/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <sys/fs/ufs_inode.h>
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/modctl.h>
#include <sys/kobj.h>
#include <sys/kobj_impl.h>
#include <vm/seg_vn.h>
#include <vm/as.h>
#include <vm/seg_map.h>
#include <mdb/mdb_ctf.h>
#include "kmem.h"
#include "leaky_impl.h"
/*
* This file defines the genunix target for leaky.c. There are three types
* of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations,
* TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and
* TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts.
*
* See "leaky_impl.h" for the target interface definition.
*/
#define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */
#define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */
#define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */
#define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */
#define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */
#define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */
#define LKM_CTL_MASK 3L
#define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type))
#define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
#define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK))
static int kmem_lite_count = 0; /* cache of the kernel's version */
/*ARGSUSED*/
static int
leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = (uintptr_t)bcp->bc_addr;
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = addr;
return (WALK_NEXT);
}
static int
leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = seg->vs_start;
lm->lkm_limit = seg->vs_end;
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
return (WALK_NEXT);
}
static int
leaky_vmem_interested(const vmem_t *vmem)
{
if (strcmp(vmem->vm_name, "kmem_oversize") != 0 &&
strcmp(vmem->vm_name, "static_alloc") != 0)
return (0);
return (1);
}
static int
leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
{
if (!leaky_vmem_interested(vmem))
return (WALK_NEXT);
if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
{
if (!leaky_vmem_interested(vmem))
return (WALK_NEXT);
*est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 -
vmem->vm_kstat.vk_free.value.ui64);
return (WALK_NEXT);
}
static int
leaky_interested(const kmem_cache_t *c)
{
vmem_t vmem;
/*
* ignore HAT-related caches that happen to derive from kmem_default
*/
if (strcmp(c->cache_name, "sfmmu1_cache") == 0 ||
strcmp(c->cache_name, "sf_hment_cache") == 0 ||
strcmp(c->cache_name, "pa_hment_cache") == 0)
return (0);
if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
mdb_warn("cannot read arena %p for cache '%s'",
(uintptr_t)c->cache_arena, c->cache_name);
return (0);
}
/*
* If this cache isn't allocating from the kmem_default,
* kmem_firewall, or static vmem arenas, we're not interested.
*/
if (strcmp(vmem.vm_name, "kmem_default") != 0 &&
strcmp(vmem.vm_name, "kmem_firewall") != 0 &&
strcmp(vmem.vm_name, "static") != 0)
return (0);
return (1);
}
static int
leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est)
{
if (!leaky_interested(c))
return (WALK_NEXT);
*est += kmem_estimate_allocated(addr, c);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp)
{
leak_mtab_t *lm = *lmp;
mdb_walk_cb_t cb;
const char *walk;
int audit = (c->cache_flags & KMF_AUDIT);
if (!leaky_interested(c))
return (WALK_NEXT);
if (audit) {
walk = "bufctl";
cb = (mdb_walk_cb_t)leaky_mtab;
} else {
walk = "kmem";
cb = (mdb_walk_cb_t)leaky_mtab_addr;
}
if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
mdb_warn("can't walk kmem for cache %p (%s)", addr,
c->cache_name);
return (WALK_DONE);
}
for (; lm < *lmp; lm++) {
lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
if (!audit)
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
}
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c)
{
leaky_grep(addr, c->cache_bufsize);
/*
* free, constructed KMF_LITE buffers keep their first uint64_t in
* their buftag's redzone.
*/
if (c->cache_flags & KMF_LITE) {
/* LINTED alignment */
kmem_buftag_t *btp = KMEM_BUFTAG(c, addr);
leaky_grep((uintptr_t)&btp->bt_redzone,
sizeof (btp->bt_redzone));
}
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored)
{
if (!leaky_interested(c))
return (WALK_NEXT);
/*
* Scan all of the free, constructed buffers, since they may have
* pointers to allocated objects.
*/
if (mdb_pwalk("freemem_constructed",
(mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) {
mdb_warn("can't walk freemem_constructed for cache %p (%s)",
addr, c->cache_name);
return (WALK_DONE);
}
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored)
{
struct module mod;
char name[MODMAXNAMELEN];
if (m->mod_mp == NULL)
return (WALK_NEXT);
if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
mdb_warn("couldn't read modctl %p's module", addr);
return (WALK_NEXT);
}
if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
(void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module));
leaky_grep((uintptr_t)mod.data, mod.data_size);
leaky_grep((uintptr_t)mod.bss, mod.bss_size);
return (WALK_NEXT);
}
static int
leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize)
{
uintptr_t size, base = (uintptr_t)t->t_stkbase;
uintptr_t stk = (uintptr_t)t->t_stk;
/*
* If this thread isn't in memory, we can't look at its stack. This
* may result in false positives, so we print a warning.
*/
if (!(t->t_schedflag & TS_LOAD)) {
mdb_printf("findleaks: thread %p's stack swapped out; "
"false positives possible\n", addr);
return (WALK_NEXT);
}
if (t->t_state != TS_FREE)
leaky_grep(base, stk - base);
/*
* There is always gunk hanging out between t_stk and the page
* boundary. If this thread structure wasn't kmem allocated,
* this will include the thread structure itself. If the thread
* _is_ kmem allocated, we'll be able to get to it via allthreads.
*/
size = *pagesize - (stk & (*pagesize - 1));
leaky_grep(stk, size);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored)
{
leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start);
return (WALK_NEXT);
}
static void
leaky_kludge(void)
{
GElf_Sym sym;
mdb_ctf_id_t id, rid;
int max_mem_nodes;
uintptr_t *counters;
size_t ncounters;
ssize_t hwpm_size;
int idx;
/*
* Because of DR, the page counters (which live in the kmem64 segment)
* can point into kmem_alloc()ed memory. The "page_counters" array
* is multi-dimensional, and each entry points to an array of
* "hw_page_map_t"s which is "max_mem_nodes" in length.
*
* To keep this from having too much grotty knowledge of internals,
* we use CTF data to get the size of the structure. For simplicity,
* we treat the page_counters array as a flat array of pointers, and
* use its size to determine how much to scan. Unused entries will
* be NULL.
*/
if (mdb_lookup_by_name("page_counters", &sym) == -1) {
mdb_warn("unable to lookup page_counters");
return;
}
if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) {
mdb_warn("unable to read max_mem_nodes");
return;
}
if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 ||
mdb_ctf_type_resolve(id, &rid) == -1 ||
(hwpm_size = mdb_ctf_type_size(rid)) < 0) {
mdb_warn("unable to lookup unix`hw_page_map_t");
return;
}
counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) {
mdb_warn("unable to read page_counters");
return;
}
ncounters = sym.st_size / sizeof (counters);
for (idx = 0; idx < ncounters; idx++) {
uintptr_t addr = counters[idx];
if (addr != 0)
leaky_grep(addr, hwpm_size * max_mem_nodes);
}
}
int
leaky_subr_estimate(size_t *estp)
{
uintptr_t panicstr;
int state;
if ((state = mdb_get_state()) == MDB_STATE_RUNNING) {
mdb_warn("findleaks: can only be run on a system "
"dump or under kmdb; see dumpadm(1M)\n");
return (DCMD_ERR);
}
if (mdb_readvar(&panicstr, "panicstr") == -1) {
mdb_warn("can't read variable 'panicstr'");
return (DCMD_ERR);
}
if (state != MDB_STATE_STOPPED && panicstr == NULL) {
mdb_warn("findleaks: cannot be run on a live dump.\n");
return (DCMD_ERR);
}
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
mdb_warn("couldn't walk 'kmem_cache'");
return (DCMD_ERR);
}
if (*estp == 0) {
mdb_warn("findleaks: no buffers found\n");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
mdb_warn("couldn't walk 'vmem'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
int
leaky_subr_fill(leak_mtab_t **lmpp)
{
if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
mdb_warn("couldn't walk 'vmem'");
return (DCMD_ERR);
}
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
mdb_warn("couldn't walk 'kmem_cache'");
return (DCMD_ERR);
}
if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) {
mdb_warn("couldn't read 'kmem_lite_count'");
kmem_lite_count = 0;
} else if (kmem_lite_count > 16) {
mdb_warn("kmem_lite_count nonsensical, ignored\n");
kmem_lite_count = 0;
}
return (DCMD_OK);
}
int
leaky_subr_run(void)
{
unsigned long ps = PAGESIZE;
uintptr_t kstat_arena;
uintptr_t dmods;
leaky_kludge();
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache,
NULL) == -1) {
mdb_warn("couldn't walk 'kmem_cache'");
return (DCMD_ERR);
}
if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) {
mdb_warn("couldn't walk 'modctl'");
return (DCMD_ERR);
}
/*
* If kmdb is loaded, we need to walk it's module list, since kmdb
* modctl structures can reference kmem allocations.
*/
if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != NULL))
(void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl,
NULL, dmods);
if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
mdb_warn("couldn't walk 'thread'");
return (DCMD_ERR);
}
if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
mdb_warn("couldn't walk 'deathrow'");
return (DCMD_ERR);
}
if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) {
mdb_warn("couldn't read 'kstat_arena'");
return (DCMD_ERR);
}
if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat,
NULL, kstat_arena) == -1) {
mdb_warn("couldn't walk kstat vmem arena");
return (DCMD_ERR);
}
return (DCMD_OK);
}
void
leaky_subr_add_leak(leak_mtab_t *lmp)
{
uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
size_t depth;
switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
case LKM_CTL_VMSEG: {
vmem_seg_t vs;
if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
mdb_warn("couldn't read leaked vmem_seg at addr %p",
addr);
return;
}
depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
break;
}
case LKM_CTL_BUFCTL: {
kmem_bufctl_audit_t bc;
if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
mdb_warn("couldn't read leaked bufctl at addr %p",
addr);
return;
}
depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
/*
* The top of the stack will be kmem_cache_alloc+offset.
* Since the offset in kmem_cache_alloc() isn't interesting
* we skip that frame for the purposes of uniquifying stacks.
*
* We also use the cache pointer as the leaks's cid, to
* prevent the coalescing of leaks from different caches.
*/
if (depth > 0)
depth--;
leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr,
bc.bc_timestamp, bc.bc_stack + 1, depth,
(uintptr_t)bc.bc_cache, 0);
break;
}
case LKM_CTL_CACHE: {
kmem_cache_t cache;
kmem_buftag_lite_t bt;
pc_t caller;
int depth = 0;
/*
* For KMF_LITE caches, we can get the allocation PC
* out of the buftag structure.
*/
if (mdb_vread(&cache, sizeof (cache), addr) != -1 &&
(cache.cache_flags & KMF_LITE) &&
kmem_lite_count > 0 &&
mdb_vread(&bt, sizeof (bt),
/* LINTED alignment */
(uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) {
caller = bt.bt_history[0];
depth = 1;
}
leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
&caller, depth, addr, addr);
break;
}
default:
mdb_warn("internal error: invalid leak_bufctl_t\n");
break;
}
}
static void
leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp)
{
int i;
GElf_Sym sym;
uintptr_t pc = 0;
buf[0] = 0;
for (i = 0; i < depth; i++) {
pc = stack[i];
if (mdb_lookup_by_addr(pc,
MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
continue;
if (strncmp(buf, "kmem_", 5) == 0)
continue;
if (strncmp(buf, "vmem_", 5) == 0)
continue;
*pcp = pc;
return;
}
/*
* We're only here if the entire call chain begins with "kmem_";
* this shouldn't happen, but we'll just use the last caller.
*/
*pcp = pc;
}
int
leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
{
char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
uintptr_t lcaller, rcaller;
int rval;
leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
if (rval = strcmp(lbuf, rbuf))
return (rval);
if (lcaller < rcaller)
return (-1);
if (lcaller > rcaller)
return (1);
if (lhs->lkb_data < rhs->lkb_data)
return (-1);
if (lhs->lkb_data > rhs->lkb_data)
return (1);
return (0);
}
/*
* Global state variables used by the leaky_subr_dump_* routines. Note that
* they are carefully cleared before use.
*/
static int lk_vmem_seen;
static int lk_cache_seen;
static int lk_kmem_seen;
static size_t lk_ttl;
static size_t lk_bytes;
void
leaky_subr_dump_start(int type)
{
switch (type) {
case TYPE_VMEM:
lk_vmem_seen = 0;
break;
case TYPE_CACHE:
lk_cache_seen = 0;
break;
case TYPE_KMEM:
lk_kmem_seen = 0;
break;
default:
break;
}
lk_ttl = 0;
lk_bytes = 0;
}
void
leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
{
const leak_bufctl_t *cur;
kmem_cache_t cache;
size_t min, max, size;
char sz[30];
char c[MDB_SYM_NAMLEN];
uintptr_t caller;
if (verbose) {
lk_ttl = 0;
lk_bytes = 0;
}
switch (lkb->lkb_type) {
case TYPE_VMEM:
if (!verbose && !lk_vmem_seen) {
lk_vmem_seen = 1;
mdb_printf("%-16s %7s %?s %s\n",
"BYTES", "LEAKED", "VMEM_SEG", "CALLER");
}
min = max = lkb->lkb_data;
for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
size = cur->lkb_data;
if (size < min)
min = size;
if (size > max)
max = size;
lk_ttl++;
lk_bytes += size;
}
if (min == max)
(void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
else
(void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
min, max);
if (!verbose) {
leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
c, &caller);
if (caller != 0) {
(void) mdb_snprintf(c, sizeof (c),
"%a", caller);
} else {
(void) mdb_snprintf(c, sizeof (c),
"%s", "?");
}
mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1,
lkb->lkb_addr, c);
} else {
mdb_arg_t v;
if (lk_ttl == 1)
mdb_printf("kmem_oversize leak: 1 vmem_seg, "
"%ld bytes\n", lk_bytes);
else
mdb_printf("kmem_oversize leak: %d vmem_segs, "
"%s bytes each, %ld bytes total\n",
lk_ttl, sz, lk_bytes);
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = "-v";
if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
DCMD_ADDRSPEC, 1, &v) == -1) {
mdb_warn("'%p::vmem_seg -v' failed",
lkb->lkb_addr);
}
}
return;
case TYPE_CACHE:
if (!verbose && !lk_cache_seen) {
lk_cache_seen = 1;
if (lk_vmem_seen)
mdb_printf("\n");
mdb_printf("%-?s %7s %?s %s\n",
"CACHE", "LEAKED", "BUFFER", "CALLER");
}
if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
/*
* This _really_ shouldn't happen; we shouldn't
* have been able to get this far if this
* cache wasn't readable.
*/
mdb_warn("can't read cache %p for leaked "
"buffer %p", lkb->lkb_data, lkb->lkb_addr);
return;
}
lk_ttl += lkb->lkb_dups + 1;
lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
if (caller != 0) {
(void) mdb_snprintf(c, sizeof (c), "%a", caller);
} else {
(void) mdb_snprintf(c, sizeof (c),
"%s", (verbose) ? "" : "?");
}
if (!verbose) {
mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
lkb->lkb_dups + 1, lkb->lkb_addr, c);
} else {
if (lk_ttl == 1)
mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
cache.cache_name, lk_bytes);
else
mdb_printf("%s leak: %d buffers, "
"%ld bytes each, %ld bytes total,\n",
cache.cache_name, lk_ttl,
cache.cache_bufsize, lk_bytes);
mdb_printf(" sample addr %p%s%s\n",
lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c);
}
return;
case TYPE_KMEM:
if (!verbose && !lk_kmem_seen) {
lk_kmem_seen = 1;
if (lk_vmem_seen || lk_cache_seen)
mdb_printf("\n");
mdb_printf("%-?s %7s %?s %s\n",
"CACHE", "LEAKED", "BUFCTL", "CALLER");
}
if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) {
/*
* This _really_ shouldn't happen; we shouldn't
* have been able to get this far if this
* cache wasn't readable.
*/
mdb_warn("can't read cache %p for leaked "
"bufctl %p", lkb->lkb_cid, lkb->lkb_addr);
return;
}
lk_ttl += lkb->lkb_dups + 1;
lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
if (!verbose) {
leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
c, &caller);
if (caller != 0) {
(void) mdb_snprintf(c, sizeof (c),
"%a", caller);
} else {
(void) mdb_snprintf(c, sizeof (c),
"%s", "?");
}
mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
lkb->lkb_dups + 1, lkb->lkb_addr, c);
} else {
mdb_arg_t v;
if (lk_ttl == 1)
mdb_printf("%s leak: 1 buffer, %ld bytes\n",
cache.cache_name, lk_bytes);
else
mdb_printf("%s leak: %d buffers, "
"%ld bytes each, %ld bytes total\n",
cache.cache_name, lk_ttl,
cache.cache_bufsize, lk_bytes);
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = "-v";
if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
DCMD_ADDRSPEC, 1, &v) == -1) {
mdb_warn("'%p::bufctl -v' failed",
lkb->lkb_addr);
}
}
return;
default:
return;
}
}
void
leaky_subr_dump_end(int type)
{
int i;
int width;
const char *leaks;
switch (type) {
case TYPE_VMEM:
if (!lk_vmem_seen)
return;
width = 16;
leaks = "kmem_oversize leak";
break;
case TYPE_CACHE:
if (!lk_cache_seen)
return;
width = sizeof (uintptr_t) * 2;
leaks = "buffer";
break;
case TYPE_KMEM:
if (!lk_kmem_seen)
return;
width = sizeof (uintptr_t) * 2;
leaks = "buffer";
break;
default:
return;
}
for (i = 0; i < 72; i++)
mdb_printf("-");
mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s",
lk_bytes, (lk_bytes == 1) ? "" : "s");
}
int
leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
void *cbdata)
{
kmem_bufctl_audit_t bc;
vmem_seg_t vs;
switch (lkb->lkb_type) {
case TYPE_VMEM:
if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
mdb_warn("unable to read vmem_seg at %p",
lkb->lkb_addr);
return (WALK_NEXT);
}
return (cb(lkb->lkb_addr, &vs, cbdata));
case TYPE_CACHE:
return (cb(lkb->lkb_addr, NULL, cbdata));
case TYPE_KMEM:
if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) {
mdb_warn("unable to read bufctl at %p",
lkb->lkb_addr);
return (WALK_NEXT);
}
return (cb(lkb->lkb_addr, &bc, cbdata));
default:
return (WALK_NEXT);
}
}