/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012 Milan Jurik. All rights reserved.
*/
#include <limits.h>
#include <sys/mdb_modapi.h>
#include <mdb/mdb_ctf.h>
#include <sys/sysinfo.h>
#include <sys/byteorder.h>
#include <sys/nvpair.h>
#include <sys/damap.h>
#include <sys/scsi/scsi.h>
#include <sys/scsi/adapters/pmcs/pmcs.h>
#ifndef _KMDB
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#endif /* _KMDB */
/*
* We need use this to pass the settings when display_iport
*/
typedef struct per_iport_setting {
uint_t pis_damap_info; /* -m: DAM/damap */
uint_t pis_dtc_info; /* -d: device tree children: dev_info/path_info */
} per_iport_setting_t;
/*
* This structure is used for sorting work structures by the wserno
*/
typedef struct wserno_list {
int serno;
int idx;
struct wserno_list *next;
struct wserno_list *prev;
} wserno_list_t;
#define MDB_RD(a, b, c) mdb_vread(a, b, (uintptr_t)c)
#define NOREAD(a, b) mdb_warn("could not read " #a " at 0x%p", b)
static pmcs_hw_t ss;
static pmcs_xscsi_t **targets = NULL;
static int target_idx;
static uint32_t sas_phys, sata_phys, exp_phys, num_expanders, empty_phys;
static pmcs_phy_t *pmcs_next_sibling(pmcs_phy_t *phyp);
static void display_one_work(pmcwork_t *wp, int verbose, int idx);
static void
print_sas_address(pmcs_phy_t *phy)
{
int idx;
for (idx = 0; idx < 8; idx++) {
mdb_printf("%02x", phy->sas_address[idx]);
}
}
static void
pmcs_fwtime_to_systime(struct pmcs_hw ss, uint32_t fw_hi, uint32_t fw_lo,
struct timespec *stime)
{
uint64_t fwtime;
time_t secs;
long nsecs;
boolean_t backward_time = B_FALSE;
fwtime = ((uint64_t)fw_hi << 32) | fw_lo;
/*
* If fwtime < ss.fw_timestamp, then we need to adjust the clock
* time backwards from ss.sys_timestamp. Otherwise, the adjustment
* goes forward in time
*/
if (fwtime >= ss.fw_timestamp) {
fwtime -= ss.fw_timestamp;
} else {
fwtime = ss.fw_timestamp - fwtime;
backward_time = B_TRUE;
}
secs = ((time_t)fwtime / NSECS_PER_SEC);
nsecs = ((long)fwtime % NSECS_PER_SEC);
stime->tv_sec = ss.sys_timestamp.tv_sec;
stime->tv_nsec = ss.sys_timestamp.tv_nsec;
if (backward_time) {
if (stime->tv_nsec < nsecs) {
stime->tv_sec--;
stime->tv_nsec = stime->tv_nsec + NSECS_PER_SEC - nsecs;
} else {
stime->tv_nsec -= nsecs;
}
stime->tv_sec -= secs;
} else {
if (stime->tv_nsec + nsecs > NSECS_PER_SEC) {
stime->tv_sec++;
}
stime->tv_nsec = (stime->tv_nsec + nsecs) % NSECS_PER_SEC;
stime->tv_sec += secs;
}
}
/*ARGSUSED*/
static void
display_ic(struct pmcs_hw m, int verbose)
{
int msec_per_tick;
if (mdb_readvar(&msec_per_tick, "msec_per_tick") == -1) {
mdb_warn("can't read msec_per_tick");
msec_per_tick = 0;
}
mdb_printf("\n");
mdb_printf("Interrupt coalescing timer info\n");
mdb_printf("-------------------------------\n");
if (msec_per_tick == 0) {
mdb_printf("Quantum : ?? ms\n");
} else {
mdb_printf("Quantum : %d ms\n",
m.io_intr_coal.quantum * msec_per_tick);
}
mdb_printf("Timer enabled : ");
if (m.io_intr_coal.timer_on) {
mdb_printf("Yes\n");
mdb_printf("Coalescing timer value : %d us\n",
m.io_intr_coal.intr_coal_timer);
} else {
mdb_printf("No\n");
}
mdb_printf("Total nsecs between interrupts: %ld\n",
m.io_intr_coal.nsecs_between_intrs);
mdb_printf("Time of last I/O interrupt : %ld\n",
m.io_intr_coal.last_io_comp);
mdb_printf("Number of I/O interrupts : %d\n",
m.io_intr_coal.num_intrs);
mdb_printf("Number of I/O completions : %d\n",
m.io_intr_coal.num_io_completions);
mdb_printf("Max I/O completion interrupts : %d\n",
m.io_intr_coal.max_io_completions);
mdb_printf("Measured ECHO int latency : %d ns\n",
m.io_intr_coal.intr_latency);
mdb_printf("Interrupt threshold : %d\n",
m.io_intr_coal.intr_threshold);
}
/*ARGSUSED*/
static int
pmcs_iport_phy_walk_cb(uintptr_t addr, const void *wdata, void *priv)
{
struct pmcs_phy phy;
if (mdb_vread(&phy, sizeof (struct pmcs_phy), addr) !=
sizeof (struct pmcs_phy)) {
return (DCMD_ERR);
}
mdb_printf("%16p %2d\n", addr, phy.phynum);
return (0);
}
static int
display_iport_damap(dev_info_t *pdip)
{
int rval = DCMD_ERR;
struct dev_info dip;
scsi_hba_tran_t sht;
mdb_ctf_id_t istm_ctfid; /* impl_scsi_tgtmap_t ctf_id */
ulong_t tmd_offset = 0; /* tgtmap_dam offset to impl_scsi_tgtmap_t */
uintptr_t dam0;
uintptr_t dam1;
if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)pdip) !=
sizeof (struct dev_info)) {
return (rval);
}
if (dip.devi_driver_data == NULL) {
return (rval);
}
if (mdb_vread(&sht, sizeof (scsi_hba_tran_t),
(uintptr_t)dip.devi_driver_data) != sizeof (scsi_hba_tran_t)) {
return (rval);
}
if (sht.tran_tgtmap == NULL) {
return (rval);
}
if (mdb_ctf_lookup_by_name("impl_scsi_tgtmap_t", &istm_ctfid) != 0) {
return (rval);
}
if (mdb_ctf_offsetof(istm_ctfid, "tgtmap_dam", &tmd_offset) != 0) {
return (rval);
}
tmd_offset /= NBBY;
mdb_vread(&dam0, sizeof (dam0),
(uintptr_t)(tmd_offset + (char *)sht.tran_tgtmap));
mdb_vread(&dam1, sizeof (dam1),
(uintptr_t)(sizeof (dam0) + tmd_offset + (char *)sht.tran_tgtmap));
if (dam0 != NULL) {
rval = mdb_call_dcmd("damap", dam0, DCMD_ADDRSPEC, 0, NULL);
mdb_printf("\n");
if (rval != DCMD_OK) {
return (rval);
}
}
if (dam1 != NULL) {
rval = mdb_call_dcmd("damap", dam1, DCMD_ADDRSPEC, 0, NULL);
mdb_printf("\n");
}
return (rval);
}
/* ARGSUSED */
static int
display_iport_di_cb(uintptr_t addr, const void *wdata, void *priv)
{
uint_t *idx = (uint_t *)priv;
struct dev_info dip;
char devi_name[MAXNAMELEN];
char devi_addr[MAXNAMELEN];
if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)addr) !=
sizeof (struct dev_info)) {
return (DCMD_ERR);
}
if (mdb_readstr(devi_name, sizeof (devi_name),
(uintptr_t)dip.devi_node_name) == -1) {
devi_name[0] = '?';
devi_name[1] = '\0';
}
if (mdb_readstr(devi_addr, sizeof (devi_addr),
(uintptr_t)dip.devi_addr) == -1) {
devi_addr[0] = '?';
devi_addr[1] = '\0';
}
mdb_printf(" %3d: @%-21s%10s@\t%p::devinfo -s\n",
(*idx)++, devi_addr, devi_name, addr);
return (DCMD_OK);
}
/* ARGSUSED */
static int
display_iport_pi_cb(uintptr_t addr, const void *wdata, void *priv)
{
uint_t *idx = (uint_t *)priv;
struct mdi_pathinfo mpi;
char pi_addr[MAXNAMELEN];
if (mdb_vread(&mpi, sizeof (struct mdi_pathinfo), (uintptr_t)addr) !=
sizeof (struct mdi_pathinfo)) {
return (DCMD_ERR);
}
if (mdb_readstr(pi_addr, sizeof (pi_addr),
(uintptr_t)mpi.pi_addr) == -1) {
pi_addr[0] = '?';
pi_addr[1] = '\0';
}
mdb_printf(" %3d: @%-21s %p::print struct mdi_pathinfo\n",
(*idx)++, pi_addr, addr);
return (DCMD_OK);
}
static int
display_iport_dtc(dev_info_t *pdip)
{
int rval = DCMD_ERR;
struct dev_info dip;
struct mdi_phci phci;
uint_t didx = 1;
uint_t pidx = 1;
if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)pdip) !=
sizeof (struct dev_info)) {
return (rval);
}
mdb_printf("Device tree children - dev_info:\n");
if (dip.devi_child == NULL) {
mdb_printf("\tdevi_child is NULL, no dev_info\n\n");
goto skip_di;
}
/*
* First, we dump the iport's children dev_info node information.
* use existing walker: devinfo_siblings
*/
mdb_printf("\t#: @unit-address name@\tdrill-down\n");
rval = mdb_pwalk("devinfo_siblings", display_iport_di_cb,
(void *)&didx, (uintptr_t)dip.devi_child);
mdb_printf("\n");
skip_di:
/*
* Then we try to dump the iport's path_info node information.
* use existing walker: mdipi_phci_list
*/
mdb_printf("Device tree children - path_info:\n");
if (mdb_vread(&phci, sizeof (struct mdi_phci),
(uintptr_t)dip.devi_mdi_xhci) != sizeof (struct mdi_phci)) {
mdb_printf("\tdevi_mdi_xhci is NULL, no path_info\n\n");
return (rval);
}
if (phci.ph_path_head == NULL) {
mdb_printf("\tph_path_head is NULL, no path_info\n\n");
return (rval);
}
mdb_printf("\t#: @unit-address drill-down\n");
rval = mdb_pwalk("mdipi_phci_list", display_iport_pi_cb,
(void *)&pidx, (uintptr_t)phci.ph_path_head);
mdb_printf("\n");
return (rval);
}
static void
display_iport_more(dev_info_t *dip, per_iport_setting_t *pis)
{
if (pis->pis_damap_info) {
(void) display_iport_damap(dip);
}
if (pis->pis_dtc_info) {
(void) display_iport_dtc(dip);
}
}
/*ARGSUSED*/
static int
pmcs_iport_walk_cb(uintptr_t addr, const void *wdata, void *priv)
{
struct pmcs_iport iport;
uintptr_t list_addr;
char *ua_state;
char portid[4];
char unit_address[34];
per_iport_setting_t *pis = (per_iport_setting_t *)priv;
if (mdb_vread(&iport, sizeof (struct pmcs_iport), addr) !=
sizeof (struct pmcs_iport)) {
return (DCMD_ERR);
}
if (mdb_readstr(unit_address, sizeof (unit_address),
(uintptr_t)(iport.ua)) == -1) {
strncpy(unit_address, "Unset", sizeof (unit_address));
}
if (iport.portid == 0xffff) {
mdb_snprintf(portid, sizeof (portid), "%s", "-");
} else if (iport.portid == PMCS_IPORT_INVALID_PORT_ID) {
mdb_snprintf(portid, sizeof (portid), "%s", "N/A");
} else {
mdb_snprintf(portid, sizeof (portid), "%d", iport.portid);
}
switch (iport.ua_state) {
case UA_INACTIVE:
ua_state = "Inactive";
break;
case UA_PEND_ACTIVATE:
ua_state = "PendActivate";
break;
case UA_ACTIVE:
ua_state = "Active";
break;
case UA_PEND_DEACTIVATE:
ua_state = "PendDeactivate";
break;
default:
ua_state = "Unknown";
}
if (strlen(unit_address) < 3) {
/* Standard iport unit address */
mdb_printf("UA %-16s %16s %8s %8s %16s", "Iport", "UA State",
"PortID", "NumPhys", "DIP\n");
mdb_printf("%2s %16p %16s %8s %8d %16p\n", unit_address, addr,
ua_state, portid, iport.nphy, iport.dip);
} else {
/* Temporary iport unit address */
mdb_printf("%-32s %16s %20s %8s %8s %16s", "UA", "Iport",
"UA State", "PortID", "NumPhys", "DIP\n");
mdb_printf("%32s %16p %20s %8s %8d %16p\n", unit_address, addr,
ua_state, portid, iport.nphy, iport.dip);
}
if (iport.nphy > 0) {
mdb_inc_indent(4);
mdb_printf("%-18s %8s", "Phy", "PhyNum\n");
mdb_inc_indent(2);
list_addr =
(uintptr_t)(addr + offsetof(struct pmcs_iport, phys));
if (mdb_pwalk("list", pmcs_iport_phy_walk_cb, NULL,
list_addr) == -1) {
mdb_warn("pmcs iport walk failed");
}
mdb_dec_indent(6);
mdb_printf("\n");
}
/*
* See if we need to show more information based on 'd' or 'm' options
*/
display_iport_more(iport.dip, pis);
return (0);
}
/*ARGSUSED*/
static void
display_iport(struct pmcs_hw m, uintptr_t addr, int verbose,
per_iport_setting_t *pis)
{
uintptr_t list_addr;
if (m.iports_attached) {
mdb_printf("Iport information:\n");
mdb_printf("-----------------\n");
} else {
mdb_printf("No Iports found.\n\n");
return;
}
list_addr = (uintptr_t)(addr + offsetof(struct pmcs_hw, iports));
if (mdb_pwalk("list", pmcs_iport_walk_cb, pis, list_addr) == -1) {
mdb_warn("pmcs iport walk failed");
}
mdb_printf("\n");
}
/* ARGSUSED */
static int
pmcs_utarget_walk_cb(uintptr_t addr, const void *wdata, void *priv)
{
pmcs_phy_t phy;
if (mdb_vread(&phy, sizeof (pmcs_phy_t), (uintptr_t)addr) == -1) {
mdb_warn("pmcs_utarget_walk_cb: Failed to read PHY at %p",
(void *)addr);
return (DCMD_ERR);
}
if (phy.configured && (phy.target == NULL)) {
mdb_printf("SAS address: ");
print_sas_address(&phy);
mdb_printf(" DType: ");
switch (phy.dtype) {
case SAS:
mdb_printf("%4s", "SAS");
break;
case SATA:
mdb_printf("%4s", "SATA");
break;
case EXPANDER:
mdb_printf("%4s", "SMP");
break;
default:
mdb_printf("%4s", "N/A");
break;
}
mdb_printf(" Path: %s\n", phy.path);
}
return (0);
}
static void
display_unconfigured_targets(uintptr_t addr)
{
mdb_printf("Unconfigured target SAS address:\n\n");
if (mdb_pwalk("pmcs_phys", pmcs_utarget_walk_cb, NULL, addr) == -1) {
mdb_warn("pmcs phys walk failed");
}
}
static void
display_completion_queue(struct pmcs_hw ss)
{
pmcs_iocomp_cb_t ccb, *ccbp;
pmcwork_t work;
if (ss.iocomp_cb_head == NULL) {
mdb_printf("Completion queue is empty.\n");
return;
}
ccbp = ss.iocomp_cb_head;
mdb_printf("%8s %10s %20s %8s %8s O D\n",
"HTag", "State", "Phy Path", "Target", "Timer");
while (ccbp) {
if (mdb_vread(&ccb, sizeof (pmcs_iocomp_cb_t),
(uintptr_t)ccbp) != sizeof (pmcs_iocomp_cb_t)) {
mdb_warn("Unable to read completion queue entry\n");
return;
}
if (mdb_vread(&work, sizeof (pmcwork_t), (uintptr_t)ccb.pwrk)
!= sizeof (pmcwork_t)) {
mdb_warn("Unable to read work structure\n");
return;
}
/*
* Only print the work structure if it's still active. If
* it's not, it's been completed since we started looking at
* it.
*/
if (work.state != PMCS_WORK_STATE_NIL) {
display_one_work(&work, 0, 0);
}
ccbp = ccb.next;
}
}
static void
display_event_log(struct pmcs_hw ss)
{
pmcs_fw_event_hdr_t fwhdr;
char *header_id, *entry, *fwlogp;
uint32_t total_size = PMCS_FWLOG_SIZE, log_size, index, *swapp, sidx;
pmcs_fw_event_entry_t *fw_entryp;
struct timespec systime;
if (ss.fwlogp == NULL) {
mdb_printf("There is no firmware event log.\n");
return;
}
fwlogp = (char *)ss.fwlogp;
while (total_size != 0) {
if (mdb_vread(&fwhdr, sizeof (pmcs_fw_event_hdr_t),
(uintptr_t)fwlogp) != sizeof (pmcs_fw_event_hdr_t)) {
mdb_warn("Unable to read firmware event log header\n");
return;
}
/*
* Firmware event log is little-endian
*/
swapp = (uint32_t *)&fwhdr;
for (sidx = 0; sidx < (sizeof (pmcs_fw_event_hdr_t) /
sizeof (uint32_t)); sidx++) {
*swapp = LE_32(*swapp);
swapp++;
}
if (fwhdr.fw_el_signature == PMCS_FWLOG_AAP1_SIG) {
header_id = "AAP1";
} else if (fwhdr.fw_el_signature == PMCS_FWLOG_IOP_SIG) {
header_id = "IOP";
} else {
mdb_warn("Invalid firmware event log signature\n");
return;
}
mdb_printf("Event Log: %s\n", header_id);
mdb_printf("Oldest entry: %d\n", fwhdr.fw_el_oldest_idx);
mdb_printf("Latest entry: %d\n", fwhdr.fw_el_latest_idx);
entry = mdb_alloc(fwhdr.fw_el_entry_size, UM_SLEEP);
fw_entryp = (pmcs_fw_event_entry_t *)((void *)entry);
total_size -= sizeof (pmcs_fw_event_hdr_t);
log_size = fwhdr.fw_el_buf_size;
fwlogp += fwhdr.fw_el_entry_start_offset;
swapp = (uint32_t *)((void *)entry);
index = 0;
mdb_printf("%8s %16s %32s %8s %3s %8s %8s %8s %8s",
"Index", "Timestamp", "Time", "Seq Num", "Sev", "Word 0",
"Word 1", "Word 2", "Word 3");
mdb_printf("\n");
while (log_size != 0) {
if (mdb_vread(entry, fwhdr.fw_el_entry_size,
(uintptr_t)fwlogp) != fwhdr.fw_el_entry_size) {
mdb_warn("Unable to read event log entry\n");
goto bail_out;
}
for (sidx = 0; sidx < (fwhdr.fw_el_entry_size /
sizeof (uint32_t)); sidx++) {
*(swapp + sidx) = LE_32(*(swapp + sidx));
}
if (fw_entryp->ts_upper || fw_entryp->ts_lower) {
pmcs_fwtime_to_systime(ss, fw_entryp->ts_upper,
fw_entryp->ts_lower, &systime);
mdb_printf("%8d %08x%08x [%Y.%09ld] %8d %3d "
"%08x %08x %08x %08x\n", index,
fw_entryp->ts_upper, fw_entryp->ts_lower,
systime, fw_entryp->seq_num,
fw_entryp->severity, fw_entryp->logw0,
fw_entryp->logw1, fw_entryp->logw2,
fw_entryp->logw3);
}
fwlogp += fwhdr.fw_el_entry_size;
total_size -= fwhdr.fw_el_entry_size;
log_size -= fwhdr.fw_el_entry_size;
index++;
}
mdb_printf("\n");
}
bail_out:
mdb_free(entry, fwhdr.fw_el_entry_size);
}
/*ARGSUSED*/
static void
display_hwinfo(struct pmcs_hw m, int verbose)
{
struct pmcs_hw *mp = &m;
char *fwsupport;
switch (PMCS_FW_TYPE(mp)) {
case PMCS_FW_TYPE_RELEASED:
fwsupport = "Released";
break;
case PMCS_FW_TYPE_DEVELOPMENT:
fwsupport = "Development";
break;
case PMCS_FW_TYPE_ALPHA:
fwsupport = "Alpha";
break;
case PMCS_FW_TYPE_BETA:
fwsupport = "Beta";
break;
default:
fwsupport = "Special";
break;
}
mdb_printf("\nHardware information:\n");
mdb_printf("---------------------\n");
mdb_printf("Chip revision: %c\n", 'A' + m.chiprev);
mdb_printf("SAS WWID: %"PRIx64"\n", m.sas_wwns[0]);
mdb_printf("Firmware version: %x.%x.%x (%s)\n",
PMCS_FW_MAJOR(mp), PMCS_FW_MINOR(mp), PMCS_FW_MICRO(mp),
fwsupport);
mdb_printf("ILA version: %08x\n", m.ila_ver);
mdb_printf("Active f/w img: %c\n", (m.fw_active_img) ? 'A' : 'B');
mdb_printf("Number of PHYs: %d\n", m.nphy);
mdb_printf("Maximum commands: %d\n", m.max_cmd);
mdb_printf("Maximum devices: %d\n", m.max_dev);
mdb_printf("I/O queue depth: %d\n", m.ioq_depth);
mdb_printf("Open retry intvl: %d usecs\n", m.open_retry_interval);
if (m.fwlog == 0) {
mdb_printf("Firmware logging: Disabled\n");
} else {
mdb_printf("Firmware logging: Enabled (%d)\n", m.fwlog);
}
if (m.fwlog_file == 0) {
mdb_printf("Firmware logfile: Not configured\n");
} else {
mdb_printf("Firmware logfile: Configured\n");
mdb_inc_indent(2);
mdb_printf("AAP1 log file: %s\n", m.fwlogfile_aap1);
mdb_printf("IOP logfile: %s\n", m.fwlogfile_iop);
mdb_dec_indent(2);
}
}
static void
display_targets(struct pmcs_hw m, int verbose, int totals_only)
{
char *dtype;
pmcs_xscsi_t xs;
pmcs_phy_t phy;
uint16_t max_dev, idx;
uint32_t sas_targets = 0, smp_targets = 0, sata_targets = 0;
max_dev = m.max_dev;
if (targets == NULL) {
targets = mdb_alloc(sizeof (targets) * max_dev, UM_SLEEP);
}
if (MDB_RD(targets, sizeof (targets) * max_dev, m.targets) == -1) {
NOREAD(targets, m.targets);
return;
}
if (!totals_only) {
mdb_printf("\nTarget information:\n");
mdb_printf("---------------------------------------\n");
mdb_printf("VTGT %-16s %-16s %-5s %4s %6s %s", "SAS Address",
"PHY Address", "DType", "Actv", "OnChip", "DS");
mdb_printf("\n");
}
for (idx = 0; idx < max_dev; idx++) {
if (targets[idx] == NULL) {
continue;
}
if (MDB_RD(&xs, sizeof (xs), targets[idx]) == -1) {
NOREAD(pmcs_xscsi_t, targets[idx]);
continue;
}
/*
* It has to be new or assigned to be of interest.
*/
if (xs.new == 0 && xs.assigned == 0) {
continue;
}
switch (xs.dtype) {
case NOTHING:
dtype = "None";
break;
case SATA:
dtype = "SATA";
sata_targets++;
break;
case SAS:
dtype = "SAS";
sas_targets++;
break;
case EXPANDER:
dtype = "SMP";
smp_targets++;
break;
}
if (totals_only) {
continue;
}
if (xs.phy) {
if (MDB_RD(&phy, sizeof (phy), xs.phy) == -1) {
NOREAD(pmcs_phy_t, xs.phy);
continue;
}
mdb_printf("%4d ", idx);
print_sas_address(&phy);
mdb_printf(" %16p", xs.phy);
} else {
mdb_printf("%4d %16s", idx, "<no phy avail>");
}
mdb_printf(" %5s", dtype);
mdb_printf(" %4d", xs.actv_pkts);
mdb_printf(" %6d", xs.actv_cnt);
mdb_printf(" %2d", xs.dev_state);
if (verbose) {
if (xs.new) {
mdb_printf(" new");
}
if (xs.assigned) {
mdb_printf(" assigned");
}
if (xs.draining) {
mdb_printf(" draining");
}
if (xs.reset_wait) {
mdb_printf(" reset_wait");
}
if (xs.resetting) {
mdb_printf(" resetting");
}
if (xs.recover_wait) {
mdb_printf(" recover_wait");
}
if (xs.recovering) {
mdb_printf(" recovering");
}
if (xs.event_recovery) {
mdb_printf(" event recovery");
}
if (xs.special_running) {
mdb_printf(" special_active");
}
if (xs.ncq) {
mdb_printf(" ncq_tagmap=0x%x qdepth=%d",
xs.tagmap, xs.qdepth);
} else if (xs.pio) {
mdb_printf(" pio");
}
}
mdb_printf("\n");
}
if (!totals_only) {
mdb_printf("\n");
}
mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP)\n",
"Configured targets:", (sas_targets + sata_targets + smp_targets),
sas_targets, sata_targets, smp_targets);
}
static char *
work_state_to_string(uint32_t state)
{
char *state_string;
switch (state) {
case PMCS_WORK_STATE_NIL:
state_string = "Free";
break;
case PMCS_WORK_STATE_READY:
state_string = "Ready";
break;
case PMCS_WORK_STATE_ONCHIP:
state_string = "On Chip";
break;
case PMCS_WORK_STATE_INTR:
state_string = "In Intr";
break;
case PMCS_WORK_STATE_IOCOMPQ:
state_string = "I/O Comp";
break;
case PMCS_WORK_STATE_ABORTED:
state_string = "I/O Aborted";
break;
case PMCS_WORK_STATE_TIMED_OUT:
state_string = "I/O Timed Out";
break;
default:
state_string = "INVALID";
break;
}
return (state_string);
}
static void
display_one_work(pmcwork_t *wp, int verbose, int idx)
{
char *state, *last_state;
char *path;
pmcs_xscsi_t xs;
pmcs_phy_t phy;
int tgt;
state = work_state_to_string(wp->state);
last_state = work_state_to_string(wp->last_state);
if (wp->ssp_event && wp->ssp_event != 0xffffffff) {
mdb_printf("SSP event 0x%x", wp->ssp_event);
}
tgt = -1;
if (wp->xp) {
if (MDB_RD(&xs, sizeof (xs), wp->xp) == -1) {
NOREAD(pmcs_xscsi_t, wp->xp);
} else {
tgt = xs.target_num;
}
}
if (wp->phy) {
if (MDB_RD(&phy, sizeof (phy), wp->phy) == -1) {
NOREAD(pmcs_phy_t, wp->phy);
}
path = phy.path;
} else {
path = "N/A";
}
if (verbose) {
mdb_printf("%4d ", idx);
}
if (tgt == -1) {
mdb_printf("%08x %10s %20s N/A %8u %1d %1d ",
wp->htag, state, path, wp->timer,
wp->onwire, wp->dead);
} else {
mdb_printf("%08x %10s %20s %8d %8u %1d %1d ",
wp->htag, state, path, tgt, wp->timer,
wp->onwire, wp->dead);
}
if (verbose) {
mdb_printf("%08x %10s 0x%016p 0x%016p 0x%016p\n",
wp->last_htag, last_state, wp->last_phy, wp->last_xp,
wp->last_arg);
} else {
mdb_printf("\n");
}
}
static void
display_work(struct pmcs_hw m, int verbose, int wserno)
{
int idx;
boolean_t header_printed = B_FALSE;
pmcwork_t *wp;
wserno_list_t *sernop, *sp, *newsp, *sphead = NULL;
uintptr_t _wp;
int serno;
wp = mdb_alloc(sizeof (pmcwork_t) * m.max_cmd, UM_SLEEP);
_wp = (uintptr_t)m.work;
sernop = mdb_alloc(sizeof (wserno_list_t) * m.max_cmd, UM_SLEEP);
bzero(sernop, sizeof (wserno_list_t) * m.max_cmd);
mdb_printf("\nActive Work structure information:\n");
mdb_printf("----------------------------------\n");
/*
* Read in all the work structures
*/
for (idx = 0; idx < m.max_cmd; idx++, _wp += sizeof (pmcwork_t)) {
if (MDB_RD(wp + idx, sizeof (pmcwork_t), _wp) == -1) {
NOREAD(pmcwork_t, _wp);
continue;
}
}
/*
* Sort by serial number?
*/
if (wserno) {
for (idx = 0; idx < m.max_cmd; idx++) {
if ((wp + idx)->htag == 0) {
serno = PMCS_TAG_SERNO((wp + idx)->last_htag);
} else {
serno = PMCS_TAG_SERNO((wp + idx)->htag);
}
/* Start at the beginning of the list */
sp = sphead;
newsp = sernop + idx;
/* If this is the first entry, just add it */
if (sphead == NULL) {
sphead = sernop;
sphead->serno = serno;
sphead->idx = idx;
sphead->next = NULL;
sphead->prev = NULL;
continue;
}
newsp->serno = serno;
newsp->idx = idx;
/* Find out where in the list this goes */
while (sp) {
/* This item goes before sp */
if (serno < sp->serno) {
newsp->next = sp;
newsp->prev = sp->prev;
if (newsp->prev == NULL) {
sphead = newsp;
} else {
newsp->prev->next = newsp;
}
sp->prev = newsp;
break;
}
/*
* If sp->next is NULL, this entry goes at the
* end of the list
*/
if (sp->next == NULL) {
sp->next = newsp;
newsp->next = NULL;
newsp->prev = sp;
break;
}
sp = sp->next;
}
}
/*
* Now print the sorted list
*/
mdb_printf(" Idx %8s %10s %20s %8s %8s O D ",
"HTag", "State", "Phy Path", "Target", "Timer");
mdb_printf("%8s %10s %18s %18s %18s\n", "LastHTAG",
"LastState", "LastPHY", "LastTgt", "LastArg");
sp = sphead;
while (sp) {
display_one_work(wp + sp->idx, 1, sp->idx);
sp = sp->next;
}
goto out;
}
/*
* Now print the list, sorted by index
*/
for (idx = 0; idx < m.max_cmd; idx++) {
if (!verbose && ((wp + idx)->htag == PMCS_TAG_TYPE_FREE)) {
continue;
}
if (header_printed == B_FALSE) {
if (verbose) {
mdb_printf("%4s ", "Idx");
}
mdb_printf("%8s %10s %20s %8s %8s O D ",
"HTag", "State", "Phy Path", "Target", "Timer");
if (verbose) {
mdb_printf("%8s %10s %18s %18s %18s\n",
"LastHTAG", "LastState", "LastPHY",
"LastTgt", "LastArg");
} else {
mdb_printf("\n");
}
header_printed = B_TRUE;
}
display_one_work(wp + idx, verbose, idx);
}
out:
mdb_free(wp, sizeof (pmcwork_t) * m.max_cmd);
mdb_free(sernop, sizeof (wserno_list_t) * m.max_cmd);
}
static void
print_spcmd(pmcs_cmd_t *sp, void *kaddr, int printhdr, int verbose)
{
int cdb_size, idx;
struct scsi_pkt pkt;
uchar_t cdb[256];
if (printhdr) {
if (verbose) {
mdb_printf("%16s %16s %16s %8s %s CDB\n", "Command",
"SCSA pkt", "DMA Chunks", "HTAG", "SATL Tag");
} else {
mdb_printf("%16s %16s %16s %8s %s\n", "Command",
"SCSA pkt", "DMA Chunks", "HTAG", "SATL Tag");
}
}
mdb_printf("%16p %16p %16p %08x %08x ",
kaddr, sp->cmd_pkt, sp->cmd_clist, sp->cmd_tag, sp->cmd_satltag);
/*
* If we're printing verbose, dump the CDB as well.
*/
if (verbose) {
if (sp->cmd_pkt) {
if (mdb_vread(&pkt, sizeof (struct scsi_pkt),
(uintptr_t)sp->cmd_pkt) !=
sizeof (struct scsi_pkt)) {
mdb_warn("Unable to read SCSI pkt\n");
return;
}
cdb_size = pkt.pkt_cdblen;
if (mdb_vread(&cdb[0], cdb_size,
(uintptr_t)pkt.pkt_cdbp) != cdb_size) {
mdb_warn("Unable to read CDB\n");
return;
}
for (idx = 0; idx < cdb_size; idx++) {
mdb_printf("%02x ", cdb[idx]);
}
} else {
mdb_printf("N/A");
}
mdb_printf("\n");
} else {
mdb_printf("\n");
}
}
/*ARGSUSED1*/
static void
display_waitqs(struct pmcs_hw m, int verbose)
{
pmcs_cmd_t *sp, s;
pmcs_xscsi_t xs;
int first, i;
int max_dev = m.max_dev;
sp = m.dq.stqh_first;
first = 1;
while (sp) {
if (first) {
mdb_printf("\nDead Command Queue:\n");
mdb_printf("---------------------------\n");
}
if (MDB_RD(&s, sizeof (s), sp) == -1) {
NOREAD(pmcs_cmd_t, sp);
break;
}
print_spcmd(&s, sp, first, verbose);
sp = s.cmd_next.stqe_next;
first = 0;
}
sp = m.cq.stqh_first;
first = 1;
while (sp) {
if (first) {
mdb_printf("\nCompletion Command Queue:\n");
mdb_printf("---------------------------\n");
}
if (MDB_RD(&s, sizeof (s), sp) == -1) {
NOREAD(pmcs_cmd_t, sp);
break;
}
print_spcmd(&s, sp, first, verbose);
sp = s.cmd_next.stqe_next;
first = 0;
}
if (targets == NULL) {
targets = mdb_alloc(sizeof (targets) * max_dev, UM_SLEEP);
}
if (MDB_RD(targets, sizeof (targets) * max_dev, m.targets) == -1) {
NOREAD(targets, m.targets);
return;
}
for (i = 0; i < max_dev; i++) {
if (targets[i] == NULL) {
continue;
}
if (MDB_RD(&xs, sizeof (xs), targets[i]) == -1) {
NOREAD(pmcs_xscsi_t, targets[i]);
continue;
}
sp = xs.wq.stqh_first;
first = 1;
while (sp) {
if (first) {
mdb_printf("\nTarget %u Wait Queue:\n",
xs.target_num);
mdb_printf("---------------------------\n");
}
if (MDB_RD(&s, sizeof (s), sp) == -1) {
NOREAD(pmcs_cmd_t, sp);
break;
}
print_spcmd(&s, sp, first, verbose);
sp = s.cmd_next.stqe_next;
first = 0;
}
sp = xs.aq.stqh_first;
first = 1;
while (sp) {
if (first) {
mdb_printf("\nTarget %u Active Queue:\n",
xs.target_num);
mdb_printf("---------------------------\n");
}
if (MDB_RD(&s, sizeof (s), sp) == -1) {
NOREAD(pmcs_cmd_t, sp);
break;
}
print_spcmd(&s, sp, first, verbose);
sp = s.cmd_next.stqe_next;
first = 0;
}
sp = xs.sq.stqh_first;
first = 1;
while (sp) {
if (first) {
mdb_printf("\nTarget %u Special Queue:\n",
xs.target_num);
mdb_printf("---------------------------\n");
}
if (MDB_RD(&s, sizeof (s), sp) == -1) {
NOREAD(pmcs_cmd_t, sp);
break;
}
print_spcmd(&s, sp, first, verbose);
sp = s.cmd_next.stqe_next;
first = 0;
}
}
}
static char *
ibq_type(int qnum)
{
if (qnum < 0 || qnum >= PMCS_NIQ) {
return ("UNKNOWN");
}
if (qnum < PMCS_IQ_OTHER) {
return ("I/O");
}
return ("Other");
}
static char *
obq_type(int qnum)
{
switch (qnum) {
case PMCS_OQ_IODONE:
return ("I/O");
case PMCS_OQ_GENERAL:
return ("General");
case PMCS_OQ_EVENTS:
return ("Events");
default:
return ("UNKNOWN");
}
}
static char *
iomb_cat(uint32_t cat)
{
switch (cat) {
case PMCS_IOMB_CAT_NET:
return ("NET");
case PMCS_IOMB_CAT_FC:
return ("FC");
case PMCS_IOMB_CAT_SAS:
return ("SAS");
case PMCS_IOMB_CAT_SCSI:
return ("SCSI");
default:
return ("???");
}
}
static char *
iomb_event(uint8_t event)
{
switch (event) {
case IOP_EVENT_PHY_STOP_STATUS:
return ("PHY STOP");
case IOP_EVENT_SAS_PHY_UP:
return ("PHY UP");
case IOP_EVENT_SATA_PHY_UP:
return ("SATA PHY UP");
case IOP_EVENT_SATA_SPINUP_HOLD:
return ("SATA SPINUP HOLD");
case IOP_EVENT_PHY_DOWN:
return ("PHY DOWN");
case IOP_EVENT_BROADCAST_CHANGE:
return ("BROADCAST CHANGE");
case IOP_EVENT_BROADCAST_SES:
return ("BROADCAST SES");
case IOP_EVENT_PHY_ERR_INBOUND_CRC:
return ("INBOUND CRC ERROR");
case IOP_EVENT_HARD_RESET_RECEIVED:
return ("HARD RESET");
case IOP_EVENT_EVENT_ID_FRAME_TIMO:
return ("IDENTIFY FRAME TIMEOUT");
case IOP_EVENT_BROADCAST_EXP:
return ("BROADCAST EXPANDER");
case IOP_EVENT_PHY_START_STATUS:
return ("PHY START");
case IOP_EVENT_PHY_ERR_INVALID_DWORD:
return ("INVALID DWORD");
case IOP_EVENT_PHY_ERR_DISPARITY_ERROR:
return ("DISPARITY ERROR");
case IOP_EVENT_PHY_ERR_CODE_VIOLATION:
return ("CODE VIOLATION");
case IOP_EVENT_PHY_ERR_LOSS_OF_DWORD_SYN:
return ("LOSS OF DWORD SYNC");
case IOP_EVENT_PHY_ERR_PHY_RESET_FAILD:
return ("PHY RESET FAILED");
case IOP_EVENT_PORT_RECOVERY_TIMER_TMO:
return ("PORT RECOVERY TIMEOUT");
case IOP_EVENT_PORT_RECOVER:
return ("PORT RECOVERY");
case IOP_EVENT_PORT_RESET_TIMER_TMO:
return ("PORT RESET TIMEOUT");
case IOP_EVENT_PORT_RESET_COMPLETE:
return ("PORT RESET COMPLETE");
case IOP_EVENT_BROADCAST_ASYNC_EVENT:
return ("BROADCAST ASYNC");
case IOP_EVENT_IT_NEXUS_LOSS:
return ("I/T NEXUS LOSS");
default:
return ("Unknown Event");
}
}
static char *
inbound_iomb_opcode(uint32_t opcode)
{
switch (opcode) {
case PMCIN_ECHO:
return ("ECHO");
case PMCIN_GET_INFO:
return ("GET_INFO");
case PMCIN_GET_VPD:
return ("GET_VPD");
case PMCIN_PHY_START:
return ("PHY_START");
case PMCIN_PHY_STOP:
return ("PHY_STOP");
case PMCIN_SSP_INI_IO_START:
return ("INI_IO_START");
case PMCIN_SSP_INI_TM_START:
return ("INI_TM_START");
case PMCIN_SSP_INI_EXT_IO_START:
return ("INI_EXT_IO_START");
case PMCIN_DEVICE_HANDLE_ACCEPT:
return ("DEVICE_HANDLE_ACCEPT");
case PMCIN_SSP_TGT_IO_START:
return ("TGT_IO_START");
case PMCIN_SSP_TGT_RESPONSE_START:
return ("TGT_RESPONSE_START");
case PMCIN_SSP_INI_EDC_EXT_IO_START:
return ("INI_EDC_EXT_IO_START");
case PMCIN_SSP_INI_EDC_EXT_IO_START1:
return ("INI_EDC_EXT_IO_START1");
case PMCIN_SSP_TGT_EDC_IO_START:
return ("TGT_EDC_IO_START");
case PMCIN_SSP_ABORT:
return ("SSP_ABORT");
case PMCIN_DEREGISTER_DEVICE_HANDLE:
return ("DEREGISTER_DEVICE_HANDLE");
case PMCIN_GET_DEVICE_HANDLE:
return ("GET_DEVICE_HANDLE");
case PMCIN_SMP_REQUEST:
return ("SMP_REQUEST");
case PMCIN_SMP_RESPONSE:
return ("SMP_RESPONSE");
case PMCIN_SMP_ABORT:
return ("SMP_ABORT");
case PMCIN_ASSISTED_DISCOVERY:
return ("ASSISTED_DISCOVERY");
case PMCIN_REGISTER_DEVICE:
return ("REGISTER_DEVICE");
case PMCIN_SATA_HOST_IO_START:
return ("SATA_HOST_IO_START");
case PMCIN_SATA_ABORT:
return ("SATA_ABORT");
case PMCIN_LOCAL_PHY_CONTROL:
return ("LOCAL_PHY_CONTROL");
case PMCIN_GET_DEVICE_INFO:
return ("GET_DEVICE_INFO");
case PMCIN_TWI:
return ("TWI");
case PMCIN_FW_FLASH_UPDATE:
return ("FW_FLASH_UPDATE");
case PMCIN_SET_VPD:
return ("SET_VPD");
case PMCIN_GPIO:
return ("GPIO");
case PMCIN_SAS_DIAG_MODE_START_END:
return ("SAS_DIAG_MODE_START_END");
case PMCIN_SAS_DIAG_EXECUTE:
return ("SAS_DIAG_EXECUTE");
case PMCIN_SAS_HW_EVENT_ACK:
return ("SAS_HW_EVENT_ACK");
case PMCIN_GET_TIME_STAMP:
return ("GET_TIME_STAMP");
case PMCIN_PORT_CONTROL:
return ("PORT_CONTROL");
case PMCIN_GET_NVMD_DATA:
return ("GET_NVMD_DATA");
case PMCIN_SET_NVMD_DATA:
return ("SET_NVMD_DATA");
case PMCIN_SET_DEVICE_STATE:
return ("SET_DEVICE_STATE");
case PMCIN_GET_DEVICE_STATE:
return ("GET_DEVICE_STATE");
default:
return ("UNKNOWN");
}
}
static char *
outbound_iomb_opcode(uint32_t opcode)
{
switch (opcode) {
case PMCOUT_ECHO:
return ("ECHO");
case PMCOUT_GET_INFO:
return ("GET_INFO");
case PMCOUT_GET_VPD:
return ("GET_VPD");
case PMCOUT_SAS_HW_EVENT:
return ("SAS_HW_EVENT");
case PMCOUT_SSP_COMPLETION:
return ("SSP_COMPLETION");
case PMCOUT_SMP_COMPLETION:
return ("SMP_COMPLETION");
case PMCOUT_LOCAL_PHY_CONTROL:
return ("LOCAL_PHY_CONTROL");
case PMCOUT_SAS_ASSISTED_DISCOVERY_EVENT:
return ("SAS_ASSISTED_DISCOVERY_SENT");
case PMCOUT_SATA_ASSISTED_DISCOVERY_EVENT:
return ("SATA_ASSISTED_DISCOVERY_SENT");
case PMCOUT_DEVICE_REGISTRATION:
return ("DEVICE_REGISTRATION");
case PMCOUT_DEREGISTER_DEVICE_HANDLE:
return ("DEREGISTER_DEVICE_HANDLE");
case PMCOUT_GET_DEVICE_HANDLE:
return ("GET_DEVICE_HANDLE");
case PMCOUT_SATA_COMPLETION:
return ("SATA_COMPLETION");
case PMCOUT_SATA_EVENT:
return ("SATA_EVENT");
case PMCOUT_SSP_EVENT:
return ("SSP_EVENT");
case PMCOUT_DEVICE_HANDLE_ARRIVED:
return ("DEVICE_HANDLE_ARRIVED");
case PMCOUT_SSP_REQUEST_RECEIVED:
return ("SSP_REQUEST_RECEIVED");
case PMCOUT_DEVICE_INFO:
return ("DEVICE_INFO");
case PMCOUT_FW_FLASH_UPDATE:
return ("FW_FLASH_UPDATE");
case PMCOUT_SET_VPD:
return ("SET_VPD");
case PMCOUT_GPIO:
return ("GPIO");
case PMCOUT_GPIO_EVENT:
return ("GPIO_EVENT");
case PMCOUT_GENERAL_EVENT:
return ("GENERAL_EVENT");
case PMCOUT_TWI:
return ("TWI");
case PMCOUT_SSP_ABORT:
return ("SSP_ABORT");
case PMCOUT_SATA_ABORT:
return ("SATA_ABORT");
case PMCOUT_SAS_DIAG_MODE_START_END:
return ("SAS_DIAG_MODE_START_END");
case PMCOUT_SAS_DIAG_EXECUTE:
return ("SAS_DIAG_EXECUTE");
case PMCOUT_GET_TIME_STAMP:
return ("GET_TIME_STAMP");
case PMCOUT_SAS_HW_EVENT_ACK_ACK:
return ("SAS_HW_EVENT_ACK_ACK");
case PMCOUT_PORT_CONTROL:
return ("PORT_CONTROL");
case PMCOUT_SKIP_ENTRIES:
return ("SKIP_ENTRIES");
case PMCOUT_SMP_ABORT:
return ("SMP_ABORT");
case PMCOUT_GET_NVMD_DATA:
return ("GET_NVMD_DATA");
case PMCOUT_SET_NVMD_DATA:
return ("SET_NVMD_DATA");
case PMCOUT_DEVICE_HANDLE_REMOVED:
return ("DEVICE_HANDLE_REMOVED");
case PMCOUT_SET_DEVICE_STATE:
return ("SET_DEVICE_STATE");
case PMCOUT_GET_DEVICE_STATE:
return ("GET_DEVICE_STATE");
case PMCOUT_SET_DEVICE_INFO:
return ("SET_DEVICE_INFO");
default:
return ("UNKNOWN");
}
}
static uint32_t
get_devid_from_ob_iomb(struct pmcs_hw ss, uint32_t *qentryp, uint16_t opcode)
{
uint32_t devid = PMCS_INVALID_DEVICE_ID;
switch (opcode) {
/*
* These are obtained via the HTAG which is in word 1
*/
case PMCOUT_SSP_COMPLETION:
case PMCOUT_SMP_COMPLETION:
case PMCOUT_DEREGISTER_DEVICE_HANDLE:
case PMCOUT_GET_DEVICE_HANDLE:
case PMCOUT_SATA_COMPLETION:
case PMCOUT_SSP_ABORT:
case PMCOUT_SATA_ABORT:
case PMCOUT_SMP_ABORT:
case PMCOUT_SAS_HW_EVENT_ACK_ACK: {
uint32_t htag;
pmcwork_t *wp;
pmcs_phy_t *phy;
uintptr_t _wp, _phy;
uint16_t index;
htag = LE_32(*(qentryp + 1));
index = htag & PMCS_TAG_INDEX_MASK;
wp = mdb_alloc(sizeof (pmcwork_t), UM_SLEEP);
_wp = (uintptr_t)ss.work + (sizeof (pmcwork_t) * index);
if (MDB_RD(wp, sizeof (pmcwork_t), _wp) == -1) {
NOREAD(pmcwork_t, _wp);
mdb_free(wp, sizeof (pmcwork_t));
break;
}
phy = mdb_alloc(sizeof (pmcs_phy_t), UM_SLEEP);
if (wp->phy == NULL) {
_phy = (uintptr_t)wp->last_phy;
} else {
_phy = (uintptr_t)wp->phy;
}
/*
* If we have a PHY, read it in and get it's handle
*/
if (_phy != NULL) {
if (MDB_RD(phy, sizeof (*phy), _phy) == -1) {
NOREAD(pmcs_phy_t, phy);
} else {
devid = phy->device_id;
}
}
mdb_free(phy, sizeof (pmcs_phy_t));
mdb_free(wp, sizeof (pmcwork_t));
break;
}
/*
* The device ID is in the outbound IOMB at word 1
*/
case PMCOUT_SSP_REQUEST_RECEIVED:
devid = LE_32(*(qentryp + 1)) & PMCS_DEVICE_ID_MASK;
break;
/*
* The device ID is in the outbound IOMB at word 2
*/
case PMCOUT_DEVICE_HANDLE_ARRIVED:
case PMCOUT_DEVICE_HANDLE_REMOVED:
devid = LE_32(*(qentryp + 2)) & PMCS_DEVICE_ID_MASK;
break;
/*
* In this (very rare - never seen it) state, the device ID
* comes from the HTAG in the inbound IOMB, which would be word
* 3 in the outbound IOMB
*/
case PMCOUT_GENERAL_EVENT:
/*
* The device ID is in the outbound IOMB at word 3
*/
case PMCOUT_DEVICE_REGISTRATION:
case PMCOUT_DEVICE_INFO:
case PMCOUT_SET_DEVICE_STATE:
case PMCOUT_GET_DEVICE_STATE:
case PMCOUT_SET_DEVICE_INFO:
devid = LE_32(*(qentryp + 3)) & PMCS_DEVICE_ID_MASK;
break;
/*
* Device ID is in the outbound IOMB at word 4
*/
case PMCOUT_SATA_EVENT:
case PMCOUT_SSP_EVENT:
devid = LE_32(*(qentryp + 4)) & PMCS_DEVICE_ID_MASK;
break;
}
return (devid);
}
static boolean_t
iomb_is_dev_hdl_specific(uint32_t word0, boolean_t inbound)
{
uint16_t opcode = word0 & PMCS_IOMB_OPCODE_MASK;
if (inbound) {
switch (opcode) {
case PMCIN_SSP_INI_IO_START:
case PMCIN_SSP_INI_TM_START:
case PMCIN_SSP_INI_EXT_IO_START:
case PMCIN_SSP_TGT_IO_START:
case PMCIN_SSP_TGT_RESPONSE_START:
case PMCIN_SSP_ABORT:
case PMCIN_DEREGISTER_DEVICE_HANDLE:
case PMCIN_SMP_REQUEST:
case PMCIN_SMP_RESPONSE:
case PMCIN_SMP_ABORT:
case PMCIN_ASSISTED_DISCOVERY:
case PMCIN_SATA_HOST_IO_START:
case PMCIN_SATA_ABORT:
case PMCIN_GET_DEVICE_INFO:
case PMCIN_SET_DEVICE_STATE:
case PMCIN_GET_DEVICE_STATE:
return (B_TRUE);
}
return (B_FALSE);
}
switch (opcode) {
case PMCOUT_SSP_COMPLETION:
case PMCOUT_SMP_COMPLETION:
case PMCOUT_DEVICE_REGISTRATION:
case PMCOUT_DEREGISTER_DEVICE_HANDLE:
case PMCOUT_GET_DEVICE_HANDLE:
case PMCOUT_SATA_COMPLETION:
case PMCOUT_SATA_EVENT:
case PMCOUT_SSP_EVENT:
case PMCOUT_DEVICE_HANDLE_ARRIVED:
case PMCOUT_SSP_REQUEST_RECEIVED:
case PMCOUT_DEVICE_INFO:
case PMCOUT_FW_FLASH_UPDATE:
case PMCOUT_GENERAL_EVENT:
case PMCOUT_SSP_ABORT:
case PMCOUT_SATA_ABORT:
case PMCOUT_SAS_HW_EVENT_ACK_ACK:
case PMCOUT_SMP_ABORT:
case PMCOUT_DEVICE_HANDLE_REMOVED:
case PMCOUT_SET_DEVICE_STATE:
case PMCOUT_GET_DEVICE_STATE:
case PMCOUT_SET_DEVICE_INFO:
return (B_TRUE);
}
return (B_FALSE);
}
static void
dump_one_qentry_outbound(struct pmcs_hw ss, uint32_t *qentryp, int idx,
uint64_t devid_filter)
{
int qeidx;
uint32_t word0 = LE_32(*qentryp);
uint32_t word1 = LE_32(*(qentryp + 1));
uint8_t iop_event;
uint32_t devid;
/*
* Check to see if we're filtering on a device ID
*/
if (devid_filter != PMCS_INVALID_DEVICE_ID) {
if (!iomb_is_dev_hdl_specific(word0, B_FALSE)) {
return;
}
/*
* Go find the device id. It might be in the outbound
* IOMB or we may have to go find the work structure and
* get it from there.
*/
devid = get_devid_from_ob_iomb(ss, qentryp,
word0 & PMCS_IOMB_OPCODE_MASK);
if ((devid == PMCS_INVALID_DEVICE_ID) ||
(devid_filter != devid)) {
return;
}
}
mdb_printf("Entry #%02d\n", idx);
mdb_inc_indent(2);
mdb_printf("Header: 0x%08x (", word0);
if (word0 & PMCS_IOMB_VALID) {
mdb_printf("VALID, ");
}
if (word0 & PMCS_IOMB_HIPRI) {
mdb_printf("HIPRI, ");
}
mdb_printf("OBID=%d, ",
(word0 & PMCS_IOMB_OBID_MASK) >> PMCS_IOMB_OBID_SHIFT);
mdb_printf("CAT=%s, ",
iomb_cat((word0 & PMCS_IOMB_CAT_MASK) >> PMCS_IOMB_CAT_SHIFT));
mdb_printf("OPCODE=%s",
outbound_iomb_opcode(word0 & PMCS_IOMB_OPCODE_MASK));
if ((word0 & PMCS_IOMB_OPCODE_MASK) == PMCOUT_SAS_HW_EVENT) {
iop_event = IOP_EVENT_EVENT(word1);
mdb_printf(" <%s>", iomb_event(iop_event));
}
mdb_printf(")\n");
mdb_printf("Remaining Payload:\n");
mdb_inc_indent(2);
for (qeidx = 1; qeidx < (PMCS_QENTRY_SIZE / 4); qeidx++) {
mdb_printf("%08x ", LE_32(*(qentryp + qeidx)));
}
mdb_printf("\n");
mdb_dec_indent(4);
}
static void
display_outbound_queues(struct pmcs_hw ss, uint64_t devid_filter,
uint_t verbose)
{
int idx, qidx;
uintptr_t obqp;
uint32_t *cip;
uint32_t *qentryp = mdb_alloc(PMCS_QENTRY_SIZE, UM_SLEEP);
uint32_t last_consumed, oqpi;
mdb_printf("\n");
mdb_printf("Outbound Queues\n");
mdb_printf("---------------\n");
mdb_inc_indent(2);
for (qidx = 0; qidx < PMCS_NOQ; qidx++) {
obqp = (uintptr_t)ss.oqp[qidx];
if (obqp == NULL) {
mdb_printf("No outbound queue ptr for queue #%d\n",
qidx);
continue;
}
mdb_printf("Outbound Queue #%d (Queue Type = %s)\n", qidx,
obq_type(qidx));
/*
* Chip is the producer, so read the actual producer index
* and not the driver's version
*/
cip = (uint32_t *)((void *)ss.cip);
if (MDB_RD(&oqpi, 4, cip + OQPI_BASE_OFFSET +
(qidx * 4)) == -1) {
mdb_warn("Couldn't read oqpi\n");
break;
}
mdb_printf("Producer index: %d Consumer index: %d\n\n",
LE_32(oqpi), ss.oqci[qidx]);
mdb_inc_indent(2);
if (ss.oqci[qidx] == 0) {
last_consumed = ss.ioq_depth - 1;
} else {
last_consumed = ss.oqci[qidx] - 1;
}
if (!verbose) {
mdb_printf("Last processed entry:\n");
if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
(obqp + (PMCS_QENTRY_SIZE * last_consumed)))
== -1) {
mdb_warn("Couldn't read queue entry at 0x%p\n",
(obqp + (PMCS_QENTRY_SIZE *
last_consumed)));
break;
}
dump_one_qentry_outbound(ss, qentryp, last_consumed,
devid_filter);
mdb_printf("\n");
mdb_dec_indent(2);
continue;
}
for (idx = 0; idx < ss.ioq_depth; idx++) {
if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
(obqp + (PMCS_QENTRY_SIZE * idx))) == -1) {
mdb_warn("Couldn't read queue entry at 0x%p\n",
(obqp + (PMCS_QENTRY_SIZE * idx)));
break;
}
dump_one_qentry_outbound(ss, qentryp, idx,
devid_filter);
}
mdb_printf("\n");
mdb_dec_indent(2);
}
mdb_dec_indent(2);
mdb_free(qentryp, PMCS_QENTRY_SIZE);
}
static void
dump_one_qentry_inbound(uint32_t *qentryp, int idx, uint64_t devid_filter)
{
int qeidx;
uint32_t word0 = LE_32(*qentryp);
uint32_t devid = LE_32(*(qentryp + 2));
/*
* Check to see if we're filtering on a device ID
*/
if (devid_filter != PMCS_INVALID_DEVICE_ID) {
if (iomb_is_dev_hdl_specific(word0, B_TRUE)) {
if (devid_filter != devid) {
return;
}
} else {
return;
}
}
mdb_printf("Entry #%02d\n", idx);
mdb_inc_indent(2);
mdb_printf("Header: 0x%08x (", word0);
if (word0 & PMCS_IOMB_VALID) {
mdb_printf("VALID, ");
}
if (word0 & PMCS_IOMB_HIPRI) {
mdb_printf("HIPRI, ");
}
mdb_printf("OBID=%d, ",
(word0 & PMCS_IOMB_OBID_MASK) >> PMCS_IOMB_OBID_SHIFT);
mdb_printf("CAT=%s, ",
iomb_cat((word0 & PMCS_IOMB_CAT_MASK) >> PMCS_IOMB_CAT_SHIFT));
mdb_printf("OPCODE=%s",
inbound_iomb_opcode(word0 & PMCS_IOMB_OPCODE_MASK));
mdb_printf(")\n");
mdb_printf("HTAG: 0x%08x\n", LE_32(*(qentryp + 1)));
mdb_printf("Remaining Payload:\n");
mdb_inc_indent(2);
for (qeidx = 2; qeidx < (PMCS_QENTRY_SIZE / 4); qeidx++) {
mdb_printf("%08x ", LE_32(*(qentryp + qeidx)));
}
mdb_printf("\n");
mdb_dec_indent(4);
}
static void
display_inbound_queues(struct pmcs_hw ss, uint64_t devid_filter, uint_t verbose)
{
int idx, qidx, iqci, last_consumed;
uintptr_t ibqp;
uint32_t *qentryp = mdb_alloc(PMCS_QENTRY_SIZE, UM_SLEEP);
uint32_t *cip;
mdb_printf("\n");
mdb_printf("Inbound Queues\n");
mdb_printf("--------------\n");
mdb_inc_indent(2);
for (qidx = 0; qidx < PMCS_NIQ; qidx++) {
ibqp = (uintptr_t)ss.iqp[qidx];
if (ibqp == NULL) {
mdb_printf("No inbound queue ptr for queue #%d\n",
qidx);
continue;
}
mdb_printf("Inbound Queue #%d (Queue Type = %s)\n", qidx,
ibq_type(qidx));
cip = (uint32_t *)((void *)ss.cip);
if (MDB_RD(&iqci, 4, cip + (qidx * 4)) == -1) {
mdb_warn("Couldn't read iqci\n");
break;
}
iqci = LE_32(iqci);
mdb_printf("Producer index: %d Consumer index: %d\n\n",
ss.shadow_iqpi[qidx], iqci);
mdb_inc_indent(2);
if (iqci == 0) {
last_consumed = ss.ioq_depth - 1;
} else {
last_consumed = iqci - 1;
}
if (!verbose) {
mdb_printf("Last processed entry:\n");
if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
(ibqp + (PMCS_QENTRY_SIZE * last_consumed)))
== -1) {
mdb_warn("Couldn't read queue entry at 0x%p\n",
(ibqp + (PMCS_QENTRY_SIZE *
last_consumed)));
break;
}
dump_one_qentry_inbound(qentryp, last_consumed,
devid_filter);
mdb_printf("\n");
mdb_dec_indent(2);
continue;
}
for (idx = 0; idx < ss.ioq_depth; idx++) {
if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
(ibqp + (PMCS_QENTRY_SIZE * idx))) == -1) {
mdb_warn("Couldn't read queue entry at 0x%p\n",
(ibqp + (PMCS_QENTRY_SIZE * idx)));
break;
}
dump_one_qentry_inbound(qentryp, idx, devid_filter);
}
mdb_printf("\n");
mdb_dec_indent(2);
}
mdb_dec_indent(2);
mdb_free(qentryp, PMCS_QENTRY_SIZE);
}
/*
* phy is our copy of the PHY structure. phyp is the pointer to the actual
* kernel PHY data structure
*/
static void
display_phy(struct pmcs_phy phy, struct pmcs_phy *phyp, int verbose,
int totals_only)
{
char *dtype, *speed;
char *yes = "Yes";
char *no = "No";
char *cfgd = no;
char *apend = no;
char *asent = no;
char *dead = no;
char *changed = no;
char route_attr, route_method;
switch (phy.dtype) {
case NOTHING:
dtype = "None";
break;
case SATA:
dtype = "SATA";
if (phy.configured) {
++sata_phys;
}
break;
case SAS:
dtype = "SAS";
if (phy.configured) {
++sas_phys;
}
break;
case EXPANDER:
dtype = "EXP";
if (phy.configured) {
++exp_phys;
}
break;
}
if (phy.dtype == NOTHING) {
empty_phys++;
} else if ((phy.dtype == EXPANDER) && phy.configured) {
num_expanders++;
}
if (totals_only) {
return;
}
switch (phy.link_rate) {
case SAS_LINK_RATE_1_5GBIT:
speed = "1.5Gb/s";
break;
case SAS_LINK_RATE_3GBIT:
speed = "3 Gb/s";
break;
case SAS_LINK_RATE_6GBIT:
speed = "6 Gb/s";
break;
default:
speed = "N/A";
break;
}
if ((phy.dtype != NOTHING) || verbose) {
print_sas_address(&phy);
if (phy.device_id != PMCS_INVALID_DEVICE_ID) {
mdb_printf(" %3d %4d %6s %4s ",
phy.device_id, phy.phynum, speed, dtype);
} else {
mdb_printf(" N/A %4d %6s %4s ",
phy.phynum, speed, dtype);
}
if (verbose) {
if (phy.abort_sent) {
asent = yes;
}
if (phy.abort_pending) {
apend = yes;
}
if (phy.configured) {
cfgd = yes;
}
if (phy.dead) {
dead = yes;
}
if (phy.changed) {
changed = yes;
}
switch (phy.routing_attr) {
case SMP_ROUTING_DIRECT:
route_attr = 'D';
break;
case SMP_ROUTING_SUBTRACTIVE:
route_attr = 'S';
break;
case SMP_ROUTING_TABLE:
route_attr = 'T';
break;
default:
route_attr = '?';
break;
}
switch (phy.routing_method) {
case SMP_ROUTING_DIRECT:
route_method = 'D';
break;
case SMP_ROUTING_SUBTRACTIVE:
route_method = 'S';
break;
case SMP_ROUTING_TABLE:
route_method = 'T';
break;
default:
route_attr = '?';
break;
}
mdb_printf("%-4s %-4s %-4s %-4s %-4s %3d %3c/%1c %3d "
"%1d 0x%p ", cfgd, apend, asent, changed, dead,
phy.ref_count, route_attr, route_method,
phy.enum_attempts, phy.reenumerate, phy.phy_lock);
}
mdb_printf("Path: %s\n", phy.path);
/*
* In verbose mode, on the next line print the drill down
* info to see either the DISCOVER response or the REPORT
* GENERAL response depending on the PHY's dtype
*/
if (verbose) {
uintptr_t tphyp = (uintptr_t)phyp;
mdb_inc_indent(4);
switch (phy.dtype) {
case EXPANDER:
if (!phy.configured) {
break;
}
mdb_printf("REPORT GENERAL response: %p::"
"print smp_report_general_resp_t\n",
(tphyp + offsetof(struct pmcs_phy,
rg_resp)));
break;
case SAS:
case SATA:
mdb_printf("DISCOVER response: %p::"
"print smp_discover_resp_t\n",
(tphyp + offsetof(struct pmcs_phy,
disc_resp)));
break;
default:
break;
}
mdb_dec_indent(4);
}
}
}
static void
display_phys(struct pmcs_hw ss, int verbose, struct pmcs_phy *parent, int level,
int totals_only)
{
pmcs_phy_t phy;
pmcs_phy_t *pphy = parent;
mdb_inc_indent(3);
if (parent == NULL) {
pphy = (pmcs_phy_t *)ss.root_phys;
} else {
pphy = (pmcs_phy_t *)parent;
}
if (level == 0) {
sas_phys = 0;
sata_phys = 0;
exp_phys = 0;
num_expanders = 0;
empty_phys = 0;
}
if (!totals_only) {
if (level == 0) {
mdb_printf("PHY information\n");
}
mdb_printf("--------\n");
mdb_printf("Level %2d\n", level);
mdb_printf("--------\n");
mdb_printf("SAS Address Hdl Phy# Speed Type ");
if (verbose) {
mdb_printf("Cfgd AbtP AbtS Chgd Dead Ref RtA/M Enm R "
"Lock\n");
} else {
mdb_printf("\n");
}
}
while (pphy) {
if (MDB_RD(&phy, sizeof (phy), (uintptr_t)pphy) == -1) {
NOREAD(pmcs_phy_t, phy);
break;
}
display_phy(phy, pphy, verbose, totals_only);
if (phy.children) {
display_phys(ss, verbose, phy.children, level + 1,
totals_only);
if (!totals_only) {
mdb_printf("\n");
}
}
pphy = phy.sibling;
}
mdb_dec_indent(3);
if (level == 0) {
if (verbose) {
mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP) "
"(+%d subsidiary + %d empty)\n", "Occupied PHYs:",
(sas_phys + sata_phys + num_expanders),
sas_phys, sata_phys, num_expanders,
(exp_phys - num_expanders), empty_phys);
} else {
mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP)\n",
"Occupied PHYs:",
(sas_phys + sata_phys + num_expanders),
sas_phys, sata_phys, num_expanders);
}
}
}
/*
* filter is used to indicate whether we are filtering log messages based
* on "instance". The other filtering (based on options) depends on the
* values that are passed in for "sas_addr" and "phy_path".
*
* MAX_INST_STRLEN is the largest string size from which we will attempt
* to convert to an instance number. The string will be formed up as
* "0t<inst>\0" so that mdb_strtoull can parse it properly.
*/
#define MAX_INST_STRLEN 8
static int
pmcs_dump_tracelog(boolean_t filter, int instance, uint64_t tail_lines,
const char *phy_path, uint64_t sas_address, uint64_t verbose)
{
pmcs_tbuf_t *tbuf_addr;
uint_t tbuf_idx;
pmcs_tbuf_t tbuf;
boolean_t wrap, elem_filtered;
uint_t start_idx, elems_to_print, idx, tbuf_num_elems;
char *bufp;
char elem_inst[MAX_INST_STRLEN], ei_idx;
uint64_t sas_addr;
uint8_t *sas_addressp;
/* Get the address of the first element */
if (mdb_readvar(&tbuf_addr, "pmcs_tbuf") == -1) {
mdb_warn("can't read pmcs_tbuf");
return (DCMD_ERR);
}
/* Get the total number */
if (mdb_readvar(&tbuf_num_elems, "pmcs_tbuf_num_elems") == -1) {
mdb_warn("can't read pmcs_tbuf_num_elems");
return (DCMD_ERR);
}
/* Get the current index */
if (mdb_readvar(&tbuf_idx, "pmcs_tbuf_idx") == -1) {
mdb_warn("can't read pmcs_tbuf_idx");
return (DCMD_ERR);
}
/* Indicator as to whether the buffer has wrapped */
if (mdb_readvar(&wrap, "pmcs_tbuf_wrap") == -1) {
mdb_warn("can't read pmcs_tbuf_wrap");
return (DCMD_ERR);
}
/*
* On little-endian systems, the SAS address passed in will be
* byte swapped. Take care of that here.
*/
#if defined(_LITTLE_ENDIAN)
sas_addr = ((sas_address << 56) |
((sas_address << 40) & 0xff000000000000ULL) |
((sas_address << 24) & 0xff0000000000ULL) |
((sas_address << 8) & 0xff00000000ULL) |
((sas_address >> 8) & 0xff000000ULL) |
((sas_address >> 24) & 0xff0000ULL) |
((sas_address >> 40) & 0xff00ULL) |
(sas_address >> 56));
#else
sas_addr = sas_address;
#endif
sas_addressp = (uint8_t *)&sas_addr;
/* Ensure the tail number isn't greater than the size of the log */
if (tail_lines > tbuf_num_elems) {
tail_lines = tbuf_num_elems;
}
/* Figure out where we start and stop */
if (wrap) {
if (tail_lines) {
/* Do we need to wrap backwards? */
if (tail_lines > tbuf_idx) {
start_idx = tbuf_num_elems - (tail_lines -
tbuf_idx);
} else {
start_idx = tbuf_idx - tail_lines;
}
elems_to_print = tail_lines;
} else {
start_idx = tbuf_idx;
elems_to_print = tbuf_num_elems;
}
} else {
if (tail_lines > tbuf_idx) {
tail_lines = tbuf_idx;
}
if (tail_lines) {
start_idx = tbuf_idx - tail_lines;
elems_to_print = tail_lines;
} else {
start_idx = 0;
elems_to_print = tbuf_idx;
}
}
idx = start_idx;
/* Dump the buffer contents */
while (elems_to_print != 0) {
if (MDB_RD(&tbuf, sizeof (pmcs_tbuf_t), (tbuf_addr + idx))
== -1) {
NOREAD(tbuf, (tbuf_addr + idx));
return (DCMD_ERR);
}
/*
* Check for filtering on HBA instance
*/
elem_filtered = B_FALSE;
if (filter) {
bufp = tbuf.buf;
/* Skip the driver name */
while (*bufp < '0' || *bufp > '9') {
bufp++;
}
ei_idx = 0;
elem_inst[ei_idx++] = '0';
elem_inst[ei_idx++] = 't';
while (*bufp != ':' && ei_idx < (MAX_INST_STRLEN - 1)) {
elem_inst[ei_idx++] = *bufp;
bufp++;
}
elem_inst[ei_idx] = 0;
/* Get the instance */
if ((int)mdb_strtoull(elem_inst) != instance) {
elem_filtered = B_TRUE;
}
}
if (!elem_filtered && (phy_path || sas_address)) {
/*
* This message is not being filtered by HBA instance.
* Now check to see if we're filtering based on
* PHY path or SAS address.
* Filtering is an "OR" operation. So, if any of the
* criteria matches, this message will be printed.
*/
elem_filtered = B_TRUE;
if (phy_path != NULL) {
if (strncmp(phy_path, tbuf.phy_path,
PMCS_TBUF_UA_MAX_SIZE) == 0) {
elem_filtered = B_FALSE;
}
}
if (sas_address != 0) {
if (memcmp(sas_addressp, tbuf.phy_sas_address,
8) == 0) {
elem_filtered = B_FALSE;
}
}
}
if (!elem_filtered) {
/*
* If the -v flag was given, print the firmware
* timestamp along with the clock time
*/
mdb_printf("%Y.%09ld ", tbuf.timestamp);
if (verbose) {
mdb_printf("(0x%" PRIx64 ") ",
tbuf.fw_timestamp);
}
mdb_printf("%s\n", tbuf.buf);
}
--elems_to_print;
if (++idx == tbuf_num_elems) {
idx = 0;
}
}
return (DCMD_OK);
}
/*
* Walkers
*/
static int
targets_walk_i(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("Can not perform global walk\n");
return (WALK_ERR);
}
/*
* Address provided belongs to HBA softstate. Get the targets pointer
* to begin the walk.
*/
if (mdb_vread(&ss, sizeof (pmcs_hw_t), wsp->walk_addr) !=
sizeof (pmcs_hw_t)) {
mdb_warn("Unable to read HBA softstate\n");
return (WALK_ERR);
}
if (targets == NULL) {
targets = mdb_alloc(sizeof (targets) * ss.max_dev, UM_SLEEP);
}
if (MDB_RD(targets, sizeof (targets) * ss.max_dev, ss.targets) == -1) {
NOREAD(targets, ss.targets);
return (WALK_ERR);
}
target_idx = 0;
wsp->walk_addr = (uintptr_t)(targets[0]);
wsp->walk_data = mdb_alloc(sizeof (pmcs_xscsi_t), UM_SLEEP);
return (WALK_NEXT);
}
static int
targets_walk_s(mdb_walk_state_t *wsp)
{
int status;
if (target_idx == ss.max_dev) {
return (WALK_DONE);
}
if (mdb_vread(wsp->walk_data, sizeof (pmcs_xscsi_t),
wsp->walk_addr) == -1) {
mdb_warn("Failed to read target at %p", (void *)wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
do {
wsp->walk_addr = (uintptr_t)(targets[++target_idx]);
} while ((wsp->walk_addr == NULL) && (target_idx < ss.max_dev));
if (target_idx == ss.max_dev) {
return (WALK_DONE);
}
return (status);
}
static void
targets_walk_f(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (pmcs_xscsi_t));
}
static pmcs_phy_t *
pmcs_next_sibling(pmcs_phy_t *phyp)
{
pmcs_phy_t parent;
/*
* First, if this is a root PHY, there are no more siblings
*/
if (phyp->level == 0) {
return (NULL);
}
/*
* Otherwise, next sibling is the parent's sibling
*/
while (phyp->level > 0) {
if (mdb_vread(&parent, sizeof (pmcs_phy_t),
(uintptr_t)phyp->parent) == -1) {
mdb_warn("pmcs_next_sibling: Failed to read PHY at %p",
(void *)phyp->parent);
return (NULL);
}
if (parent.sibling != NULL) {
break;
}
/*
* If this PHY's sibling is NULL and it's a root phy,
* we're done.
*/
if (parent.level == 0) {
return (NULL);
}
phyp = phyp->parent;
}
return (parent.sibling);
}
static int
phy_walk_i(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("Can not perform global walk\n");
return (WALK_ERR);
}
/*
* Address provided belongs to HBA softstate. Get the targets pointer
* to begin the walk.
*/
if (mdb_vread(&ss, sizeof (pmcs_hw_t), wsp->walk_addr) !=
sizeof (pmcs_hw_t)) {
mdb_warn("Unable to read HBA softstate\n");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)(ss.root_phys);
wsp->walk_data = mdb_alloc(sizeof (pmcs_phy_t), UM_SLEEP);
return (WALK_NEXT);
}
static int
phy_walk_s(mdb_walk_state_t *wsp)
{
pmcs_phy_t *phyp, *nphyp;
int status;
if (mdb_vread(wsp->walk_data, sizeof (pmcs_phy_t),
wsp->walk_addr) == -1) {
mdb_warn("phy_walk_s: Failed to read PHY at %p",
(void *)wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
phyp = (pmcs_phy_t *)wsp->walk_data;
if (phyp->children) {
wsp->walk_addr = (uintptr_t)(phyp->children);
} else {
wsp->walk_addr = (uintptr_t)(phyp->sibling);
}
if (wsp->walk_addr == NULL) {
/*
* We reached the end of this sibling list. Trudge back up
* to the parent and find the next sibling after the expander
* we just finished traversing, if there is one.
*/
nphyp = pmcs_next_sibling(phyp);
if (nphyp == NULL) {
return (WALK_DONE);
}
wsp->walk_addr = (uintptr_t)nphyp;
}
return (status);
}
static void
phy_walk_f(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (pmcs_phy_t));
}
static void
display_matching_work(struct pmcs_hw ss, uintmax_t index, uintmax_t snum,
uintmax_t tag_type)
{
int idx;
pmcwork_t work, *wp = &work;
uintptr_t _wp;
boolean_t printed_header = B_FALSE;
uint32_t mask, mask_val, match_val;
char *match_type;
if (index != UINT_MAX) {
match_type = "index";
mask = PMCS_TAG_INDEX_MASK;
mask_val = index << PMCS_TAG_INDEX_SHIFT;
match_val = index;
} else if (snum != UINT_MAX) {
match_type = "serial number";
mask = PMCS_TAG_SERNO_MASK;
mask_val = snum << PMCS_TAG_SERNO_SHIFT;
match_val = snum;
} else {
switch (tag_type) {
case PMCS_TAG_TYPE_NONE:
match_type = "tag type NONE";
break;
case PMCS_TAG_TYPE_CBACK:
match_type = "tag type CBACK";
break;
case PMCS_TAG_TYPE_WAIT:
match_type = "tag type WAIT";
break;
}
mask = PMCS_TAG_TYPE_MASK;
mask_val = tag_type << PMCS_TAG_TYPE_SHIFT;
match_val = tag_type;
}
_wp = (uintptr_t)ss.work;
for (idx = 0; idx < ss.max_cmd; idx++, _wp += sizeof (pmcwork_t)) {
if (MDB_RD(&work, sizeof (pmcwork_t), _wp) == -1) {
NOREAD(pmcwork_t, _wp);
continue;
}
if ((work.htag & mask) != mask_val) {
continue;
}
if (printed_header == B_FALSE) {
if (tag_type) {
mdb_printf("\nWork structures matching %s\n\n",
match_type, match_val);
} else {
mdb_printf("\nWork structures matching %s of "
"0x%x\n\n", match_type, match_val);
}
mdb_printf("%8s %10s %20s %8s %8s O D\n",
"HTag", "State", "Phy Path", "Target", "Timer");
printed_header = B_TRUE;
}
display_one_work(wp, 0, 0);
}
if (!printed_header) {
mdb_printf("No work structure matches found\n");
}
}
static int
pmcs_tag(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct pmcs_hw ss;
uintmax_t tag_type = UINT_MAX;
uintmax_t snum = UINT_MAX;
uintmax_t index = UINT_MAX;
int args = 0;
void *pmcs_state;
char *state_str;
struct dev_info dip;
if (!(flags & DCMD_ADDRSPEC)) {
pmcs_state = NULL;
if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
mdb_warn("can't read pmcs_softc_state");
return (DCMD_ERR);
}
if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_tag", argc,
argv, (uintptr_t)pmcs_state) == -1) {
mdb_warn("mdb_pwalk_dcmd failed");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'i', MDB_OPT_UINT64, &index,
's', MDB_OPT_UINT64, &snum,
't', MDB_OPT_UINT64, &tag_type) != argc)
return (DCMD_USAGE);
/*
* Count the number of supplied options and make sure they are
* within appropriate ranges. If they're set to UINT_MAX, that means
* they were not supplied, in which case reset them to 0.
*/
if (index != UINT_MAX) {
args++;
if (index > PMCS_TAG_INDEX_MASK) {
mdb_warn("Index is out of range\n");
return (DCMD_USAGE);
}
}
if (tag_type != UINT_MAX) {
args++;
switch (tag_type) {
case PMCS_TAG_TYPE_NONE:
case PMCS_TAG_TYPE_CBACK:
case PMCS_TAG_TYPE_WAIT:
break;
default:
mdb_warn("Invalid tag type\n");
return (DCMD_USAGE);
}
}
if (snum != UINT_MAX) {
args++;
if (snum > (PMCS_TAG_SERNO_MASK >> PMCS_TAG_SERNO_SHIFT)) {
mdb_warn("Serial number is out of range\n");
return (DCMD_USAGE);
}
}
/*
* Make sure 1 and only 1 option is specified
*/
if ((args == 0) || (args > 1)) {
mdb_warn("Exactly one of -i, -s and -t must be specified\n");
return (DCMD_USAGE);
}
if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
/* processing completed */
if (((flags & DCMD_ADDRSPEC) && !(flags & DCMD_LOOP)) ||
(flags & DCMD_LOOPFIRST)) {
if ((flags & DCMD_LOOP) && !(flags & DCMD_LOOPFIRST))
mdb_printf("\n");
mdb_printf("%16s %9s %4s B C WorkFlags wserno DbgMsk %16s\n",
"Address", "State", "Inst", "DIP");
mdb_printf("================================="
"============================================\n");
}
switch (ss.state) {
case STATE_NIL:
state_str = "Invalid";
break;
case STATE_PROBING:
state_str = "Probing";
break;
case STATE_RUNNING:
state_str = "Running";
break;
case STATE_UNPROBING:
state_str = "Unprobing";
break;
case STATE_DEAD:
state_str = "Dead";
break;
case STATE_IN_RESET:
state_str = "In Reset";
break;
}
mdb_printf("%16p %9s %4d %1d %1d 0x%08x 0x%04x 0x%04x %16p\n", addr,
state_str, dip.devi_instance, ss.blocked, ss.configuring,
ss.work_flags, ss.wserno, ss.debug_mask, ss.dip);
mdb_printf("\n");
mdb_inc_indent(4);
display_matching_work(ss, index, snum, tag_type);
mdb_dec_indent(4);
mdb_printf("\n");
return (DCMD_OK);
}
#ifndef _KMDB
static int
pmcs_dump_fwlog(struct pmcs_hw *ss, int instance, const char *ofile)
{
uint8_t *fwlogp;
int ofilefd = -1;
char ofilename[MAXPATHLEN];
int rval = DCMD_OK;
if (ss->fwlogp == NULL) {
mdb_warn("Firmware event log disabled for instance %d",
instance);
return (DCMD_OK);
}
if (snprintf(ofilename, MAXPATHLEN, "%s%d", ofile, instance) >
MAXPATHLEN) {
mdb_warn("Output filename is too long for instance %d",
instance);
return (DCMD_ERR);
}
fwlogp = mdb_alloc(PMCS_FWLOG_SIZE, UM_SLEEP);
if (MDB_RD(fwlogp, PMCS_FWLOG_SIZE, ss->fwlogp) == -1) {
NOREAD(fwlogp, ss->fwlogp);
rval = DCMD_ERR;
goto cleanup;
}
ofilefd = open(ofilename, O_WRONLY | O_CREAT,
S_IRUSR | S_IRGRP | S_IROTH);
if (ofilefd < 0) {
mdb_warn("Unable to open '%s' to dump instance %d event log",
ofilename, instance);
rval = DCMD_ERR;
goto cleanup;
}
if (write(ofilefd, fwlogp, PMCS_FWLOG_SIZE) != PMCS_FWLOG_SIZE) {
mdb_warn("Failed to write %d bytes to output file: instance %d",
PMCS_FWLOG_SIZE, instance);
rval = DCMD_ERR;
goto cleanup;
}
mdb_printf("Event log for instance %d written to %s\n", instance,
ofilename);
cleanup:
if (ofilefd >= 0) {
close(ofilefd);
}
mdb_free(fwlogp, PMCS_FWLOG_SIZE);
return (rval);
}
static int
pmcs_fwlog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
void *pmcs_state;
const char *ofile = NULL;
struct pmcs_hw ss;
struct dev_info dip;
if (mdb_getopts(argc, argv, 'o', MDB_OPT_STR, &ofile, NULL) != argc) {
return (DCMD_USAGE);
}
if (ofile == NULL) {
mdb_printf("No output file specified\n");
return (DCMD_USAGE);
}
if (!(flags & DCMD_ADDRSPEC)) {
pmcs_state = NULL;
if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
mdb_warn("can't read pmcs_softc_state");
return (DCMD_ERR);
}
if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_fwlog", argc,
argv, (uintptr_t)pmcs_state) == -1) {
mdb_warn("mdb_pwalk_dcmd failed for pmcs_log");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
return (pmcs_dump_fwlog(&ss, dip.devi_instance, ofile));
}
#endif /* _KMDB */
static int
pmcs_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
void *pmcs_state;
struct pmcs_hw ss;
struct dev_info dip;
const char *match_phy_path = NULL;
uint64_t match_sas_address = 0, tail_lines = 0;
uint_t verbose = 0;
if (!(flags & DCMD_ADDRSPEC)) {
pmcs_state = NULL;
if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
mdb_warn("can't read pmcs_softc_state");
return (DCMD_ERR);
}
if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_log", argc,
argv, (uintptr_t)pmcs_state) == -1) {
mdb_warn("mdb_pwalk_dcmd failed for pmcs_log");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'l', MDB_OPT_UINT64, &tail_lines,
'p', MDB_OPT_STR, &match_phy_path,
's', MDB_OPT_UINT64, &match_sas_address,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
NULL) != argc) {
return (DCMD_USAGE);
}
if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
if (!(flags & DCMD_LOOP)) {
return (pmcs_dump_tracelog(B_TRUE, dip.devi_instance,
tail_lines, match_phy_path, match_sas_address, verbose));
} else if (flags & DCMD_LOOPFIRST) {
return (pmcs_dump_tracelog(B_FALSE, 0, tail_lines,
match_phy_path, match_sas_address, verbose));
} else {
return (DCMD_OK);
}
}
static int
pmcs_dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct pmcs_hw ss;
uint_t verbose = FALSE;
uint_t phy_info = FALSE;
uint_t hw_info = FALSE;
uint_t target_info = FALSE;
uint_t work_info = FALSE;
uint_t ic_info = FALSE;
uint_t iport_info = FALSE;
uint_t waitqs_info = FALSE;
uint_t ibq = FALSE;
uint_t obq = FALSE;
uint_t tgt_phy_count = FALSE;
uint_t compq = FALSE;
uint_t unconfigured = FALSE;
uint_t damap_info = FALSE;
uint_t dtc_info = FALSE;
uint_t wserno = FALSE;
uint_t fwlog = FALSE;
boolean_t devid_filter = FALSE;
uintptr_t pdevid;
uint32_t devid;
int rv = DCMD_OK;
void *pmcs_state;
char *state_str;
struct dev_info dip;
per_iport_setting_t pis;
if (!(flags & DCMD_ADDRSPEC)) {
pmcs_state = NULL;
if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
mdb_warn("can't read pmcs_softc_state");
return (DCMD_ERR);
}
if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs", argc, argv,
(uintptr_t)pmcs_state) == -1) {
mdb_warn("mdb_pwalk_dcmd failed");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'c', MDB_OPT_SETBITS, TRUE, &compq,
'd', MDB_OPT_SETBITS, TRUE, &dtc_info,
'D', MDB_OPT_UINTPTR_SET, &devid_filter, &pdevid,
'e', MDB_OPT_SETBITS, TRUE, &fwlog,
'h', MDB_OPT_SETBITS, TRUE, &hw_info,
'i', MDB_OPT_SETBITS, TRUE, &ic_info,
'I', MDB_OPT_SETBITS, TRUE, &iport_info,
'm', MDB_OPT_SETBITS, TRUE, &damap_info,
'p', MDB_OPT_SETBITS, TRUE, &phy_info,
'q', MDB_OPT_SETBITS, TRUE, &ibq,
'Q', MDB_OPT_SETBITS, TRUE, &obq,
's', MDB_OPT_SETBITS, TRUE, &wserno,
't', MDB_OPT_SETBITS, TRUE, &target_info,
'T', MDB_OPT_SETBITS, TRUE, &tgt_phy_count,
'u', MDB_OPT_SETBITS, TRUE, &unconfigured,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
'w', MDB_OPT_SETBITS, TRUE, &work_info,
'W', MDB_OPT_SETBITS, TRUE, &waitqs_info,
NULL) != argc)
return (DCMD_USAGE);
/*
* The 'd' and 'm' options implicitly enable the 'I' option
*/
pis.pis_damap_info = damap_info;
pis.pis_dtc_info = dtc_info;
if (damap_info || dtc_info) {
iport_info = TRUE;
}
/*
* The -D option is meaningless without -q and/or -Q, and implies
* verbosity.
*/
if (devid_filter) {
devid = (uint64_t)pdevid & 0xffffffff;
if (!ibq && !obq) {
mdb_printf("-D requires either -q or -Q\n");
return (DCMD_USAGE);
}
if (devid > PMCS_DEVICE_ID_MASK) {
mdb_printf("Device ID invalid\n");
return (DCMD_USAGE);
}
verbose = TRUE;
}
if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
NOREAD(pmcs_hw_t, addr);
return (DCMD_ERR);
}
/* processing completed */
if (((flags & DCMD_ADDRSPEC) && !(flags & DCMD_LOOP)) ||
(flags & DCMD_LOOPFIRST) || phy_info || target_info || hw_info ||
work_info || waitqs_info || ibq || obq || tgt_phy_count || compq ||
unconfigured || fwlog) {
if ((flags & DCMD_LOOP) && !(flags & DCMD_LOOPFIRST))
mdb_printf("\n");
mdb_printf("%16s %9s %4s B C WorkFlags wserno DbgMsk %16s\n",
"Address", "State", "Inst", "DIP");
mdb_printf("================================="
"============================================\n");
}
switch (ss.state) {
case STATE_NIL:
state_str = "Invalid";
break;
case STATE_PROBING:
state_str = "Probing";
break;
case STATE_RUNNING:
state_str = "Running";
break;
case STATE_UNPROBING:
state_str = "Unprobing";
break;
case STATE_DEAD:
state_str = "Dead";
break;
case STATE_IN_RESET:
state_str = "In Reset";
break;
}
mdb_printf("%16p %9s %4d %1d %1d 0x%08x 0x%04x 0x%04x %16p\n", addr,
state_str, dip.devi_instance, ss.blocked, ss.configuring,
ss.work_flags, ss.wserno, ss.debug_mask, ss.dip);
mdb_printf("\n");
mdb_inc_indent(4);
if (waitqs_info)
display_waitqs(ss, verbose);
if (hw_info)
display_hwinfo(ss, verbose);
if (phy_info || tgt_phy_count)
display_phys(ss, verbose, NULL, 0, tgt_phy_count);
if (target_info || tgt_phy_count)
display_targets(ss, verbose, tgt_phy_count);
if (work_info || wserno)
display_work(ss, verbose, wserno);
if (ic_info)
display_ic(ss, verbose);
if (ibq)
display_inbound_queues(ss, devid, verbose);
if (obq)
display_outbound_queues(ss, devid, verbose);
if (iport_info)
display_iport(ss, addr, verbose, &pis);
if (compq)
display_completion_queue(ss);
if (unconfigured)
display_unconfigured_targets(addr);
if (fwlog)
display_event_log(ss);
mdb_dec_indent(4);
return (rv);
}
void
pmcs_help()
{
mdb_printf("Prints summary information about each pmcs instance.\n"
" -c: Dump the completion queue\n"
" -d: Print per-iport information about device tree children\n"
" -D <device ID>: With -q/-Q, filter by device handle\n"
" -e: Display the in-memory firmware event log\n"
" -h: Print more detailed hardware information\n"
" -i: Print interrupt coalescing information\n"
" -I: Print information about each iport\n"
" -m: Print per-iport information about DAM/damap state\n"
" -p: Print information about each attached PHY\n"
" -q: Dump inbound queues\n"
" -Q: Dump outbound queues\n"
" -s: Dump all work structures sorted by serial number\n"
" -t: Print information about each configured target\n"
" -T: Print target and PHY count summary\n"
" -u: Show SAS address of all unconfigured targets\n"
" -w: Dump work structures\n"
" -W: List pmcs cmds waiting on various queues\n"
" -v: Add verbosity to the above options\n");
}
void
pmcs_log_help()
{
mdb_printf("Dump the pmcs log buffer, possibly with filtering.\n"
" -l TAIL_LINES: Dump the last TAIL_LINES messages\n"
" -p PHY_PATH: Dump messages matching PHY_PATH\n"
" -s SAS_ADDRESS: Dump messages matching SAS_ADDRESS\n\n"
"Where: PHY_PATH can be found with ::pmcs -p (e.g. pp04.18.18.01)\n"
" SAS_ADDRESS can be found with ::pmcs -t "
"(e.g. 5000c5000358c221)\n");
}
void
pmcs_tag_help()
{
mdb_printf("Print all work structures by matching the tag.\n"
" -i index: Match tag index (0x000 - 0xfff)\n"
" -s serialnumber: Match serial number (0x0000 - 0xffff)\n"
" -t tagtype: Match tag type [NONE(1), CBACK(2), "
"WAIT(3)]\n");
}
static const mdb_dcmd_t dcmds[] = {
{ "pmcs", "?[-cdehiImpQqtTuwWv] [-D <device ID>]",
"print pmcs information", pmcs_dcmd, pmcs_help
},
{ "pmcs_log",
"?[-v] [-p PHY_PATH | -s SAS_ADDRESS | -l TAIL_LINES]",
"dump pmcs log file", pmcs_log, pmcs_log_help
},
{ "pmcs_tag", "?[-t tagtype|-s serialnum|-i index]",
"Find work structures by tag type, serial number or index",
pmcs_tag, pmcs_tag_help
},
#ifndef _KMDB
{ "pmcs_fwlog",
"?-o output_file",
"dump pmcs firmware event log to output_file", pmcs_fwlog, NULL
},
#endif /* _KMDB */
{ NULL }
};
static const mdb_walker_t walkers[] = {
{ "pmcs_targets", "walk target structures",
targets_walk_i, targets_walk_s, targets_walk_f },
{ "pmcs_phys", "walk PHY structures",
phy_walk_i, phy_walk_s, phy_walk_f },
{ NULL }
};
static const mdb_modinfo_t modinfo = {
MDB_API_VERSION, dcmds, walkers
};
const mdb_modinfo_t *
_mdb_init(void)
{
return (&modinfo);
}