rdc_k_info[urdc->index];
if (!a_opt && ((urdc->flags & RDC_ENABLED) == 0))
return (DCMD_OK);
if (mdb_vread(&krdc1, sizeof (krdc1),
(uintptr_t)krdc) != sizeof (krdc1)) {
mdb_warn("failed to read 'rdc_k_info1'");
return (DCMD_ERR);
}
if (krdc1.group) {
if (mdb_vread(&grp, sizeof (grp),
(uintptr_t)krdc1.group) != sizeof (grp)) {
mdb_warn("failed to read group info ");
return (DCMD_ERR);
}
dqp = &grp.diskq;
}
rdcflags = (urdc->flags | urdc->sync_flags | urdc->bmap_flags);
mdb_printf("%?p %8T%0*lx %8T", addr, dev_t_chars, rdcflags);
if (rdcflags & RDC_PRIMARY)
mdb_printf(" primary");
if (rdcflags & RDC_SLAVE)
mdb_printf(" slave");
if (rdcflags & RDC_SYNCING)
mdb_printf(" syncing");
if (rdcflags & RDC_SYNC_NEEDED)
mdb_printf(" sync_need");
if (rdcflags & RDC_RSYNC_NEEDED)
mdb_printf(" rsync_need");
if (rdcflags & RDC_LOGGING)
mdb_printf(" logging");
if (rdcflags & RDC_QUEUING)
mdb_printf(" queuing");
if (rdcflags & RDC_DISKQ_FAILED)
mdb_printf(" diskq failed");
if (rdcflags & RDC_VOL_FAILED)
mdb_printf(" vol failed");
if (rdcflags & RDC_BMP_FAILED)
mdb_printf(" bmp failed");
if (rdcflags & RDC_ASYNC)
mdb_printf(" async");
if (rdcflags & RDC_CLR_AFTERSYNC)
mdb_printf(" clr_bitmap_aftersync");
if (dqp) {
if (IS_QSTATE(dqp, RDC_QNOBLOCK))
mdb_printf(" noblock");
}
#ifdef RDC_SMALLIO
if (rdcflags & RDC_SMALLIO)
mdb_printf(" smallio");
#endif
mdb_printf("\n");
if (!v_opt)
return (DCMD_OK);
/*
* verbose - print the rest of the structure as well.
*/
mdb_inc_indent(4);
mdb_printf("\n");
mdb_printf("primary: %s %8Tfile: %s \nbitmap: %s ",
urdc->primary.intf, urdc->primary.file, urdc->primary.bitmap);
mdb_printf("netbuf: 0x%p\n", addr + OFFSETOF(rdc_set_t, primary));
mdb_printf("secondary: %s %8Tfile: %s \nbitmap: %s ",
urdc->secondary.intf, urdc->secondary.file, urdc->secondary.bitmap);
mdb_printf("netbuf: 0x%p\n", addr + OFFSETOF(rdc_set_t, secondary));
mdb_printf("sflags: %d %8Tbflags: %d%8T mflags: %d\n",
urdc->sync_flags, urdc->bmap_flags, urdc->mflags);
mdb_printf("index: %d %8Tsync_pos: %d%8T vsize: %d\n",
urdc->index, urdc->sync_pos, urdc->volume_size);
mdb_printf("setid: %d %8Tbits set: %d %8Tautosync: %d\n",
urdc->setid, urdc->bits_set, urdc->autosync);
mdb_printf("maxqfbas: %d %8Tmaxqitems: %d\n",
urdc->maxqfbas, urdc->maxqitems);
mdb_printf("netconfig: %p\n", urdc->netconfig);
mdb_printf("group: %s %8TdirectIO: %s\n",
urdc->group_name, urdc->direct_file);
mdb_printf("diskqueue: %s ", urdc->disk_queue);
if (dqp) {
mdb_printf("diskqsize: %d\n", QSIZE(dqp));
} else {
mdb_printf("\n");
}
mdb_printf("rdc_k_info: 0x%p\n", krdc);
mdb_printf("\n");
mdb_dec_indent(4);
mdb_printf("\n");
return (DCMD_OK);
}
/*ARGSUSED*/
static int
rdc_infodev(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_info_dev_t *infodev;
_rdc_info_dev_t *infp;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
infodev = mdb_zalloc(sizeof (*infodev), UM_GC);
infp = mdb_zalloc(sizeof (*infp), UM_GC);
if (mdb_vread(infodev, sizeof (*infodev), addr) != sizeof (*infodev)) {
mdb_warn("failed to read rdc_infodev at 0x%p\n", addr);
return (DCMD_ERR);
}
infp = &infodev->id_cache_dev;
mdb_inc_indent(4);
mdb_printf("id_next: 0x%p\n", infodev->id_next);
mdb_printf("id_cache_dev:\n");
mdb_inc_indent(4);
mdb_printf("bi_fd: 0x%p %8Tbi_iodev: 0x%p %8Tbi_krdc 0x%p\n",
infp->bi_fd, infp->bi_iodev, infp->bi_krdc);
mdb_printf("bi_rsrv: %d %8Tbi_orsrv: %d %8Tbi_failed: %d %8T\n"
"bi_ofailed: %d %8Tbi_flag: %d\n", infp->bi_rsrv, infp->bi_orsrv,
infp->bi_failed, infp->bi_ofailed, infp->bi_flag);
infp = &infodev->id_raw_dev;
mdb_dec_indent(4);
mdb_printf("id_cache_dev:\n");
mdb_inc_indent(4);
mdb_printf("bi_fd: 0x%p %8Tbi_iodev: 0x%p %8Tbi_krdc 0x%p\n",
infp->bi_fd, infp->bi_iodev, infp->bi_krdc);
mdb_printf("bi_rsrv: %d %8Tbi_orsrv: %d %8Tbi_failed: %d %8T\n"
"bi_ofailed: %d %8Tbi_flag: %d\n", infp->bi_rsrv, infp->bi_orsrv,
infp->bi_failed, infp->bi_ofailed, infp->bi_flag);
mdb_dec_indent(4);
mdb_printf("id_sets: %d %8Tid_release: %d %8Tid_flag %d",
infodev->id_sets, infodev->id_release, infodev->id_flag);
if (infodev->id_flag & RDC_ID_CLOSING) {
mdb_printf("closing");
}
mdb_printf("\n");
mdb_dec_indent(4);
return (DCMD_OK);
}
/*
* Display general sv module information.
*/
#define rdc_get_print(kvar, str, fmt, val) \
if (mdb_readvar(&(val), #kvar) == -1) { \
mdb_dec_indent(4); \
mdb_warn("unable to read '" #kvar "'"); \
return (DCMD_ERR); \
} \
mdb_printf("%-20s" fmt "\n", str ":", val)
/*ARGSUSED*/
static int
rdc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int maj, min, mic, baseline, i;
if (argc != 0)
return (DCMD_USAGE);
if (mdb_readvar(&maj, "sndr_major_rev") == -1) {
mdb_warn("unable to read 'sndr_major_rev'");
return (DCMD_ERR);
}
if (mdb_readvar(&min, "sndr_minor_rev") == -1) {
mdb_warn("unable to read 'sndr_minor_rev'");
return (DCMD_ERR);
}
if (mdb_readvar(&mic, "sndr_micro_rev") == -1) {
mdb_warn("unable to read 'sndr_micro_rev'");
return (DCMD_ERR);
}
if (mdb_readvar(&baseline, "sndr_baseline_rev") == -1) {
mdb_warn("unable to read 'sndr_baseline_rev'");
return (DCMD_ERR);
}
mdb_printf("Remote Mirror module version: kernel %d.%d.%d.%d; "
"mdb %d.%d.%d.%d\n", maj, min, mic, baseline,
ISS_VERSION_MAJ, ISS_VERSION_MIN, ISS_VERSION_MIC, ISS_VERSION_NUM);
mdb_inc_indent(4);
rdc_get_print(rdc_debug, "debug", "%d", i);
rdc_get_print(rdc_bitmap_mode, "bitmap mode", "%d", i);
rdc_get_print(rdc_max_sets, "max sndr devices", "%d", i);
rdc_get_print(rdc_rpc_tmout, "client RPC timeout", "%d", i);
rdc_get_print(rdc_health_thres, "health threshold", "%d", i);
rdc_get_print(MAX_RDC_FBAS, "max trans fba", "%d", i);
mdb_dec_indent(4);
return (DCMD_OK);
}
static int
rdc_k2u(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *krdc;
rdc_u_info_t *rdc_u_info, *urdc;
int rc;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
urdc = mdb_zalloc(sizeof (*urdc), UM_GC);
if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) {
mdb_warn("failed to read krdc at %p", addr);
return (DCMD_ERR);
}
if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) {
mdb_warn("failed to read 'rdc_u_info'");
return (DCMD_ERR);
}
urdc = &rdc_u_info[krdc->index];
rc = rdc_uinfo((uintptr_t)urdc, DCMD_ADDRSPEC, argc, argv);
return (rc);
}
static int
rdc_u2k(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_u_info_t *urdc;
rdc_k_info_t *rdc_k_info, *krdc;
int rc;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
urdc = mdb_zalloc(sizeof (*urdc), UM_GC);
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
if (mdb_vread(urdc, sizeof (*urdc), addr) != sizeof (*urdc)) {
mdb_warn("failed to read urdc at %p\n", addr);
return (DCMD_ERR);
}
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
krdc = &rdc_k_info[urdc->index];
rc = rdc_kinfo((uintptr_t)krdc, DCMD_ADDRSPEC, argc, argv);
return (rc);
}
#ifdef DEBUG
/*
* This routine is used to set the seq field in the rdc_kinfo->group
* structure. Used to test that the queue code handles the integer
* overflow correctly.
* Takes two arguments index and value.
* The index is the index into the kinfo structure array and
* the value is the new value to set into the seq field.
*/
/*ARGSUSED*/
static int
rdc_setseq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *rdc_k_info;
rdc_group_t *group;
int index;
uint_t val;
uintptr_t pokeaddr;
if (argc != 2) {
mdb_warn("must have two arguments, index and value\n");
return (DCMD_ERR);
}
index = (int)mdb_strtoull(argv[0].a_un.a_str);
val = (uint_t)mdb_strtoull(argv[1].a_un.a_str);
/*
* Find out where in memory the seq field.
* The structure offset first.
*/
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
pokeaddr = (uintptr_t)&rdc_k_info[index].group;
if (mdb_vread(&group, sizeof (rdc_group_t *), pokeaddr) !=
sizeof (rdc_group_t *)) {
mdb_warn("failed to fetch the group structure for set %d\n",
index);
return (DCMD_ERR);
}
pokeaddr = (uintptr_t)(&group->seq);
if (mdb_vwrite(&val, sizeof (val), pokeaddr) != sizeof (val)) {
mdb_warn("failed to write seq at %p\n", pokeaddr);
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*
* This routine is used to set the seqack field in the rdc_kinfo->group
* structure. Used to test that the queue code handles the integer
* overflow correctly.
* Takes two arguments index and value.
* The index is the index into the kinfo structure array and
* the value is the new value to set into the seqack field.
*/
/*ARGSUSED*/
static int
rdc_setseqack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *rdc_k_info;
rdc_group_t *group;
int index;
uint_t val;
uintptr_t pokeaddr;
if (argc != 2) {
mdb_warn("must have two arguments, index and value\n");
return (DCMD_ERR);
}
index = (int)mdb_strtoull(argv[0].a_un.a_str);
val = (uint_t)mdb_strtoull(argv[1].a_un.a_str);
/*
* Find out where in memory the seqack field.
* The structure offset first.
*/
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
pokeaddr = (uintptr_t)&rdc_k_info[index].group;
if (mdb_vread(&group, sizeof (rdc_group_t *), pokeaddr) !=
sizeof (rdc_group_t *)) {
mdb_warn("failed to fetch the group structure for set %d\n",
index);
return (DCMD_ERR);
}
pokeaddr = (uintptr_t)(&group->seqack);
if (mdb_vwrite(&val, sizeof (val), pokeaddr) != sizeof (val)) {
mdb_warn("failed to write seqack at %p\n", pokeaddr);
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*
* random define printing stuff, just does the define, and print the result
*/
/*ARGSUSED*/
static int
fba_to_log_num(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int num;
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
num = (int)mdb_strtoull(argv[0].a_un.a_str);
num = FBA_TO_LOG_NUM(num);
mdb_printf("LOG NUM: %d (0x%x)", num, num);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
log_to_fba_num(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int num;
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
num = (int)mdb_strtoull(argv[0].a_un.a_str);
num = LOG_TO_FBA_NUM(num);
mdb_printf("LOG NUM: %d (0x%x)", num, num);
return (DCMD_OK);
}
static int
bmap_bit_isset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int st;
int i, num;
rdc_k_info_t *krdc;
unsigned char *bmap;
unsigned char *bmaddr;
int bmsize;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) {
mdb_warn("failed to read rdc_k_info at %p", addr);
return (DCMD_ERR);
}
bmaddr = krdc->dcio_bitmap;
bmsize = krdc->bitmap_size;
bmap = mdb_zalloc(bmsize, UM_GC);
if (mdb_vread(bmap, bmsize, (uintptr_t)bmaddr) != bmsize) {
mdb_warn("failed to read bitmap");
return (DCMD_ERR);
}
num = (int)mdb_strtoull(argv[0].a_un.a_str);
st = FBA_TO_LOG_NUM(num);
i = BMAP_BIT_ISSET(bmap, st);
mdb_printf(" BIT (%d) for %x %s set (%02x)", st, num, i?"IS":"IS NOT",
bmap[IND_BYTE(st)] & 0xff);
return (DCMD_OK);
}
static int
bmap_bitref_isset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int num, st, i;
rdc_k_info_t *krdc;
unsigned char *brefbyte;
unsigned int *brefint;
void *bradder;
int brsize;
size_t refcntsize = sizeof (unsigned char);
struct bm_ref_ops *refops;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
krdc = mdb_zalloc(sizeof (*krdc), UM_GC);
if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) {
mdb_warn("failed to read rdc_k_info at %p", addr);
return (DCMD_ERR);
}
bradder = krdc->bitmap_ref;
refops = mdb_zalloc(sizeof (*refops), UM_GC);
if (mdb_vread(refops, sizeof (*refops), (uintptr_t)krdc->bm_refs) !=
sizeof (*refops)) {
mdb_warn("failed to read bm_refops at %p", krdc->bm_refs);
return (DCMD_ERR);
}
refcntsize = refops->bmap_ref_size;
brsize = krdc->bitmap_size * BITS_IN_BYTE * refcntsize;
if (refcntsize == sizeof (unsigned char)) {
brefbyte = mdb_zalloc(brsize, UM_GC);
if (mdb_vread(brefbyte, brsize, (uintptr_t)bradder) != brsize) {
mdb_warn("failed to read bitmap");
return (DCMD_ERR);
}
} else {
brefint = mdb_zalloc(brsize, UM_GC);
if (mdb_vread(brefint, brsize, (uintptr_t)bradder) != brsize) {
mdb_warn("failed to read bitmap");
return (DCMD_ERR);
}
}
num = (int)mdb_strtoull(argv[0].a_un.a_str);
st = FBA_TO_LOG_NUM(num);
if (refcntsize == sizeof (unsigned char))
i = brefbyte[st];
else
i = brefint[st];
mdb_printf("BITREF (%d) for %x %s set (%02x)", st, num, i?"IS":"IS NOT",
i);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
ind_byte(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int num;
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
num = FBA_TO_LOG_NUM((int)mdb_strtoull(argv[0].a_un.a_str));
mdb_printf("IND_BYTE: %d", IND_BYTE(num));
return (DCMD_OK);
}
/*ARGSUSED*/
static int
ind_bit(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int num;
if (argc < 1) {
mdb_warn("must have an argument\n");
return (DCMD_ERR);
}
num = FBA_TO_LOG_NUM((int)mdb_strtoull(argv[0].a_un.a_str));
mdb_printf("IND_BIT: %d 0x%x", IND_BIT(num), IND_BIT(num));
return (DCMD_OK);
}
static char *
print_bit(uint_t bitmask)
{
int bitval = 1;
int i;
bitstr[32] = '\0';
for (i = 31; i >= 0; i--) {
if (bitmask & bitval) {
bitstr[i] = '1';
} else {
bitstr[i] = '0';
}
bitval *= 2;
}
return (bitstr);
}
/*ARGSUSED*/
static int
rdc_bitmask(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t bitmask = 0;
int first, st, en, pos, len;
if (argc < 2) {
mdb_warn("must have 2 args (pos, len)\n");
return (DCMD_ERR);
}
pos = (int)mdb_strtoull(argv[0].a_un.a_str);
len = (int)mdb_strtoull(argv[1].a_un.a_str);
if (len <= 0) {
mdb_printf("non positive len specified");
return (DCMD_ERR);
}
if ((len - pos) > 2048) {
mdb_printf("len out of range, 32 bit bitmask");
return (DCMD_ERR);
}
first = st = FBA_TO_LOG_NUM(pos);
en = FBA_TO_LOG_NUM(pos + len - 1);
while (st <= en) {
BMAP_BIT_SET((uchar_t *)&bitmask, st - first);
st++;
}
mdb_printf("bitmask for POS: %d LEN: %d : 0x%08x (%s)", pos, len,
bitmask & 0xffffffff, print_bit(bitmask));
return (DCMD_OK);
}
/*
* Dump the bitmap of the krdc structure indicated by the index
* argument. Used by the ZatoIchi tests.
*/
/*ARGSUSED*/
static int
rdc_bmapdump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *rdc_k_info;
int index;
uintptr_t bmapaddr;
uintptr_t bmapdata;
unsigned char *data;
int bmapsize;
int i;
int st = 0;
int en = 0;
if (argc < 1) {
mdb_warn("must have index argument\n");
return (DCMD_ERR);
}
i = argc;
if (i == 3) {
en = (int)mdb_strtoull(argv[2].a_un.a_str);
en = FBA_TO_LOG_NUM(en);
i--;
}
if (i == 2) {
st = (int)mdb_strtoull(argv[1].a_un.a_str);
st = FBA_TO_LOG_NUM(st);
}
index = (int)mdb_strtoull(argv[0].a_un.a_str);
/*
* Find out where in memory the rdc_k_kinfo array starts
*/
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_size);
if (mdb_vread(&bmapsize, sizeof (bmapsize), bmapaddr)
!= sizeof (bmapsize)) {
mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr);
return (DCMD_ERR);
}
bmapaddr = (uintptr_t)(&rdc_k_info[index].dcio_bitmap);
if (mdb_vread(&bmapdata, sizeof (bmapdata), bmapaddr)
!= sizeof (bmapdata)) {
mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr);
return (DCMD_ERR);
}
data = mdb_zalloc(bmapsize, UM_SLEEP);
if (mdb_vread(data, bmapsize, bmapdata) != bmapsize) {
mdb_warn("failed to read the bitmap data\n");
mdb_free(data, bmapsize);
return (DCMD_ERR);
}
mdb_printf("bitmap data address 0x%p bitmap size %d\n"
"kinfo 0x%p\n", bmapdata, bmapsize, &rdc_k_info[index]);
if ((st < 0) || ((st/8) > bmapsize) || (en < 0)) {
mdb_warn("offset is out of range st %d bms %d en %d",
st, bmapsize, en);
return (DCMD_ERR);
}
if (((en/8) > bmapsize) || (en == 0))
en = bmapsize * 8;
mdb_printf("bit start pos: %d bit end pos: %d\n\n", st, en);
st /= 8;
en /= 8;
for (i = st; i < en; i++) {
mdb_printf("%02x ", data[i] & 0xff);
if ((i % 16) == 15) {
int s = LOG_TO_FBA_NUM((i-15)*8);
int e = LOG_TO_FBA_NUM(((i+1)*8)) - 1;
mdb_printf(" fbas: %x - %x\n", s, e);
}
}
mdb_printf("\n");
mdb_free(data, bmapsize);
return (DCMD_OK);
}
/*
* dump the bitmap reference count
*/
/*ARGSUSED*/
static int
rdc_brefdump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
rdc_k_info_t *rdc_k_info;
int index;
uintptr_t bmapaddr;
uintptr_t bmapdata;
unsigned char *data;
int bmapsize;
int i;
int st = 0;
int en = 0;
if (argc < 1) {
mdb_warn("must have index argument\n");
return (DCMD_ERR);
}
index = (int)mdb_strtoull(argv[0].a_un.a_str);
i = argc;
if (i == 3) {
en = (int)mdb_strtoull(argv[2].a_un.a_str);
en = FBA_TO_LOG_NUM(en);
i--;
}
if (i == 2) {
st = (int)mdb_strtoull(argv[1].a_un.a_str);
st = FBA_TO_LOG_NUM(st);
}
/*
* Find out where in memory the rdc_k_kinfo array starts
*/
if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) {
mdb_warn("failed to read 'rdc_k_info'");
return (DCMD_ERR);
}
bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_size);
if (mdb_vread(&bmapsize, sizeof (bmapsize), bmapaddr)
!= sizeof (bmapsize)) {
mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr);
return (DCMD_ERR);
}
bmapsize *= 8;
bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_ref);
if (mdb_vread(&bmapdata, sizeof (bmapdata), bmapaddr)
!= sizeof (bmapdata)) {
mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr);
return (DCMD_ERR);
}
data = mdb_zalloc(bmapsize, UM_SLEEP);
if (mdb_vread(data, bmapsize, bmapdata) != bmapsize) {
mdb_warn("failed to read the bitmap data\n");
mdb_free(data, bmapsize);
return (DCMD_ERR);
}
mdb_printf("bitmap data address 0x%p bitmap size %d\n"
"kinfo 0x%p\n", bmapdata, bmapsize, &rdc_k_info[index]);
if ((st < 0) || (st > bmapsize) || (en < 0)) {
mdb_warn("offset is out of range");
}
if ((en > bmapsize) || (en == 0))
en = bmapsize;
mdb_printf("bit start pos: %d bit end pos: %d\n\n", st, en);
for (i = st; i < en; i++) {
mdb_printf("%02x ", data[i] & 0xff);
if ((i % 16) == 15) {
int s = LOG_TO_FBA_NUM(i-15);
int e = LOG_TO_FBA_NUM(i+1) - 1;
mdb_printf(" fbas: 0x%x - 0x%x \n", s, e);
}
}
mdb_printf("\n");
mdb_free(data, bmapsize);
return (DCMD_OK);
}
static int
rdc_bmapnref(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_printf("\nRDC bitmap info\n");
rdc_bmapdump(addr, flags, argc, argv);
mdb_printf("RDC bitmap reference count info\n");
rdc_brefdump(addr, flags, argc, argv);
return (DCMD_OK);
}
#endif
/*
* MDB module linkage information:
*/
static const mdb_dcmd_t dcmds[] = {
{ "rdc", NULL, "display sndr module info", rdc },
{ "rdc_buf", "?[-v]", "rdc_buf structure", rdc_buf },
{ "rdc_kinfo", "?[-av]", "rdc_k_info structure", rdc_kinfo },
{ "rdc_uinfo", "?[-av]", "rdc_u_info structure", rdc_uinfo },
{ "rdc_group", "?", "rdc group structure", rdc_group },
{ "rdc_srv", "?", "rdc_srv structure", rdc_srv },
{ "rdc_if", "?", "rdc_if structure", rdc_if },
{ "rdc_infodev", "?", "rdc_info_dev structure", rdc_infodev },
{ "rdc_k2u", "?", "rdc_kinfo to rdc_uinfo", rdc_k2u },
{ "rdc_u2k", "?", "rdc_uinfo to rdc_kinfo", rdc_u2k },
{ "rdc_aio", "?", "rdc_aio structure", rdc_aio},
{ "rdc_iohdr", "?", "rdc_iohdr structure", rdc_iohdr},
#ifdef DEBUG
{ "rdc_setseq", "?", "Write seq field in group", rdc_setseq },
{ "rdc_setseqack", "?", "Write seqack field in group", rdc_setseqack },
{ "rdc_dset", "?", "Dump dset info", rdc_dset },
{ "rdc_bmapdump", "?", "Dump bitmap", rdc_bmapdump },
{ "rdc_brefdump", "?", "Dump bitmap reference count", rdc_brefdump },
{ "rdc_bmapnref", "?", "Dump bitmap and ref count", rdc_bmapnref },
{ "rdc_fba2log", "?", "fba to log num", fba_to_log_num },
{ "rdc_log2fba", "?", "log to fba num", log_to_fba_num },
{ "rdc_bitisset", "?", "check bit set", bmap_bit_isset },
{ "rdc_brefisset", "?", "check bit ref set", bmap_bitref_isset },
{ "rdc_indbyte", "?", "print indbyte", ind_byte },
{ "rdc_indbit", "?", "print indbit", ind_bit },
{ "rdc_bitmask", "?", "print bitmask for pos->len", rdc_bitmask },
#endif
{ NULL }
};
static const mdb_walker_t walkers[] = {
{ "rdc_kinfo", "walk the rdc_k_info array",
rdc_k_info_winit, rdc_k_info_wstep, rdc_k_info_wfini },
{ "rdc_uinfo", "walk the rdc_u_info array",
rdc_u_info_winit, rdc_u_info_wstep, rdc_u_info_wfini },
{ "rdc_if", "walk rdc_if chain",
rdc_if_winit, rdc_if_wstep, rdc_if_wfini },
{ NULL }
};
static const mdb_modinfo_t modinfo = {
MDB_API_VERSION, dcmds, walkers
};
const mdb_modinfo_t *
_mdb_init(void)
{
return (&modinfo);
}