/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "lgrp.h"
#include <mdb/mdb_modapi.h>
#include <sys/cpuvar.h>
#include <sys/lgrp.h>
#include <sys/cpupart.h>
int
print_range(int start, int end, int separator)
{
int count;
char tmp;
char *format;
if (start == end) {
/* Unfortunately, mdb_printf returns void */
format = separator ? ", %d" : "%d";
mdb_printf(format, start);
count = mdb_snprintf(&tmp, 1, format, start);
} else {
format = separator ? ", %d-%d" : "%d-%d";
mdb_printf(format, start, end);
count = mdb_snprintf(&tmp, 1, format, start, end);
}
return (count);
}
void
print_cpuset_range(ulong_t *cs, int words, int width)
{
int i, j;
ulong_t m;
int in = 0;
int start;
int end;
int count = 0;
int sep = 0;
for (i = 0; i < words; i++)
for (j = 0, m = 1; j < BT_NBIPUL; j++, m <<= 1)
if (cs[i] & m) {
if (in == 0) {
start = i * BT_NBIPUL + j;
in = 1;
}
} else {
if (in == 1) {
end = i * BT_NBIPUL + j - 1;
count += print_range(start, end, sep);
sep = 1;
in = 0;
}
}
if (in == 1) {
end = i * BT_NBIPUL - 1;
count += print_range(start, end, sep);
}
/*
* print width - count spaces
*/
if (width > count)
mdb_printf("%*s", width - count, "");
}
typedef struct lgrp_cpu_walk {
uintptr_t lcw_firstcpu;
int lcw_cpusleft;
} lgrp_cpu_walk_t;
int
lgrp_cpulist_walk_init(mdb_walk_state_t *wsp)
{
lgrp_cpu_walk_t *lcw;
lgrp_t lgrp;
lcw = mdb_alloc(sizeof (lgrp_cpu_walk_t), UM_SLEEP | UM_GC);
if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) {
mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr);
return (WALK_ERR);
}
lcw->lcw_firstcpu = (uintptr_t)lgrp.lgrp_cpu;
lcw->lcw_cpusleft = lgrp.lgrp_cpucnt;
wsp->walk_data = lcw;
wsp->walk_addr = lcw->lcw_firstcpu;
return (WALK_NEXT);
}
int
lgrp_cpulist_walk_step(mdb_walk_state_t *wsp)
{
lgrp_cpu_walk_t *lcw = (lgrp_cpu_walk_t *)wsp->walk_data;
uintptr_t addr = (uintptr_t)wsp->walk_addr;
cpu_t cpu;
int status;
if (lcw->lcw_cpusleft-- == 0)
return (WALK_DONE);
if (mdb_vread(&cpu, sizeof (cpu_t), addr) == -1) {
mdb_warn("couldn't read 'cpu' at %p", addr);
return (WALK_ERR);
}
status = wsp->walk_callback(addr, &cpu, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
addr = (uintptr_t)cpu.cpu_next_lgrp;
wsp->walk_addr = addr;
if (lcw->lcw_cpusleft == NULL && addr != lcw->lcw_firstcpu) {
mdb_warn("number of cpus in lgroup cpu != lgroup cpucnt\n");
return (WALK_ERR);
}
return (WALK_NEXT);
}
typedef struct lgrp_cpuwalk_cbdata {
uint_t lcc_opt_p;
uint_t lcc_count;
uint_t lcc_used;
uint_t *lcc_psrsetid;
ulong_t **lcc_cpuset;
uint_t *lcc_cpucnt;
int *lcc_loadavg;
} lgrp_cpuwalk_cbdata_t;
/* ARGSUSED */
static int
lgrp_cpuwalk_callback(uintptr_t addr, const void *arg, void *cb_data)
{
cpu_t *cpu = (cpu_t *)arg;
lgrp_cpuwalk_cbdata_t *lcc = (lgrp_cpuwalk_cbdata_t *)cb_data;
uint_t opt_p = lcc->lcc_opt_p;
int offset = 0;
/*
* if opt_p is set, we're going to break up info for
* each lgrp by processor set.
*/
if (opt_p != 0) {
cpupartid_t cp_id;
cpupart_t cpupart;
lpl_t lpl;
if (mdb_vread(&cpupart, sizeof (cpupart_t),
(uintptr_t)cpu->cpu_part) == -1) {
mdb_warn("cannot read cpu partition at %p",
cpu->cpu_part);
return (WALK_ERR);
}
cp_id = cpupart.cp_id;
for (offset = 0; offset < lcc->lcc_used; offset++)
if (cp_id == lcc->lcc_psrsetid[offset]) {
goto found;
}
if (offset >= lcc->lcc_count) {
mdb_warn(
"number of cpu partitions changed during walk");
return (WALK_ERR);
}
lcc->lcc_psrsetid[offset] = cp_id;
lcc->lcc_used++;
if (mdb_vread(&lpl, sizeof (lpl_t), (uintptr_t)cpu->cpu_lpl)
== -1) {
mdb_warn("Cannot read lpl at %p", cpu->cpu_lpl);
return (WALK_ERR);
}
lcc->lcc_loadavg[offset] = lpl.lpl_loadavg;
}
found: lcc->lcc_cpucnt[offset]++;
BT_SET(lcc->lcc_cpuset[offset], cpu->cpu_id);
return (WALK_NEXT);
}
/* ARGSUSED */
int
lgrp(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
lgrp_t lgrp;
lgrp_cpuwalk_cbdata_t lcc;
int cpusetsize;
int lcpu; /* cpus in lgrp */
int _ncpu;
int opt_p = 0; /* display partition fraction loads */
int opt_q = 0; /* display only address. */
int i;
const char *s_index = NULL, *s_handle = NULL, *s_parent = NULL;
uintptr_t index;
uintptr_t handle;
uintptr_t parent;
int filters = 0;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("lgrptbl", "lgrp", argc, argv) == -1) {
mdb_warn("can't walk 'lgrps'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'p', MDB_OPT_SETBITS, TRUE, &opt_p,
'q', MDB_OPT_SETBITS, TRUE, &opt_q,
'P', MDB_OPT_STR, &s_parent,
'i', MDB_OPT_STR, &s_index,
'h', MDB_OPT_STR, &s_handle,
NULL) != argc)
return (DCMD_USAGE);
if (s_index != NULL)
filters++;
if (s_handle != NULL)
filters++;
if (s_parent != NULL)
filters++;
if (flags & DCMD_PIPE_OUT)
opt_q = B_TRUE;
if (s_index != NULL)
index = mdb_strtoull(s_index);
if (s_parent != NULL)
parent = mdb_strtoull(s_parent);
if (s_handle != NULL) {
if (strcmp(s_handle, "NULL") == 0)
handle = (uintptr_t)LGRP_NULL_HANDLE;
else if (strcmp(s_handle, "DEFAULT") == 0)
handle = (uintptr_t)LGRP_DEFAULT_HANDLE;
else
handle = mdb_strtoull(s_handle);
}
if (DCMD_HDRSPEC(flags) && !opt_q) {
if (opt_p == 0)
mdb_printf("%9s %?s %?s %?s %9s %9s\n",
"LGRPID",
"ADDR",
"PARENT",
"PLATHAND",
"#CPU",
"CPUS");
else
mdb_printf("%9s %9s %9s %9s %9s\n",
"LGRPID",
"PSRSETID",
"LOAD",
"#CPU",
"CPUS");
}
if (mdb_vread(&lgrp, sizeof (struct lgrp), addr) == -1) {
mdb_warn("unable to read 'lgrp' at %p", addr);
return (DCMD_ERR);
}
/*
* Do not report free lgrp unless specifically asked for.
*/
if ((lgrp.lgrp_id == LGRP_NONE) &&
((s_index == NULL) || ((int)index != LGRP_NONE)))
return (DCMD_OK);
/*
* If lgrp doesn't pass filtering criteria, don't print anything and
* just return.
*/
if (filters) {
if ((s_parent != NULL) &&
parent != (uintptr_t)lgrp.lgrp_parent)
return (DCMD_OK);
if ((s_index != NULL) && index != (uintptr_t)lgrp.lgrp_id)
return (DCMD_OK);
if ((s_handle != NULL) &&
handle != (uintptr_t)lgrp.lgrp_plathand)
return (DCMD_OK);
}
if (opt_q) {
mdb_printf("%0?p\n", addr);
return (DCMD_OK);
}
/*
* figure out what cpus we've got
*/
if (mdb_readsym(&_ncpu, sizeof (int), "_ncpu") == -1) {
mdb_warn("symbol '_ncpu' not found");
return (DCMD_ERR);
}
/*
* allocate enough space for set of longs to hold cpuid bitfield
*/
if (opt_p)
lcpu = lgrp.lgrp_cpucnt;
else
lcpu = 1;
cpusetsize = BT_BITOUL(_ncpu) * sizeof (uintptr_t);
lcc.lcc_used = 0;
lcc.lcc_cpucnt = mdb_zalloc(sizeof (uint_t) * lcpu,
UM_SLEEP | UM_GC);
lcc.lcc_psrsetid = mdb_zalloc(sizeof (uint_t) * lcpu,
UM_SLEEP | UM_GC);
lcc.lcc_cpuset = mdb_zalloc(sizeof (uintptr_t) * lcpu,
UM_SLEEP | UM_GC);
for (i = 0; i < lcpu; i++)
lcc.lcc_cpuset[i] = mdb_zalloc(cpusetsize,
UM_SLEEP | UM_GC);
lcc.lcc_loadavg = mdb_zalloc(sizeof (int) * lcpu,
UM_SLEEP | UM_GC);
lcc.lcc_count = lcpu;
lcc.lcc_opt_p = opt_p;
if (mdb_pwalk("lgrp_cpulist", lgrp_cpuwalk_callback, &lcc,
addr) == -1) {
mdb_warn("unable to walk lgrp_cpulist");
}
if (opt_p == 0) {
if (lgrp.lgrp_plathand == LGRP_NULL_HANDLE) {
mdb_printf("%9d %?p %?p %?s %9d ",
lgrp.lgrp_id,
addr,
lgrp.lgrp_parent,
"NULL",
lgrp.lgrp_cpucnt);
} else if (lgrp.lgrp_plathand == LGRP_DEFAULT_HANDLE) {
mdb_printf("%9d %?p %?p %?s %9d ",
lgrp.lgrp_id,
addr,
lgrp.lgrp_parent,
"DEFAULT",
lgrp.lgrp_cpucnt);
} else {
mdb_printf("%9d %?p %?p %?p %9d ",
lgrp.lgrp_id,
addr,
lgrp.lgrp_parent,
lgrp.lgrp_plathand,
lgrp.lgrp_cpucnt);
}
if (lgrp.lgrp_cpucnt != 0) {
print_cpuset_range(lcc.lcc_cpuset[0],
cpusetsize/sizeof (ulong_t), 0);
}
mdb_printf("\n");
} else {
for (i = 0; i < lcc.lcc_used; i++) {
mdb_printf("%9d %9d %9d %9d ",
lgrp.lgrp_id,
lcc.lcc_psrsetid[i],
lcc.lcc_loadavg[i],
lcc.lcc_cpucnt[i]);
if (lcc.lcc_cpucnt[i])
print_cpuset_range(lcc.lcc_cpuset[i],
cpusetsize/sizeof (ulong_t), 0);
mdb_printf("\n");
}
}
return (DCMD_OK);
}
typedef struct lgrp_walk_data {
int lwd_nlgrps;
uintptr_t *lwd_lgrp_tbl;
int lwd_iter;
} lgrp_walk_data_t;
int
lgrp_walk_init(mdb_walk_state_t *wsp)
{
lgrp_walk_data_t *lwd;
GElf_Sym sym;
lwd = mdb_zalloc(sizeof (lgrp_walk_data_t), UM_SLEEP | UM_GC);
if (mdb_readsym(&lwd->lwd_nlgrps, sizeof (int),
"lgrp_alloc_max") == -1) {
mdb_warn("symbol 'lgrp_alloc_max' not found");
return (WALK_ERR);
}
if (lwd->lwd_nlgrps < 0) {
mdb_warn("lgrp_alloc_max of bounds (%d)\n", lwd->lwd_nlgrps);
return (WALK_ERR);
}
lwd->lwd_nlgrps++;
if (mdb_lookup_by_name("lgrp_table", &sym) == -1) {
mdb_warn("failed to find 'lgrp_table'");
return (WALK_ERR);
}
/* Get number of valid entries in lgrp_table */
if (sym.st_size < lwd->lwd_nlgrps * sizeof (lgrp_t *)) {
mdb_warn("lgrp_table size inconsistent with lgrp_alloc_max");
return (WALK_ERR);
}
lwd->lwd_lgrp_tbl = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
if (mdb_readsym(lwd->lwd_lgrp_tbl, lwd->lwd_nlgrps * sizeof (lgrp_t *),
"lgrp_table") == -1) {
mdb_warn("unable to read lgrp_table");
return (WALK_ERR);
}
wsp->walk_data = lwd;
wsp->walk_addr = lwd->lwd_lgrp_tbl[0];
return (WALK_NEXT);
}
/*
* Common routine for several walkers.
* Read lgroup from wsp->walk_addr and call wsp->walk_callback for it.
* Normally returns the result of the callback.
* Returns WALK_DONE if walk_addr is NULL and WALK_ERR if cannot read the
* lgroup.
*/
static int
lgrp_walk_step_common(mdb_walk_state_t *wsp)
{
lgrp_t lgrp;
if (wsp->walk_addr == NULL)
return (WALK_DONE);
if (mdb_vread(&lgrp, sizeof (lgrp_t), wsp->walk_addr) == -1) {
mdb_warn("unable to read lgrp at %p", wsp->walk_addr);
return (WALK_ERR);
}
return (wsp->walk_callback(wsp->walk_addr, &lgrp, wsp->walk_cbdata));
}
/*
* Get one lgroup from the lgroup table and adjust lwd_iter to point to the next
* one.
*/
int
lgrp_walk_step(mdb_walk_state_t *wsp)
{
lgrp_walk_data_t *lwd = wsp->walk_data;
int status = lgrp_walk_step_common(wsp);
if (status == WALK_NEXT) {
lwd->lwd_iter++;
if (lwd->lwd_iter >= lwd->lwd_nlgrps) {
status = WALK_DONE;
} else {
wsp->walk_addr = lwd->lwd_lgrp_tbl[lwd->lwd_iter];
if (wsp->walk_addr == NULL) {
mdb_warn("NULL lgrp pointer in lgrp_table[%d]",
lwd->lwd_iter);
return (WALK_ERR);
}
}
}
return (status);
}
/*
* Initialize walker to traverse parents of lgroups. Nothing to do here.
*/
/* ARGSUSED */
int
lgrp_parents_walk_init(mdb_walk_state_t *wsp)
{
return (WALK_NEXT);
}
/*
* Call wsp callback on current lgroup in wsp and replace the lgroup with its
* parent.
*/
int
lgrp_parents_walk_step(mdb_walk_state_t *wsp)
{
lgrp_t lgrp;
int status;
if (wsp->walk_addr == NULL)
return (WALK_DONE);
if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) {
mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &lgrp, wsp->walk_cbdata);
if (status == WALK_NEXT)
wsp->walk_addr = (uintptr_t)lgrp.lgrp_parent;
return (status);
}
/*
* Given the set return the ID of the first member of the set.
* Returns LGRP_NONE if the set has no elements smaller than max_lgrp.
*/
static lgrp_id_t
lgrp_set_get_first(klgrpset_t set, int max_lgrp)
{
lgrp_id_t id;
klgrpset_t bit = 1;
if (set == (klgrpset_t)0)
return (LGRP_NONE);
for (id = 0; (id < max_lgrp) && !(set & bit); id++, bit <<= 1)
;
if (id >= max_lgrp)
id = LGRP_NONE;
return (id);
}
/*
* lgrp_set_walk_data is used to walk lgroups specified by a set.
* On every iteration one element is removed from the set.
*/
typedef struct lgrp_set_walk_data {
int lswd_nlgrps; /* Number of lgroups */
uintptr_t *lwsd_lgrp_tbl; /* Full lgroup table */
klgrpset_t lwsd_set; /* Set of lgroups to walk */
} lgrp_set_walk_data_t;
/*
* Initialize iterator for walkers over a set of lgroups
*/
static int
lgrp_set_walk_init(mdb_walk_state_t *wsp, klgrpset_t set)
{
lgrp_set_walk_data_t *lwsd;
int nlgrps;
lgrp_id_t id;
GElf_Sym sym;
/* Nothing to do if the set is empty */
if (set == (klgrpset_t)0)
return (WALK_DONE);
lwsd = mdb_zalloc(sizeof (lgrp_set_walk_data_t), UM_SLEEP | UM_GC);
/* Get the total number of lgroups */
if (mdb_readsym(&nlgrps, sizeof (int), "lgrp_alloc_max") == -1) {
mdb_warn("symbol 'lgrp_alloc_max' not found");
return (WALK_ERR);
}
if (nlgrps < 0) {
mdb_warn("lgrp_alloc_max of bounds (%d)\n", nlgrps);
return (WALK_ERR);
}
nlgrps++;
/* Find ID of the first lgroup in the set */
if ((id = lgrp_set_get_first(set, nlgrps)) == LGRP_NONE) {
mdb_warn("No set elements within %d lgroups\n", nlgrps);
return (WALK_ERR);
}
/* Read lgroup_table and copy it to lwsd_lgrp_tbl */
if (mdb_lookup_by_name("lgrp_table", &sym) == -1) {
mdb_warn("failed to find 'lgrp_table'");
return (WALK_ERR);
}
/* Get number of valid entries in lgrp_table */
if (sym.st_size < nlgrps * sizeof (lgrp_t *)) {
mdb_warn("lgrp_table size inconsistent with lgrp_alloc_max");
return (WALK_ERR);
}
lwsd->lwsd_lgrp_tbl = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
lwsd->lswd_nlgrps = nlgrps;
if (mdb_readsym(lwsd->lwsd_lgrp_tbl, nlgrps * sizeof (lgrp_t *),
"lgrp_table") == -1) {
mdb_warn("unable to read lgrp_table");
return (WALK_ERR);
}
wsp->walk_data = lwsd;
/* Save the first lgroup from the set and remove it from the set */
wsp->walk_addr = lwsd->lwsd_lgrp_tbl[id];
lwsd->lwsd_set = set & ~(1 << id);
return (WALK_NEXT);
}
/*
* Get current lgroup and advance the lgroup to the next one in the lwsd_set.
*/
int
lgrp_set_walk_step(mdb_walk_state_t *wsp)
{
lgrp_id_t id = 0;
lgrp_set_walk_data_t *lwsd = wsp->walk_data;
int status = lgrp_walk_step_common(wsp);
if (status == WALK_NEXT) {
id = lgrp_set_get_first(lwsd->lwsd_set, lwsd->lswd_nlgrps);
if (id == LGRP_NONE) {
status = WALK_DONE;
} else {
/* Move to the next lgroup in the set */
wsp->walk_addr = lwsd->lwsd_lgrp_tbl[id];
/* Remove id from the set */
lwsd->lwsd_set = lwsd->lwsd_set & ~(1 << id);
}
}
return (status);
}
/*
* Initialize resource walker for a given lgroup and resource. The lgroup
* address is specified in walk_addr.
*/
static int
lgrp_rsrc_walk_init(mdb_walk_state_t *wsp, int resource)
{
lgrp_t lgrp;
if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) {
mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr);
return (WALK_ERR);
}
return (lgrp_set_walk_init(wsp, lgrp.lgrp_set[resource]));
}
/*
* Initialize CPU resource walker
*/
int
lgrp_rsrc_cpu_walk_init(mdb_walk_state_t *wsp)
{
return (lgrp_rsrc_walk_init(wsp, LGRP_RSRC_CPU));
}
/*
* Initialize memory resource walker
*/
int
lgrp_rsrc_mem_walk_init(mdb_walk_state_t *wsp)
{
return (lgrp_rsrc_walk_init(wsp, LGRP_RSRC_MEM));
}
/*
* Display bitmap as a list of integers
*/
/* ARGSUSED */
int
lgrp_set(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint64_t set = (uint64_t)addr;
uint64_t mask = 1;
int i = 0;
if (!(flags & DCMD_ADDRSPEC)) {
return (DCMD_USAGE);
}
if (set == 0)
return (DCMD_OK);
for (; set != (uint64_t)0; i++, mask <<= 1) {
if (set & mask) {
mdb_printf("%d ", i);
set &= ~mask;
}
}
mdb_printf("\n");
return (DCMD_OK);
}