/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
*/
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/lwp.h>
#include <sys/proc.h>
#include <sys/cpuvar.h>
#include <sys/cpupart.h>
#include <sys/disp.h>
#include <sys/taskq_impl.h>
#include <sys/stack.h>
#ifndef STACK_BIAS
#define STACK_BIAS 0
#endif
typedef struct thread_walk {
kthread_t *tw_thread;
uintptr_t tw_last;
uint_t tw_inproc;
uint_t tw_step;
} thread_walk_t;
int
thread_walk_init(mdb_walk_state_t *wsp)
{
thread_walk_t *twp = mdb_alloc(sizeof (thread_walk_t), UM_SLEEP);
if (wsp->walk_addr == NULL) {
if (mdb_readvar(&wsp->walk_addr, "allthreads") == -1) {
mdb_warn("failed to read 'allthreads'");
mdb_free(twp, sizeof (thread_walk_t));
return (WALK_ERR);
}
twp->tw_inproc = FALSE;
} else {
proc_t pr;
if (mdb_vread(&pr, sizeof (proc_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read proc at %p", wsp->walk_addr);
mdb_free(twp, sizeof (thread_walk_t));
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)pr.p_tlist;
twp->tw_inproc = TRUE;
}
twp->tw_thread = mdb_alloc(sizeof (kthread_t), UM_SLEEP);
twp->tw_last = wsp->walk_addr;
twp->tw_step = FALSE;
wsp->walk_data = twp;
return (WALK_NEXT);
}
int
thread_walk_step(mdb_walk_state_t *wsp)
{
thread_walk_t *twp = (thread_walk_t *)wsp->walk_data;
int status;
if (wsp->walk_addr == NULL)
return (WALK_DONE); /* Proc has 0 threads or allthreads = 0 */
if (twp->tw_step && wsp->walk_addr == twp->tw_last)
return (WALK_DONE); /* We've wrapped around */
if (mdb_vread(twp->tw_thread, sizeof (kthread_t),
wsp->walk_addr) == -1) {
mdb_warn("failed to read thread at %p", wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, twp->tw_thread,
wsp->walk_cbdata);
if (twp->tw_inproc)
wsp->walk_addr = (uintptr_t)twp->tw_thread->t_forw;
else
wsp->walk_addr = (uintptr_t)twp->tw_thread->t_next;
twp->tw_step = TRUE;
return (status);
}
void
thread_walk_fini(mdb_walk_state_t *wsp)
{
thread_walk_t *twp = (thread_walk_t *)wsp->walk_data;
mdb_free(twp->tw_thread, sizeof (kthread_t));
mdb_free(twp, sizeof (thread_walk_t));
}
int
deathrow_walk_init(mdb_walk_state_t *wsp)
{
if (mdb_layered_walk("thread_deathrow", wsp) == -1) {
mdb_warn("couldn't walk 'thread_deathrow'");
return (WALK_ERR);
}
if (mdb_layered_walk("lwp_deathrow", wsp) == -1) {
mdb_warn("couldn't walk 'lwp_deathrow'");
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
deathrow_walk_step(mdb_walk_state_t *wsp)
{
kthread_t t;
uintptr_t addr = wsp->walk_addr;
if (addr == NULL)
return (WALK_DONE);
if (mdb_vread(&t, sizeof (t), addr) == -1) {
mdb_warn("couldn't read deathrow thread at %p", addr);
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)t.t_forw;
return (wsp->walk_callback(addr, &t, wsp->walk_cbdata));
}
int
thread_deathrow_walk_init(mdb_walk_state_t *wsp)
{
if (mdb_readvar(&wsp->walk_addr, "thread_deathrow") == -1) {
mdb_warn("couldn't read symbol 'thread_deathrow'");
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
lwp_deathrow_walk_init(mdb_walk_state_t *wsp)
{
if (mdb_readvar(&wsp->walk_addr, "lwp_deathrow") == -1) {
mdb_warn("couldn't read symbol 'lwp_deathrow'");
return (WALK_ERR);
}
return (WALK_NEXT);
}
typedef struct dispq_walk {
int dw_npri;
uintptr_t dw_dispq;
uintptr_t dw_last;
} dispq_walk_t;
int
cpu_dispq_walk_init(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
dispq_walk_t *dw;
cpu_t cpu;
dispq_t dispq;
disp_t disp;
if (addr == NULL) {
mdb_warn("cpu_dispq walk needs a cpu_t address\n");
return (WALK_ERR);
}
if (mdb_vread(&cpu, sizeof (cpu_t), addr) == -1) {
mdb_warn("failed to read cpu_t at %p", addr);
return (WALK_ERR);
}
if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu.cpu_disp) == -1) {
mdb_warn("failed to read disp_t at %p", cpu.cpu_disp);
return (WALK_ERR);
}
if (mdb_vread(&dispq, sizeof (dispq_t),
(uintptr_t)disp.disp_q) == -1) {
mdb_warn("failed to read dispq_t at %p", disp.disp_q);
return (WALK_ERR);
}
dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP);
dw->dw_npri = disp.disp_npri;
dw->dw_dispq = (uintptr_t)disp.disp_q;
dw->dw_last = (uintptr_t)dispq.dq_last;
wsp->walk_addr = (uintptr_t)dispq.dq_first;
wsp->walk_data = dw;
return (WALK_NEXT);
}
int
cpupart_dispq_walk_init(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
dispq_walk_t *dw;
cpupart_t cpupart;
dispq_t dispq;
if (addr == NULL) {
mdb_warn("cpupart_dispq walk needs a cpupart_t address\n");
return (WALK_ERR);
}
if (mdb_vread(&cpupart, sizeof (cpupart_t), addr) == -1) {
mdb_warn("failed to read cpupart_t at %p", addr);
return (WALK_ERR);
}
if (mdb_vread(&dispq, sizeof (dispq_t),
(uintptr_t)cpupart.cp_kp_queue.disp_q) == -1) {
mdb_warn("failed to read dispq_t at %p",
cpupart.cp_kp_queue.disp_q);
return (WALK_ERR);
}
dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP);
dw->dw_npri = cpupart.cp_kp_queue.disp_npri;
dw->dw_dispq = (uintptr_t)cpupart.cp_kp_queue.disp_q;
dw->dw_last = (uintptr_t)dispq.dq_last;
wsp->walk_addr = (uintptr_t)dispq.dq_first;
wsp->walk_data = dw;
return (WALK_NEXT);
}
int
dispq_walk_step(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
dispq_walk_t *dw = wsp->walk_data;
dispq_t dispq;
kthread_t t;
while (addr == NULL) {
if (--dw->dw_npri == 0)
return (WALK_DONE);
dw->dw_dispq += sizeof (dispq_t);
if (mdb_vread(&dispq, sizeof (dispq_t), dw->dw_dispq) == -1) {
mdb_warn("failed to read dispq_t at %p", dw->dw_dispq);
return (WALK_ERR);
}
dw->dw_last = (uintptr_t)dispq.dq_last;
addr = (uintptr_t)dispq.dq_first;
}
if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
mdb_warn("failed to read kthread_t at %p", addr);
return (WALK_ERR);
}
if (addr == dw->dw_last)
wsp->walk_addr = NULL;
else
wsp->walk_addr = (uintptr_t)t.t_link;
return (wsp->walk_callback(addr, &t, wsp->walk_cbdata));
}
void
dispq_walk_fini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (dispq_walk_t));
}
struct thread_state {
uint_t ts_state;
const char *ts_name;
} thread_states[] = {
{ TS_FREE, "free" },
{ TS_SLEEP, "sleep" },
{ TS_RUN, "run" },
{ TS_ONPROC, "onproc" },
{ TS_ZOMB, "zomb" },
{ TS_STOPPED, "stopped" },
{ TS_WAIT, "wait" }
};
#define NUM_THREAD_STATES (sizeof (thread_states) / sizeof (*thread_states))
void
thread_state_to_text(uint_t state, char *out, size_t out_sz)
{
int idx;
for (idx = 0; idx < NUM_THREAD_STATES; idx++) {
struct thread_state *tsp = &thread_states[idx];
if (tsp->ts_state == state) {
mdb_snprintf(out, out_sz, "%s", tsp->ts_name);
return;
}
}
mdb_snprintf(out, out_sz, "inval/%02x", state);
}
int
thread_text_to_state(const char *state, uint_t *out)
{
int idx;
for (idx = 0; idx < NUM_THREAD_STATES; idx++) {
struct thread_state *tsp = &thread_states[idx];
if (strcasecmp(tsp->ts_name, state) == 0) {
*out = tsp->ts_state;
return (0);
}
}
return (-1);
}
void
thread_walk_states(void (*cbfunc)(uint_t, const char *, void *), void *cbarg)
{
int idx;
for (idx = 0; idx < NUM_THREAD_STATES; idx++) {
struct thread_state *tsp = &thread_states[idx];
cbfunc(tsp->ts_state, tsp->ts_name, cbarg);
}
}
#define TF_INTR 0x01
#define TF_PROC 0x02
#define TF_BLOCK 0x04
#define TF_SIG 0x08
#define TF_DISP 0x10
#define TF_MERGE 0x20
/*
* Display a kthread_t.
* This is a little complicated, as there is a lot of information that
* the user could be interested in. The flags "ipbsd" are used to
* indicate which subset of the thread's members are to be displayed
* ('i' is the default). If multiple options are specified, multiple
* sets of data will be displayed in a vaguely readable format. If the
* 'm' option is specified, all the selected sets will be merged onto a
* single line for the benefit of those using wider-than-normal
* terminals. Having a generic mechanism for doing this would be
* really useful, but is a project best left to another day.
*/
int
thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kthread_t t;
uint_t oflags = 0;
uint_t fflag = FALSE;
int first;
char stbuf[20];
/*
* "Gracefully" handle printing a boatload of stuff to the
* screen. If we are not printing our first set of data, and
* we haven't been instructed to merge sets together, output a
* newline and indent such that the thread addresses form a
* column of their own.
*/
#define SPACER() \
if (first) { \
first = FALSE; \
} else if (!(oflags & TF_MERGE)) { \
mdb_printf("\n%?s", ""); \
}
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("thread", "thread", argc, argv) == -1) {
mdb_warn("can't walk threads");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'f', MDB_OPT_SETBITS, TRUE, &fflag,
'i', MDB_OPT_SETBITS, TF_INTR, &oflags,
'p', MDB_OPT_SETBITS, TF_PROC, &oflags,
'b', MDB_OPT_SETBITS, TF_BLOCK, &oflags,
's', MDB_OPT_SETBITS, TF_SIG, &oflags,
'd', MDB_OPT_SETBITS, TF_DISP, &oflags,
'm', MDB_OPT_SETBITS, TF_MERGE, &oflags, NULL) != argc)
return (DCMD_USAGE);
/*
* If no sets were specified, choose the 'i' set.
*/
if (!(oflags & ~TF_MERGE))
#ifdef _LP64
oflags = TF_INTR;
#else
oflags = TF_INTR | TF_DISP | TF_MERGE;
#endif
/*
* Print the relevant headers; note use of SPACER().
*/
if (DCMD_HDRSPEC(flags)) {
first = TRUE;
mdb_printf("%<u>%?s%</u>", "ADDR");
mdb_flush();
if (oflags & TF_PROC) {
SPACER();
mdb_printf("%<u> %?s %?s %?s%</u>",
"PROC", "LWP", "CRED");
}
if (oflags & TF_INTR) {
SPACER();
mdb_printf("%<u> %8s %4s %4s %4s %5s %5s %3s %?s%</u>",
"STATE", "FLG", "PFLG",
"SFLG", "PRI", "EPRI", "PIL", "INTR");
}
if (oflags & TF_BLOCK) {
SPACER();
mdb_printf("%<u> %?s %?s %?s %11s%</u>",
"WCHAN", "TS", "PITS", "SOBJ OPS");
}
if (oflags & TF_SIG) {
SPACER();
mdb_printf("%<u> %?s %16s %16s%</u>",
"SIGQUEUE", "SIG PEND", "SIG HELD");
}
if (oflags & TF_DISP) {
SPACER();
mdb_printf("%<u> %?s %5s %2s %-6s%</u>",
"DISPTIME", "BOUND", "PR", "SWITCH");
}
mdb_printf("\n");
}
if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
mdb_warn("can't read kthread_t at %#lx", addr);
return (DCMD_ERR);
}
if (fflag && (t.t_state == TS_FREE))
return (DCMD_OK);
first = TRUE;
mdb_printf("%0?lx", addr);
/* process information */
if (oflags & TF_PROC) {
SPACER();
mdb_printf(" %?p %?p %?p", t.t_procp, t.t_lwp, t.t_cred);
}
/* priority/interrupt information */
if (oflags & TF_INTR) {
SPACER();
thread_state_to_text(t.t_state, stbuf, sizeof (stbuf));
if (t.t_intr == NULL) {
mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?s",
stbuf, t.t_flag, t.t_proc_flag, t.t_schedflag,
t.t_pri, t.t_epri, t.t_pil, "n/a");
} else {
mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?p",
stbuf, t.t_flag, t.t_proc_flag, t.t_schedflag,
t.t_pri, t.t_epri, t.t_pil, t.t_intr);
}
}
/* blocking information */
if (oflags & TF_BLOCK) {
SPACER();
(void) mdb_snprintf(stbuf, 20, "%a", t.t_sobj_ops);
stbuf[11] = '\0';
mdb_printf(" %?p %?p %?p %11s",
t.t_wchan, t.t_ts, t.t_prioinv, stbuf);
}
/* signal information */
if (oflags & TF_SIG) {
SPACER();
mdb_printf(" %?p %016llx %016llx",
t.t_sigqueue, t.t_sig, t.t_hold);
}
/* dispatcher stuff */
if (oflags & TF_DISP) {
SPACER();
mdb_printf(" %?lx %5d %2d ",
t.t_disp_time, t.t_bind_cpu, t.t_preempt);
if (t.t_disp_time != 0)
mdb_printf("t-%-4d",
(clock_t)mdb_get_lbolt() - t.t_disp_time);
else
mdb_printf("%-6s", "-");
}
mdb_printf("\n");
#undef SPACER
return (DCMD_OK);
}
void
thread_help(void)
{
mdb_printf(
"The flags -ipbsd control which information is displayed. When\n"
"combined, the fields are displayed on separate lines unless the\n"
"-m option is given.\n"
"\n"
"\t-b\tprint blocked thread state\n"
"\t-d\tprint dispatcher state\n"
"\t-f\tignore freed threads\n"
"\t-i\tprint basic thread state (default)\n"
"\t-m\tdisplay results on a single line\n"
"\t-p\tprint process and lwp state\n"
"\t-s\tprint signal state\n");
}
/*
* List a combination of kthread_t and proc_t. Add stack traces in verbose mode.
*/
int
threadlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int i;
uint_t count = 0;
uint_t verbose = FALSE;
uint_t notaskq = FALSE;
kthread_t t;
taskq_t tq;
proc_t p;
char cmd[80];
mdb_arg_t cmdarg;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("thread", "threadlist", argc, argv) == -1) {
mdb_warn("can't walk threads");
return (DCMD_ERR);
}
return (DCMD_OK);
}
i = mdb_getopts(argc, argv,
't', MDB_OPT_SETBITS, TRUE, &notaskq,
'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL);
if (i != argc) {
if (i != argc - 1 || !verbose)
return (DCMD_USAGE);
if (argv[i].a_type == MDB_TYPE_IMMEDIATE)
count = (uint_t)argv[i].a_un.a_val;
else
count = (uint_t)mdb_strtoull(argv[i].a_un.a_str);
}
if (DCMD_HDRSPEC(flags)) {
if (verbose)
mdb_printf("%<u>%?s %?s %?s %3s %3s %?s%</u>\n",
"ADDR", "PROC", "LWP", "CLS", "PRI", "WCHAN");
else
mdb_printf("%<u>%?s %?s %?s %s/%s%</u>\n",
"ADDR", "PROC", "LWP", "CMD", "LWPID");
}
if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
mdb_warn("failed to read kthread_t at %p", addr);
return (DCMD_ERR);
}
if (notaskq && t.t_taskq != NULL)
return (DCMD_OK);
if (t.t_state == TS_FREE)
return (DCMD_OK);
if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc at %p", t.t_procp);
return (DCMD_ERR);
}
if (mdb_vread(&tq, sizeof (taskq_t), (uintptr_t)t.t_taskq) == -1)
tq.tq_name[0] = '\0';
if (verbose) {
mdb_printf("%0?p %?p %?p %3u %3d %?p\n",
addr, t.t_procp, t.t_lwp, t.t_cid, t.t_pri, t.t_wchan);
mdb_inc_indent(2);
mdb_printf("PC: %a", t.t_pc);
if (t.t_tid == 0) {
if (tq.tq_name[0] != '\0')
mdb_printf(" TASKQ: %s\n", tq.tq_name);
else
mdb_printf(" THREAD: %a()\n", t.t_startpc);
} else {
mdb_printf(" CMD: %s\n", p.p_user.u_psargs);
}
mdb_snprintf(cmd, sizeof (cmd), "<.$c%d", count);
cmdarg.a_type = MDB_TYPE_STRING;
cmdarg.a_un.a_str = cmd;
(void) mdb_call_dcmd("findstack", addr, flags, 1, &cmdarg);
mdb_dec_indent(2);
mdb_printf("\n");
} else {
mdb_printf("%0?p %?p %?p", addr, t.t_procp, t.t_lwp);
if (t.t_tid == 0) {
if (tq.tq_name[0] != '\0')
mdb_printf(" tq:%s\n", tq.tq_name);
else
mdb_printf(" %a()\n", t.t_startpc);
} else {
mdb_printf(" %s/%u\n", p.p_user.u_comm, t.t_tid);
}
}
return (DCMD_OK);
}
void
threadlist_help(void)
{
mdb_printf(
" -v print verbose output including C stack trace\n"
" -t skip threads belonging to a taskq\n"
" count print no more than count arguments (default 0)\n");
}
static size_t
stk_compute_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
{
size_t percent;
size_t s;
if (t_stk > t_stkbase) {
/* stack grows down */
if (sp > t_stk) {
return (0);
}
if (sp < t_stkbase) {
return (100);
}
percent = t_stk - sp + 1;
s = t_stk - t_stkbase + 1;
} else {
/* stack grows up */
if (sp < t_stk) {
return (0);
}
if (sp > t_stkbase) {
return (100);
}
percent = sp - t_stk + 1;
s = t_stkbase - t_stk + 1;
}
percent = ((100 * percent) / s) + 1;
if (percent > 100) {
percent = 100;
}
return (percent);
}
/*
* Display kthread stack infos.
*/
int
stackinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kthread_t t;
proc_t p;
uint64_t *ptr; /* pattern pointer */
caddr_t start; /* kernel stack start */
caddr_t end; /* kernel stack end */
caddr_t ustack; /* userland copy of kernel stack */
size_t usize; /* userland copy of kernel stack size */
caddr_t ustart; /* userland copy of kernel stack, aligned start */
caddr_t uend; /* userland copy of kernel stack, aligned end */
size_t percent = 0;
uint_t all = FALSE; /* don't show TS_FREE kthread by default */
uint_t history = FALSE;
int i = 0;
unsigned int ukmem_stackinfo;
uintptr_t allthreads;
/* handle options */
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &all,
'h', MDB_OPT_SETBITS, TRUE, &history, NULL) != argc) {
return (DCMD_USAGE);
}
/* walk all kthread if needed */
if ((history == FALSE) && !(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("thread", "stackinfo", argc, argv) == -1) {
mdb_warn("can't walk threads");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/* read 'kmem_stackinfo' */
if (mdb_readsym(&ukmem_stackinfo, sizeof (ukmem_stackinfo),
"kmem_stackinfo") == -1) {
mdb_warn("failed to read 'kmem_stackinfo'\n");
ukmem_stackinfo = 0;
}
/* read 'allthreads' */
if (mdb_readsym(&allthreads, sizeof (kthread_t *),
"allthreads") == -1) {
mdb_warn("failed to read 'allthreads'\n");
allthreads = NULL;
}
if (history == TRUE) {
kmem_stkinfo_t *log;
uintptr_t kaddr;
mdb_printf("Dead kthreads stack usage history:\n");
if (ukmem_stackinfo == 0) {
mdb_printf("Tunable kmem_stackinfo is unset, history ");
mdb_printf("feature is off.\nUse ::help stackinfo ");
mdb_printf("for more details.\n");
return (DCMD_OK);
}
mdb_printf("%<u>%?s%</u>", "THREAD");
mdb_printf(" %<u>%?s%</u>", "STACK");
mdb_printf("%<u>%s%</u>", " SIZE MAX CMD/LWPID or STARTPC");
mdb_printf("\n");
usize = KMEM_STKINFO_LOG_SIZE * sizeof (kmem_stkinfo_t);
log = (kmem_stkinfo_t *)mdb_alloc(usize, UM_SLEEP);
if (mdb_readsym(&kaddr, sizeof (kaddr),
"kmem_stkinfo_log") == -1) {
mdb_free((void *)log, usize);
mdb_warn("failed to read 'kmem_stkinfo_log'\n");
return (DCMD_ERR);
}
if (kaddr == NULL) {
mdb_free((void *)log, usize);
return (DCMD_OK);
}
if (mdb_vread(log, usize, kaddr) == -1) {
mdb_free((void *)log, usize);
mdb_warn("failed to read %p\n", kaddr);
return (DCMD_ERR);
}
for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
if (log[i].kthread == NULL) {
continue;
}
mdb_printf("%0?p %0?p %6x %3d%%",
log[i].kthread,
log[i].start,
(uint_t)log[i].stksz,
(int)log[i].percent);
if (log[i].t_tid != 0) {
mdb_printf(" %s/%u\n",
log[i].cmd, log[i].t_tid);
} else {
mdb_printf(" %p (%a)\n", log[i].t_startpc,
log[i].t_startpc);
}
}
mdb_free((void *)log, usize);
return (DCMD_OK);
}
/* display header */
if (DCMD_HDRSPEC(flags)) {
if (ukmem_stackinfo == 0) {
mdb_printf("Tunable kmem_stackinfo is unset, ");
mdb_printf("MAX value is not available.\n");
mdb_printf("Use ::help stackinfo for more details.\n");
}
mdb_printf("%<u>%?s%</u>", "THREAD");
mdb_printf(" %<u>%?s%</u>", "STACK");
mdb_printf("%<u>%s%</u>", " SIZE CUR MAX CMD/LWPID");
mdb_printf("\n");
}
/* read kthread */
if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
mdb_warn("can't read kthread_t at %#lx\n", addr);
return (DCMD_ERR);
}
if (t.t_state == TS_FREE && all == FALSE) {
return (DCMD_OK);
}
/* read proc */
if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc at %p\n", t.t_procp);
return (DCMD_ERR);
}
/*
* Stack grows up or down, see thread_create(),
* compute stack memory aera start and end (start < end).
*/
if (t.t_stk > t.t_stkbase) {
/* stack grows down */
start = t.t_stkbase;
end = t.t_stk;
} else {
/* stack grows up */
start = t.t_stk;
end = t.t_stkbase;
}
/* display stack info */
mdb_printf("%0?p %0?p", addr, start);
/* (end - start), kernel stack size as found in kthread_t */
if ((end <= start) || ((end - start) > (1024 * 1024))) {
/* negative or stack size > 1 meg, assume bogus */
mdb_warn(" t_stk/t_stkbase problem\n");
return (DCMD_ERR);
}
/* display stack size */
mdb_printf(" %6x", end - start);
/* display current stack usage */
percent = stk_compute_percent(t.t_stk, t.t_stkbase,
(caddr_t)t.t_sp + STACK_BIAS);
mdb_printf(" %3d%%", percent);
percent = 0;
if (ukmem_stackinfo == 0) {
mdb_printf(" n/a");
if (t.t_tid == 0) {
mdb_printf(" %a()", t.t_startpc);
} else {
mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid);
}
mdb_printf("\n");
return (DCMD_OK);
}
if ((((uintptr_t)start) & 0x7) != 0) {
start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
}
end = (caddr_t)(((uintptr_t)end) & (~0x7));
/* size to scan in userland copy of kernel stack */
usize = end - start; /* is a multiple of 8 bytes */
/*
* Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
* alignement for ustart and uend, in boundaries.
*/
ustart = ustack = (caddr_t)mdb_alloc(usize + 8, UM_SLEEP);
if ((((uintptr_t)ustart) & 0x7) != 0) {
ustart = (caddr_t)((((uintptr_t)ustart) & (~0x7)) + 8);
}
uend = ustart + usize;
/* read the kernel stack */
if (mdb_vread(ustart, usize, (uintptr_t)start) != usize) {
mdb_free((void *)ustack, usize + 8);
mdb_printf("\n");
mdb_warn("couldn't read entire stack\n");
return (DCMD_ERR);
}
/* scan the stack */
if (t.t_stk > t.t_stkbase) {
/* stack grows down */
#if defined(__i386) || defined(__amd64)
/*
* 6 longs are pushed on stack, see thread_load(). Skip
* them, so if kthread has never run, percent is zero.
* 8 bytes alignement is preserved for a 32 bit kernel,
* 6 x 4 = 24, 24 is a multiple of 8.
*/
uend -= (6 * sizeof (long));
#endif
ptr = (uint64_t *)((void *)ustart);
while (ptr < (uint64_t *)((void *)uend)) {
if (*ptr != KMEM_STKINFO_PATTERN) {
percent = stk_compute_percent(uend,
ustart, (caddr_t)ptr);
break;
}
ptr++;
}
} else {
/* stack grows up */
ptr = (uint64_t *)((void *)uend);
ptr--;
while (ptr >= (uint64_t *)((void *)ustart)) {
if (*ptr != KMEM_STKINFO_PATTERN) {
percent = stk_compute_percent(ustart,
uend, (caddr_t)ptr);
break;
}
ptr--;
}
}
/* thread 't0' stack is not created by thread_create() */
if (addr == allthreads) {
percent = 0;
}
if (percent != 0) {
mdb_printf(" %3d%%", percent);
} else {
mdb_printf(" n/a");
}
if (t.t_tid == 0) {
mdb_printf(" %a()", t.t_startpc);
} else {
mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid);
}
mdb_printf("\n");
mdb_free((void *)ustack, usize + 8);
return (DCMD_OK);
}
void
stackinfo_help(void)
{
mdb_printf(
"Shows kernel stacks real utilization, if /etc/system "
"kmem_stackinfo tunable\n");
mdb_printf(
"(an unsigned integer) is non zero at kthread creation time. ");
mdb_printf("For example:\n");
mdb_printf(
" THREAD STACK SIZE CUR MAX CMD/LWPID\n");
mdb_printf(
"ffffff014f5f2c20 ffffff0004153000 4f00 4%% 43%% init/1\n");
mdb_printf(
"The stack size utilization for this kthread is at 4%%"
" of its maximum size,\n");
mdb_printf(
"but has already used up to 43%%, stack size is 4f00 bytes.\n");
mdb_printf(
"MAX value can be shown as n/a (not available):\n");
mdb_printf(
" - for the very first kthread (sched/1)\n");
mdb_printf(
" - kmem_stackinfo was zero at kthread creation time\n");
mdb_printf(
" - kthread has not yet run\n");
mdb_printf("\n");
mdb_printf("Options:\n");
mdb_printf(
"-a shows also TS_FREE kthreads (interrupt kthreads)\n");
mdb_printf(
"-h shows history, dead kthreads that used their "
"kernel stack the most\n");
mdb_printf(
"\nSee Solaris Modular Debugger Guide for detailed usage.\n");
mdb_flush();
}