/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <mdb/mdb_ctf.h>
#include <mdb/mdb_ctf_impl.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_string.h>
#include <mdb/mdb.h>
#include <mdb/mdb_debug.h>
#include <libctf.h>
#include <string.h>
typedef struct tnarg {
mdb_tgt_t *tn_tgt; /* target to use for lookup */
const char *tn_name; /* query string to lookup */
ctf_file_t *tn_fp; /* CTF container from match */
ctf_id_t tn_id; /* CTF type ID from match */
} tnarg_t;
typedef struct type_iter {
mdb_ctf_type_f *ti_cb;
void *ti_arg;
ctf_file_t *ti_fp;
} type_iter_t;
typedef struct member_iter {
mdb_ctf_member_f *mi_cb;
void *mi_arg;
ctf_file_t *mi_fp;
} member_iter_t;
typedef struct type_visit {
mdb_ctf_visit_f *tv_cb;
void *tv_arg;
ctf_file_t *tv_fp;
ulong_t tv_base_offset; /* used when recursing from type_cb() */
int tv_base_depth; /* used when recursing from type_cb() */
int tv_min_depth;
} type_visit_t;
typedef struct mbr_info {
const char *mbr_member;
ulong_t *mbr_offp;
mdb_ctf_id_t *mbr_typep;
} mbr_info_t;
typedef struct synth_intrinsic {
const char *syn_name;
ctf_encoding_t syn_enc;
uint_t syn_kind;
} synth_intrinsic_t;
typedef struct synth_typedef {
const char *syt_src;
const char *syt_targ;
} synth_typedef_t;
/*
* As part of our support for synthetic types via ::typedef, we define a core
* set of types.
*/
static const synth_intrinsic_t synth_builtins32[] = {
{ "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
{ "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
{ "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
{ "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
{ "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
{ "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
{ "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
{ "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
{ "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
{ "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
{ "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
{ "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
{ "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
{ "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
{ "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
{ "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
{ "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
{ "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
{ NULL, { 0, 0, 0}, 0 }
};
static const synth_intrinsic_t synth_builtins64[] = {
{ "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
{ "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
{ "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
{ "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
{ "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
{ "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
{ "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
{ "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
{ "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
{ "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
{ "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
{ "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
{ "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
{ "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
{ "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
{ "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
{ "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
{ "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
{ "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
{ "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
{ "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
{ NULL, { 0, 0, 0 }, 0 }
};
static const synth_typedef_t synth_typedefs32[] = {
{ "char", "int8_t" },
{ "short", "int16_t" },
{ "int", "int32_t" },
{ "long long", "int64_t" },
{ "int", "intptr_t" },
{ "unsigned char", "uint8_t" },
{ "unsigned short", "uint16_t" },
{ "unsigned", "uint32_t" },
{ "unsigned long long", "uint64_t" },
{ "unsigned char", "uchar_t" },
{ "unsigned short", "ushort_t" },
{ "unsigned", "uint_t" },
{ "unsigned long", "ulong_t" },
{ "unsigned long long", "u_longlong_t" },
{ "int", "ptrdiff_t" },
{ "unsigned", "uintptr_t" },
{ NULL, NULL }
};
static const synth_typedef_t synth_typedefs64[] = {
{ "char", "int8_t" },
{ "short", "int16_t" },
{ "int", "int32_t" },
{ "long", "int64_t" },
{ "long", "intptr_t" },
{ "unsigned char", "uint8_t" },
{ "unsigned short", "uint16_t" },
{ "unsigned", "uint32_t" },
{ "unsigned long", "uint64_t" },
{ "unsigned char", "uchar_t" },
{ "unsigned short", "ushort_t" },
{ "unsigned", "uint_t" },
{ "unsigned long", "ulong_t" },
{ "unsigned long long", "u_longlong_t" },
{ "long", "ptrdiff_t" },
{ "unsigned long", "uintptr_t" },
{ NULL, NULL }
};
static void
set_ctf_id(mdb_ctf_id_t *p, ctf_file_t *fp, ctf_id_t id)
{
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
mcip->mci_fp = fp;
mcip->mci_id = id;
}
/*
* Callback function for mdb_tgt_object_iter used from name_to_type, below,
* to search the CTF namespace of each object file for a particular name.
*/
/*ARGSUSED*/
static int
obj_lookup(void *data, const mdb_map_t *mp, const char *name)
{
tnarg_t *tnp = data;
ctf_file_t *fp;
ctf_id_t id;
if ((fp = mdb_tgt_name_to_ctf(tnp->tn_tgt, name)) != NULL &&
(id = ctf_lookup_by_name(fp, tnp->tn_name)) != CTF_ERR) {
tnp->tn_fp = fp;
tnp->tn_id = id;
/*
* We may have found a forward declaration. If we did, we'll
* note the ID and file pointer, but we'll keep searching in
* an attempt to find the real thing. If we found something
* real (i.e. not a forward), we stop the iteration.
*/
return (ctf_type_kind(fp, id) == CTF_K_FORWARD ? 0 : -1);
}
return (0);
}
/*
* Convert a string type name with an optional leading object specifier into
* the corresponding CTF file container and type ID. If an error occurs, we
* print an appropriate message and return NULL.
*/
static ctf_file_t *
name_to_type(mdb_tgt_t *t, const char *cname, ctf_id_t *idp)
{
const char *object = MDB_TGT_OBJ_EXEC;
ctf_file_t *fp = NULL;
ctf_id_t id;
tnarg_t arg;
char *p, *s;
char buf[MDB_SYM_NAMLEN];
char *name = &buf[0];
(void) mdb_snprintf(buf, sizeof (buf), "%s", cname);
if ((p = strrsplit(name, '`')) != NULL) {
/*
* We need to shuffle things around a little to support
* type names of the form "struct module`name".
*/
if ((s = strsplit(name, ' ')) != NULL) {
bcopy(cname + (s - name), name, (p - s) - 1);
name[(p - s) - 1] = '\0';
bcopy(cname, name + (p - s), s - name);
p = name + (p - s);
}
if (*name != '\0')
object = name;
name = p;
}
/*
* Attempt to look up the name in the primary object file. If this
* fails and the name was unscoped, search all remaining object files.
* Finally, search the synthetic types.
*/
if (((fp = mdb_tgt_name_to_ctf(t, object)) == NULL ||
(id = ctf_lookup_by_name(fp, name)) == CTF_ERR ||
ctf_type_kind(fp, id) == CTF_K_FORWARD) &&
object == MDB_TGT_OBJ_EXEC) {
arg.tn_tgt = t;
arg.tn_name = name;
arg.tn_fp = NULL;
arg.tn_id = CTF_ERR;
(void) mdb_tgt_object_iter(t, obj_lookup, &arg);
if (arg.tn_id != CTF_ERR) {
fp = arg.tn_fp;
id = arg.tn_id;
} else if (mdb.m_synth != NULL) {
if ((id = ctf_lookup_by_name(mdb.m_synth,
name)) != CTF_ERR)
fp = mdb.m_synth;
}
}
if (fp == NULL)
return (NULL); /* errno is set for us */
if (id == CTF_ERR) {
(void) set_errno(ctf_to_errno(ctf_errno(fp)));
return (NULL);
}
*idp = id;
return (fp);
}
/*
* Check to see if there is ctf data in the given object. This is useful
* so that we don't enter some loop where every call to lookup fails.
*/
int
mdb_ctf_enabled_by_object(const char *object)
{
mdb_tgt_t *t = mdb.m_target;
return (mdb_tgt_name_to_ctf(t, object) != NULL);
}
int
mdb_ctf_lookup_by_name(const char *name, mdb_ctf_id_t *p)
{
ctf_file_t *fp = NULL;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
mdb_tgt_t *t = mdb.m_target;
if (mcip == NULL)
return (set_errno(EINVAL));
if ((fp = name_to_type(t, name, &mcip->mci_id)) == NULL) {
mdb_ctf_type_invalidate(p);
return (-1); /* errno is set for us */
}
mcip->mci_fp = fp;
return (0);
}
int
mdb_ctf_lookup_by_symbol(const GElf_Sym *symp, const mdb_syminfo_t *sip,
mdb_ctf_id_t *p)
{
ctf_file_t *fp = NULL;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
mdb_tgt_t *t = mdb.m_target;
if (mcip == NULL)
return (set_errno(EINVAL));
if (symp == NULL || sip == NULL) {
mdb_ctf_type_invalidate(p);
return (set_errno(EINVAL));
}
if ((fp = mdb_tgt_addr_to_ctf(t, symp->st_value)) == NULL) {
mdb_ctf_type_invalidate(p);
return (-1); /* errno is set for us */
}
if ((mcip->mci_id = ctf_lookup_by_symbol(fp, sip->sym_id)) == CTF_ERR) {
mdb_ctf_type_invalidate(p);
return (set_errno(ctf_to_errno(ctf_errno(fp))));
}
mcip->mci_fp = fp;
return (0);
}
int
mdb_ctf_lookup_by_addr(uintptr_t addr, mdb_ctf_id_t *p)
{
GElf_Sym sym;
mdb_syminfo_t si;
char name[MDB_SYM_NAMLEN];
const mdb_map_t *mp;
mdb_tgt_t *t = mdb.m_target;
const char *obj, *c;
if (p == NULL)
return (set_errno(EINVAL));
if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
sizeof (name), NULL, NULL) == -1) {
mdb_ctf_type_invalidate(p);
return (-1); /* errno is set for us */
}
if ((c = strrsplit(name, '`')) != NULL) {
obj = name;
} else {
if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL) {
mdb_ctf_type_invalidate(p);
return (-1); /* errno is set for us */
}
obj = mp->map_name;
c = name;
}
if (mdb_tgt_lookup_by_name(t, obj, c, &sym, &si) == -1) {
mdb_ctf_type_invalidate(p);
return (-1); /* errno is set for us */
}
return (mdb_ctf_lookup_by_symbol(&sym, &si, p));
}
int
mdb_ctf_module_lookup(const char *name, mdb_ctf_id_t *p)
{
ctf_file_t *fp;
ctf_id_t id;
mdb_module_t *mod;
if ((mod = mdb_get_module()) == NULL)
return (set_errno(EMDB_CTX));
if ((fp = mod->mod_ctfp) == NULL)
return (set_errno(EMDB_NOCTF));
if ((id = ctf_lookup_by_name(fp, name)) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(fp))));
set_ctf_id(p, fp, id);
return (0);
}
/*ARGSUSED*/
int
mdb_ctf_func_info(const GElf_Sym *symp, const mdb_syminfo_t *sip,
mdb_ctf_funcinfo_t *mfp)
{
ctf_file_t *fp = NULL;
ctf_funcinfo_t f;
mdb_tgt_t *t = mdb.m_target;
char name[MDB_SYM_NAMLEN];
const mdb_map_t *mp;
mdb_syminfo_t si;
int err;
if (symp == NULL || mfp == NULL)
return (set_errno(EINVAL));
/*
* In case the input symbol came from a merged or private symbol table,
* re-lookup the address as a symbol, and then perform a fully scoped
* lookup of that symbol name to get the mdb_syminfo_t for its CTF.
*/
if ((fp = mdb_tgt_addr_to_ctf(t, symp->st_value)) == NULL ||
(mp = mdb_tgt_addr_to_map(t, symp->st_value)) == NULL ||
mdb_tgt_lookup_by_addr(t, symp->st_value, MDB_TGT_SYM_FUZZY,
name, sizeof (name), NULL, NULL) != 0)
return (-1); /* errno is set for us */
if (strchr(name, '`') != NULL)
err = mdb_tgt_lookup_by_scope(t, name, NULL, &si);
else
err = mdb_tgt_lookup_by_name(t, mp->map_name, name, NULL, &si);
if (err != 0)
return (-1); /* errno is set for us */
if (ctf_func_info(fp, si.sym_id, &f) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(fp))));
set_ctf_id(&mfp->mtf_return, fp, f.ctc_return);
mfp->mtf_argc = f.ctc_argc;
mfp->mtf_flags = f.ctc_flags;
mfp->mtf_symidx = si.sym_id;
return (0);
}
int
mdb_ctf_func_args(const mdb_ctf_funcinfo_t *funcp, uint_t len,
mdb_ctf_id_t *argv)
{
ctf_file_t *fp;
ctf_id_t cargv[32];
int i;
if (len > (sizeof (cargv) / sizeof (cargv[0])))
return (set_errno(EINVAL));
if (funcp == NULL || argv == NULL)
return (set_errno(EINVAL));
fp = mdb_ctf_type_file(funcp->mtf_return);
if (ctf_func_args(fp, funcp->mtf_symidx, len, cargv) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(fp))));
for (i = MIN(len, funcp->mtf_argc) - 1; i >= 0; i--) {
set_ctf_id(&argv[i], fp, cargv[i]);
}
return (0);
}
void
mdb_ctf_type_invalidate(mdb_ctf_id_t *idp)
{
set_ctf_id(idp, NULL, CTF_ERR);
}
int
mdb_ctf_type_valid(mdb_ctf_id_t id)
{
return (((mdb_ctf_impl_t *)&id)->mci_id != CTF_ERR);
}
int
mdb_ctf_type_cmp(mdb_ctf_id_t aid, mdb_ctf_id_t bid)
{
mdb_ctf_impl_t *aidp = (mdb_ctf_impl_t *)&aid;
mdb_ctf_impl_t *bidp = (mdb_ctf_impl_t *)&bid;
return (ctf_type_cmp(aidp->mci_fp, aidp->mci_id,
bidp->mci_fp, bidp->mci_id));
}
int
mdb_ctf_type_resolve(mdb_ctf_id_t mid, mdb_ctf_id_t *outp)
{
ctf_id_t id;
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&mid;
if ((id = ctf_type_resolve(idp->mci_fp, idp->mci_id)) == CTF_ERR) {
if (outp)
mdb_ctf_type_invalidate(outp);
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
}
if (ctf_type_kind(idp->mci_fp, id) == CTF_K_FORWARD) {
char name[MDB_SYM_NAMLEN];
mdb_ctf_id_t lookup_id;
if (ctf_type_name(idp->mci_fp, id, name, sizeof (name)) !=
NULL &&
mdb_ctf_lookup_by_name(name, &lookup_id) == 0 &&
outp != NULL) {
*outp = lookup_id;
return (0);
}
}
if (outp != NULL)
set_ctf_id(outp, idp->mci_fp, id);
return (0);
}
char *
mdb_ctf_type_name(mdb_ctf_id_t id, char *buf, size_t len)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
char *ret;
if (!mdb_ctf_type_valid(id)) {
(void) set_errno(EINVAL);
return (NULL);
}
ret = ctf_type_name(idp->mci_fp, idp->mci_id, buf, len);
if (ret == NULL)
(void) set_errno(ctf_to_errno(ctf_errno(idp->mci_fp)));
return (ret);
}
ssize_t
mdb_ctf_type_size(mdb_ctf_id_t id)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
ssize_t ret;
/* resolve the type in case there's a forward declaration */
if ((ret = mdb_ctf_type_resolve(id, &id)) != 0)
return (ret);
if ((ret = ctf_type_size(idp->mci_fp, idp->mci_id)) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
return (ret);
}
int
mdb_ctf_type_kind(mdb_ctf_id_t id)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
int ret;
if ((ret = ctf_type_kind(idp->mci_fp, idp->mci_id)) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
return (ret);
}
int
mdb_ctf_type_reference(mdb_ctf_id_t mid, mdb_ctf_id_t *outp)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&mid;
ctf_id_t id;
if ((id = ctf_type_reference(idp->mci_fp, idp->mci_id)) == CTF_ERR) {
if (outp)
mdb_ctf_type_invalidate(outp);
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
}
if (outp != NULL)
set_ctf_id(outp, idp->mci_fp, id);
return (0);
}
int
mdb_ctf_type_encoding(mdb_ctf_id_t id, ctf_encoding_t *ep)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
if (ctf_type_encoding(idp->mci_fp, idp->mci_id, ep) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
return (0);
}
/*
* callback proxy for mdb_ctf_type_visit
*/
static int
type_cb(const char *name, ctf_id_t type, ulong_t off, int depth, void *arg)
{
type_visit_t *tvp = arg;
mdb_ctf_id_t id;
mdb_ctf_id_t base;
mdb_ctf_impl_t *basep = (mdb_ctf_impl_t *)&base;
int ret;
if (depth < tvp->tv_min_depth)
return (0);
off += tvp->tv_base_offset;
depth += tvp->tv_base_depth;
set_ctf_id(&id, tvp->tv_fp, type);
(void) mdb_ctf_type_resolve(id, &base);
if ((ret = tvp->tv_cb(name, id, base, off, depth, tvp->tv_arg)) != 0)
return (ret);
/*
* If the type resolves to a type in a different file, we must have
* followed a forward declaration. We need to recurse into the
* new type.
*/
if (basep->mci_fp != tvp->tv_fp && mdb_ctf_type_valid(base)) {
type_visit_t tv;
tv.tv_cb = tvp->tv_cb;
tv.tv_arg = tvp->tv_arg;
tv.tv_fp = basep->mci_fp;
tv.tv_base_offset = off;
tv.tv_base_depth = depth;
tv.tv_min_depth = 1; /* depth = 0 has already been done */
ret = ctf_type_visit(basep->mci_fp, basep->mci_id,
type_cb, &tv);
}
return (ret);
}
int
mdb_ctf_type_visit(mdb_ctf_id_t id, mdb_ctf_visit_f *func, void *arg)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
type_visit_t tv;
int ret;
tv.tv_cb = func;
tv.tv_arg = arg;
tv.tv_fp = idp->mci_fp;
tv.tv_base_offset = 0;
tv.tv_base_depth = 0;
tv.tv_min_depth = 0;
ret = ctf_type_visit(idp->mci_fp, idp->mci_id, type_cb, &tv);
if (ret == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
return (ret);
}
int
mdb_ctf_array_info(mdb_ctf_id_t id, mdb_ctf_arinfo_t *arp)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
ctf_arinfo_t car;
if (ctf_array_info(idp->mci_fp, idp->mci_id, &car) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
set_ctf_id(&arp->mta_contents, idp->mci_fp, car.ctr_contents);
set_ctf_id(&arp->mta_index, idp->mci_fp, car.ctr_index);
arp->mta_nelems = car.ctr_nelems;
return (0);
}
const char *
mdb_ctf_enum_name(mdb_ctf_id_t id, int value)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
const char *ret;
/* resolve the type in case there's a forward declaration */
if (mdb_ctf_type_resolve(id, &id) != 0)
return (NULL);
if ((ret = ctf_enum_name(idp->mci_fp, idp->mci_id, value)) == NULL)
(void) set_errno(ctf_to_errno(ctf_errno(idp->mci_fp)));
return (ret);
}
/*
* callback proxy for mdb_ctf_member_iter
*/
static int
member_iter_cb(const char *name, ctf_id_t type, ulong_t off, void *data)
{
member_iter_t *mip = data;
mdb_ctf_id_t id;
set_ctf_id(&id, mip->mi_fp, type);
return (mip->mi_cb(name, id, off, mip->mi_arg));
}
int
mdb_ctf_member_iter(mdb_ctf_id_t id, mdb_ctf_member_f *cb, void *data)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
member_iter_t mi;
int ret;
/* resolve the type in case there's a forward declaration */
if ((ret = mdb_ctf_type_resolve(id, &id)) != 0)
return (ret);
mi.mi_cb = cb;
mi.mi_arg = data;
mi.mi_fp = idp->mci_fp;
ret = ctf_member_iter(idp->mci_fp, idp->mci_id, member_iter_cb, &mi);
if (ret == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(idp->mci_fp))));
return (ret);
}
int
mdb_ctf_enum_iter(mdb_ctf_id_t id, mdb_ctf_enum_f *cb, void *data)
{
mdb_ctf_impl_t *idp = (mdb_ctf_impl_t *)&id;
int ret;
/* resolve the type in case there's a forward declaration */
if ((ret = mdb_ctf_type_resolve(id, &id)) != 0)
return (ret);
return (ctf_enum_iter(idp->mci_fp, idp->mci_id, cb, data));
}
/*
* callback proxy for mdb_ctf_type_iter
*/
static int
type_iter_cb(ctf_id_t type, void *data)
{
type_iter_t *tip = data;
mdb_ctf_id_t id;
set_ctf_id(&id, tip->ti_fp, type);
return (tip->ti_cb(id, tip->ti_arg));
}
int
mdb_ctf_type_iter(const char *object, mdb_ctf_type_f *cb, void *data)
{
ctf_file_t *fp;
mdb_tgt_t *t = mdb.m_target;
int ret;
type_iter_t ti;
if (object == MDB_CTF_SYNTHETIC_ITER)
fp = mdb.m_synth;
else
fp = mdb_tgt_name_to_ctf(t, object);
if (fp == NULL)
return (-1);
ti.ti_cb = cb;
ti.ti_arg = data;
ti.ti_fp = fp;
if ((ret = ctf_type_iter(fp, type_iter_cb, &ti)) == CTF_ERR)
return (set_errno(ctf_to_errno(ctf_errno(fp))));
return (ret);
}
/* utility functions */
ctf_id_t
mdb_ctf_type_id(mdb_ctf_id_t id)
{
return (((mdb_ctf_impl_t *)&id)->mci_id);
}
ctf_file_t *
mdb_ctf_type_file(mdb_ctf_id_t id)
{
return (((mdb_ctf_impl_t *)&id)->mci_fp);
}
static int
member_info_cb(const char *name, mdb_ctf_id_t id, ulong_t off, void *data)
{
mbr_info_t *mbrp = data;
if (strcmp(name, mbrp->mbr_member) == 0) {
if (mbrp->mbr_offp != NULL)
*(mbrp->mbr_offp) = off;
if (mbrp->mbr_typep != NULL)
*(mbrp->mbr_typep) = id;
return (1);
}
return (0);
}
int
mdb_ctf_member_info(mdb_ctf_id_t id, const char *member, ulong_t *offp,
mdb_ctf_id_t *typep)
{
mbr_info_t mbr;
int rc;
mbr.mbr_member = member;
mbr.mbr_offp = offp;
mbr.mbr_typep = typep;
rc = mdb_ctf_member_iter(id, member_info_cb, &mbr);
/* couldn't get member list */
if (rc == -1)
return (-1); /* errno is set for us */
/* not a member */
if (rc == 0)
return (set_errno(EMDB_CTFNOMEMB));
return (0);
}
/*
* Returns offset in _bits_ in *retp.
*/
int
mdb_ctf_offsetof(mdb_ctf_id_t id, const char *member, ulong_t *retp)
{
return (mdb_ctf_member_info(id, member, retp, NULL));
}
/*
* Returns offset in _bytes_, or -1 on failure.
*/
int
mdb_ctf_offsetof_by_name(const char *type, const char *member)
{
mdb_ctf_id_t id;
ulong_t off;
if (mdb_ctf_lookup_by_name(type, &id) == -1) {
mdb_warn("couldn't find type %s", type);
return (-1);
}
if (mdb_ctf_offsetof(id, member, &off) == -1) {
mdb_warn("couldn't find member %s of type %s", member, type);
return (-1);
}
if (off % 8 != 0) {
mdb_warn("member %s of type %s is an unsupported bitfield\n",
member, type);
return (-1);
}
off /= 8;
return (off);
}
ssize_t
mdb_ctf_sizeof_by_name(const char *type)
{
mdb_ctf_id_t id;
ssize_t size;
if (mdb_ctf_lookup_by_name(type, &id) == -1) {
mdb_warn("couldn't find type %s", type);
return (-1);
}
if ((size = mdb_ctf_type_size(id)) == -1) {
mdb_warn("couldn't determine type size of %s", type);
return (-1);
}
return (size);
}
/*ARGSUSED*/
static int
num_members_cb(const char *name, mdb_ctf_id_t id, ulong_t off, void *data)
{
int *count = data;
*count = *count + 1;
return (0);
}
int
mdb_ctf_num_members(mdb_ctf_id_t id)
{
int count = 0;
if (mdb_ctf_member_iter(id, num_members_cb, &count) != 0)
return (-1); /* errno is set for us */
return (count);
}
typedef struct mbr_contains {
char **mbc_bufp;
size_t *mbc_lenp;
ulong_t *mbc_offp;
mdb_ctf_id_t *mbc_idp;
ssize_t mbc_total;
} mbr_contains_t;
static int
offset_to_name_cb(const char *name, mdb_ctf_id_t id, ulong_t off, void *data)
{
mbr_contains_t *mbc = data;
ulong_t size;
ctf_encoding_t e;
size_t n;
if (*mbc->mbc_offp < off)
return (0);
if (mdb_ctf_type_encoding(id, &e) == -1)
size = mdb_ctf_type_size(id) * NBBY;
else
size = e.cte_bits;
if (off + size <= *mbc->mbc_offp)
return (0);
n = mdb_snprintf(*mbc->mbc_bufp, *mbc->mbc_lenp, "%s", name);
mbc->mbc_total += n;
if (n > *mbc->mbc_lenp)
n = *mbc->mbc_lenp;
*mbc->mbc_lenp -= n;
*mbc->mbc_bufp += n;
*mbc->mbc_offp -= off;
*mbc->mbc_idp = id;
return (1);
}
ssize_t
mdb_ctf_offset_to_name(mdb_ctf_id_t id, ulong_t off, char *buf, size_t len,
int dot, mdb_ctf_id_t *midp, ulong_t *moffp)
{
size_t size;
size_t n;
mbr_contains_t mbc;
if (!mdb_ctf_type_valid(id))
return (set_errno(EINVAL));
/*
* Quick sanity check to make sure the given offset is within
* this scope of this type.
*/
if (mdb_ctf_type_size(id) * NBBY <= off)
return (set_errno(EINVAL));
mbc.mbc_bufp = &buf;
mbc.mbc_lenp = &len;
mbc.mbc_offp = &off;
mbc.mbc_idp = &id;
mbc.mbc_total = 0;
*buf = '\0';
for (;;) {
/*
* Check for an exact match.
*/
if (off == 0)
break;
(void) mdb_ctf_type_resolve(id, &id);
/*
* Find the member that contains this offset.
*/
switch (mdb_ctf_type_kind(id)) {
case CTF_K_ARRAY: {
mdb_ctf_arinfo_t ar;
uint_t index;
(void) mdb_ctf_array_info(id, &ar);
size = mdb_ctf_type_size(ar.mta_contents) * NBBY;
index = off / size;
id = ar.mta_contents;
off %= size;
n = mdb_snprintf(buf, len, "[%u]", index);
mbc.mbc_total += n;
if (n > len)
n = len;
buf += n;
len -= n;
break;
}
case CTF_K_STRUCT: {
int ret;
/*
* Find the member that contains this offset
* and continue.
*/
if (dot) {
mbc.mbc_total++;
if (len != 0) {
*buf++ = '.';
*buf = '\0';
len--;
}
}
ret = mdb_ctf_member_iter(id, offset_to_name_cb, &mbc);
if (ret == -1)
return (-1); /* errno is set for us */
/*
* If we did not find a member containing this offset
* (due to holes in the structure), return EINVAL.
*/
if (ret == 0)
return (set_errno(EINVAL));
break;
}
case CTF_K_UNION:
/*
* Treat unions like atomic entities since we can't
* do more than guess which member of the union
* might be the intended one.
*/
goto done;
case CTF_K_INTEGER:
case CTF_K_FLOAT:
case CTF_K_POINTER:
case CTF_K_ENUM:
goto done;
default:
return (set_errno(EINVAL));
}
dot = 1;
}
done:
if (midp != NULL)
*midp = id;
if (moffp != NULL)
*moffp = off;
return (mbc.mbc_total);
}
static void
mdb_ctf_warn(uint_t flags, const char *format, ...)
{
va_list alist;
if (flags & MDB_CTF_VREAD_QUIET)
return;
va_start(alist, format);
vwarn(format, alist);
va_end(alist);
}
/*
* Check if two types are structurally the same rather than logically
* the same. That is to say that two types are equal if they have the
* same logical structure rather than having the same ids in CTF-land.
*/
static int type_equals(mdb_ctf_id_t, mdb_ctf_id_t);
static int
type_equals_cb(const char *name, mdb_ctf_id_t amem, ulong_t aoff, void *data)
{
mdb_ctf_id_t b = *(mdb_ctf_id_t *)data;
ulong_t boff;
mdb_ctf_id_t bmem;
/*
* Look up the corresponding member in the other composite type.
*/
if (mdb_ctf_member_info(b, name, &boff, &bmem) != 0)
return (1);
/*
* We don't allow members to be shuffled around.
*/
if (aoff != boff)
return (1);
return (type_equals(amem, bmem) ? 0 : 1);
}
static int
type_equals(mdb_ctf_id_t a, mdb_ctf_id_t b)
{
size_t asz, bsz;
int akind, bkind;
mdb_ctf_arinfo_t aar, bar;
/*
* Resolve both types down to their fundamental types, and make
* sure their sizes and kinds match.
*/
if (mdb_ctf_type_resolve(a, &a) != 0 ||
mdb_ctf_type_resolve(b, &b) != 0 ||
(asz = mdb_ctf_type_size(a)) == -1UL ||
(bsz = mdb_ctf_type_size(b)) == -1UL ||
(akind = mdb_ctf_type_kind(a)) == -1 ||
(bkind = mdb_ctf_type_kind(b)) == -1 ||
asz != bsz || akind != bkind) {
return (0);
}
switch (akind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
case CTF_K_POINTER:
/*
* For pointers we could be a little stricter and require
* both pointers to reference types which look vaguely
* similar (for example, we could insist that the two types
* have the same name). However, all we really care about
* here is that the structure of the two types are the same,
* and, in that regard, one pointer is as good as another.
*/
return (1);
case CTF_K_UNION:
case CTF_K_STRUCT:
/*
* The test for the number of members is only strictly
* necessary for unions since we'll find other problems with
* structs. However, the extra check will do no harm.
*/
return (mdb_ctf_num_members(a) == mdb_ctf_num_members(b) &&
mdb_ctf_member_iter(a, type_equals_cb, &b) == 0);
case CTF_K_ARRAY:
return (mdb_ctf_array_info(a, &aar) == 0 &&
mdb_ctf_array_info(b, &bar) == 0 &&
aar.mta_nelems == bar.mta_nelems &&
type_equals(aar.mta_index, bar.mta_index) &&
type_equals(aar.mta_contents, bar.mta_contents));
}
return (0);
}
typedef struct member {
char *m_modbuf;
char *m_tgtbuf;
const char *m_tgtname;
mdb_ctf_id_t m_tgtid;
uint_t m_flags;
} member_t;
static int vread_helper(mdb_ctf_id_t, char *, mdb_ctf_id_t, char *,
const char *, uint_t);
static int
member_cb(const char *name, mdb_ctf_id_t modmid, ulong_t modoff, void *data)
{
member_t *mp = data;
char *modbuf = mp->m_modbuf;
mdb_ctf_id_t tgtmid;
char *tgtbuf = mp->m_tgtbuf;
ulong_t tgtoff;
char tgtname[128];
(void) mdb_snprintf(tgtname, sizeof (tgtname),
"member %s of type %s", name, mp->m_tgtname);
if (mdb_ctf_member_info(mp->m_tgtid, name, &tgtoff, &tgtmid) != 0) {
mdb_ctf_warn(mp->m_flags,
"could not find %s\n", tgtname);
return (set_errno(EMDB_CTFNOMEMB));
}
return (vread_helper(modmid, modbuf + modoff / NBBY,
tgtmid, tgtbuf + tgtoff / NBBY, tgtname, mp->m_flags));
}
typedef struct enum_value {
int *ev_modbuf;
const char *ev_name;
} enum_value_t;
static int
enum_cb(const char *name, int value, void *data)
{
enum_value_t *ev = data;
if (strcmp(name, ev->ev_name) == 0) {
*ev->ev_modbuf = value;
return (1);
}
return (0);
}
static int
vread_helper(mdb_ctf_id_t modid, char *modbuf,
mdb_ctf_id_t tgtid, char *tgtbuf, const char *tgtname, uint_t flags)
{
size_t modsz, tgtsz;
int modkind, tgtkind;
member_t mbr;
enum_value_t ev;
int ret;
mdb_ctf_arinfo_t tar, mar;
int i;
char typename[128];
char mdbtypename[128];
ctf_encoding_t tgt_encoding, mod_encoding;
boolean_t signed_int = B_FALSE;
if (mdb_ctf_type_name(tgtid, typename, sizeof (typename)) == NULL) {
(void) mdb_snprintf(typename, sizeof (typename),
"#%ul", mdb_ctf_type_id(tgtid));
}
if (mdb_ctf_type_name(modid,
mdbtypename, sizeof (mdbtypename)) == NULL) {
(void) mdb_snprintf(mdbtypename, sizeof (mdbtypename),
"#%ul", mdb_ctf_type_id(modid));
}
if (tgtname == NULL)
tgtname = "";
/*
* Resolve the types to their canonical form.
*/
(void) mdb_ctf_type_resolve(modid, &modid);
(void) mdb_ctf_type_resolve(tgtid, &tgtid);
if ((modkind = mdb_ctf_type_kind(modid)) == -1) {
mdb_ctf_warn(flags,
"couldn't determine type kind of mdb module type %s\n",
mdbtypename);
return (-1); /* errno is set for us */
}
if ((tgtkind = mdb_ctf_type_kind(tgtid)) == -1) {
mdb_ctf_warn(flags,
"couldn't determine type kind of %s\n", typename);
return (-1); /* errno is set for us */
}
if ((modsz = mdb_ctf_type_size(modid)) == -1UL) {
mdb_ctf_warn(flags, "couldn't determine type size of "
"mdb module type %s\n", mdbtypename);
return (-1); /* errno is set for us */
}
if ((tgtsz = mdb_ctf_type_size(tgtid)) == -1UL) {
mdb_ctf_warn(flags, "couldn't determine size of %s (%s)\n",
typename, tgtname);
return (-1); /* errno is set for us */
}
if (tgtkind == CTF_K_POINTER && modkind == CTF_K_INTEGER &&
strcmp(mdbtypename, "uintptr_t") == 0) {
/* allow them to convert a pointer to a uintptr_t */
ASSERT(modsz == tgtsz);
} else if (tgtkind != modkind) {
mdb_ctf_warn(flags, "unexpected kind for type %s (%s)\n",
typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
switch (tgtkind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
/*
* Must determine if the target and module types have the same
* encoding before we can copy them.
*/
if (mdb_ctf_type_encoding(tgtid, &tgt_encoding) != 0) {
mdb_ctf_warn(flags,
"couldn't determine encoding of type %s (%s)\n",
typename, tgtname);
return (-1); /* errno is set for us */
}
if (mdb_ctf_type_encoding(modid, &mod_encoding) != 0) {
mdb_ctf_warn(flags, "couldn't determine encoding of "
"mdb module type %s\n", mdbtypename);
return (-1); /* errno is set for us */
}
if (modkind == CTF_K_INTEGER) {
if ((tgt_encoding.cte_format & CTF_INT_SIGNED) !=
(mod_encoding.cte_format & CTF_INT_SIGNED)) {
mdb_ctf_warn(flags,
"signedness mismatch between type "
"%s (%s) and mdb module type %s\n",
typename, tgtname, mdbtypename);
return (set_errno(EMDB_INCOMPAT));
}
signed_int =
((tgt_encoding.cte_format & CTF_INT_SIGNED) != 0);
} else if (tgt_encoding.cte_format != mod_encoding.cte_format) {
mdb_ctf_warn(flags,
"encoding mismatch (%#x != %#x) between type "
"%s (%s) and mdb module type %s\n",
tgt_encoding.cte_format, mod_encoding.cte_format,
typename, tgtname, mdbtypename);
return (set_errno(EMDB_INCOMPAT));
}
/* FALLTHROUGH */
case CTF_K_POINTER:
/*
* If the sizes don't match we need to be tricky to make
* sure that the caller gets the correct data.
*/
if (modsz < tgtsz) {
mdb_ctf_warn(flags, "size of type %s (%s) is too "
"large for mdb module type %s\n",
typename, tgtname, mdbtypename);
return (set_errno(EMDB_INCOMPAT));
} else if (modsz > tgtsz) {
/* BEGIN CSTYLED */
/*
* Fill modbuf with 1's for sign extension if target
* buf is a signed integer and its value is negative.
*
* S = sign bit (in most-significant byte)
*
* BIG ENDIAN DATA
* +--------+--------+--------+--------+
* |S | | | |
* +--------+--------+--------+--------+
* 0 1 ... sz-1 sz
*
* LITTLE ENDIAN DATA
* +--------+--------+--------+--------+
* | | | |S |
* +--------+--------+--------+--------+
* 0 1 ... sz-1 sz
*/
/* END CSTYLED */
#ifdef _BIG_ENDIAN
if (signed_int && (tgtbuf[0] & 0x80) != 0)
#else
if (signed_int && (tgtbuf[tgtsz - 1] & 0x80) != 0)
#endif
(void) memset(modbuf, 0xFF, modsz);
else
bzero(modbuf, modsz);
#ifdef _BIG_ENDIAN
bcopy(tgtbuf, modbuf + modsz - tgtsz, tgtsz);
#else
bcopy(tgtbuf, modbuf, tgtsz);
#endif
} else {
bcopy(tgtbuf, modbuf, modsz);
}
return (0);
case CTF_K_ENUM:
if (modsz != tgtsz || modsz != sizeof (int)) {
mdb_ctf_warn(flags, "unexpected size of type %s (%s)\n",
typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
/*
* Default to the same value as in the target.
*/
bcopy(tgtbuf, modbuf, sizeof (int));
/* LINTED */
i = *(int *)tgtbuf;
/* LINTED */
ev.ev_modbuf = (int *)modbuf;
ev.ev_name = mdb_ctf_enum_name(tgtid, i);
if (ev.ev_name == NULL) {
mdb_ctf_warn(flags,
"unexpected value %u of enum type %s (%s)\n",
i, typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
ret = mdb_ctf_enum_iter(modid, enum_cb, &ev);
if (ret == 0) {
/* value not found */
mdb_ctf_warn(flags,
"unexpected value %s (%u) of enum type %s (%s)\n",
ev.ev_name, i, typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
} else if (ret == 1) {
/* value found */
return (0);
} else if (ret == -1) {
mdb_ctf_warn(flags, "could not iterate enum %s (%s)\n",
typename, tgtname);
}
return (ret);
case CTF_K_STRUCT:
mbr.m_modbuf = modbuf;
mbr.m_tgtbuf = tgtbuf;
mbr.m_tgtid = tgtid;
mbr.m_flags = flags;
mbr.m_tgtname = typename;
return (mdb_ctf_member_iter(modid, member_cb, &mbr));
case CTF_K_UNION:
/*
* Unions are a little tricky. The only time it's truly
* safe to read in a union is if no part of the union or
* any of its component types have changed. The correct
* use of this feature is to read the containing structure,
* figure out which component of the union is valid, compute
* the location of that in the target and then read in
* that part of the structure.
*/
if (!type_equals(modid, tgtid)) {
mdb_ctf_warn(flags, "inexact match for union %s (%s)\n",
typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
ASSERT(modsz == tgtsz);
bcopy(tgtbuf, modbuf, modsz);
return (0);
case CTF_K_ARRAY:
if (mdb_ctf_array_info(tgtid, &tar) != 0) {
mdb_ctf_warn(flags,
"couldn't get array info for %s (%s)\n",
typename, tgtname);
return (-1); /* errno is set for us */
}
if (mdb_ctf_array_info(modid, &mar) != 0) {
mdb_ctf_warn(flags,
"couldn't get array info for mdb module type %s\n",
mdbtypename);
return (-1); /* errno is set for us */
}
if (tar.mta_nelems != mar.mta_nelems) {
mdb_ctf_warn(flags,
"unexpected array size (%u) for type %s (%s)\n",
tar.mta_nelems, typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
if ((modsz = mdb_ctf_type_size(mar.mta_contents)) == -1UL) {
mdb_ctf_warn(flags, "couldn't determine type size of "
"mdb module type %s\n", mdbtypename);
return (-1); /* errno is set for us */
}
if ((tgtsz = mdb_ctf_type_size(tar.mta_contents)) == -1UL) {
mdb_ctf_warn(flags,
"couldn't determine size of %s (%s)\n",
typename, tgtname);
return (-1); /* errno is set for us */
}
for (i = 0; i < tar.mta_nelems; i++) {
ret = vread_helper(mar.mta_contents, modbuf + i * modsz,
tar.mta_contents, tgtbuf + i * tgtsz,
tgtname, flags);
if (ret != 0)
return (ret);
}
return (0);
}
mdb_ctf_warn(flags, "unsupported kind %d for type %s (%s)\n",
modkind, typename, tgtname);
return (set_errno(EMDB_INCOMPAT));
}
/*
* Like mdb_vread(), mdb_ctf_vread() is used to read from the target's
* virtual address space. However, mdb_ctf_vread() can be used to safely
* read a complex type (e.g. a struct) from the target, even if MDB was compiled
* against a different definition of that type (e.g. when debugging a crash
* dump from an older release).
*
* Callers can achieve this by defining their own type which corresponds to the
* type in the target, but contains only the members that the caller requires.
* Using the CTF type information embedded in the target, mdb_ctf_vread will
* find the required members in the target and fill in the caller's structure.
* The members are located by name, and their types are verified to be
* compatible.
*
* By convention, the caller will declare a type with the name "mdb_<type>",
* where <type> is the name of the type in the target (e.g. mdb_zio_t). This
* type will contain the members that the caller is interested in. For example:
*
* typedef struct mdb_zio {
* enum zio_type io_type;
* uintptr_t io_waiter;
* struct {
* struct {
* uintptr_t list_next;
* } list_head;
* } io_parent_list;
* int io_error;
* } mdb_zio_t;
*
* mdb_zio_t zio;
* error = mdb_ctf_vread(&zio, "zio_t", "mdb_zio_t", zio_target_addr, 0);
*
* If a given MDB module has different dcmds or walkers that need to read
* different members from the same struct, then different "mdb_" types
* should be declared for each caller. By convention, these types should
* be named "mdb_<dcmd or walker>_<type>", e.g. mdb_findstack_kthread_t
* for ::findstack. If the MDB module is compiled from several source files,
* one must be especially careful to not define different types with the
* same name in different source files, because the compiler can not detect
* this error.
*
* Enums will also be translated by name, so the mdb module will receive
* the enum value it expects even if the target has renumbered the enum.
* Warning: it will therefore only work with enums are only used to store
* legitimate enum values (not several values or-ed together).
*
* By default, if mdb_ctf_vread() can not find any members or enum values,
* it will print a descriptive message (with mdb_warn()) and fail.
* Passing MDB_CTF_VREAD_QUIET in 'flags' will suppress the warning message.
* Additional flags can be used to ignore specific types of translation
* failure, but should be used with caution, because they will silently leave
* the caller's buffer uninitialized.
*/
int
mdb_ctf_vread(void *modbuf, const char *target_typename,
const char *mdb_typename, uintptr_t addr, uint_t flags)
{
ctf_file_t *mfp;
ctf_id_t mid;
void *tgtbuf;
size_t size;
mdb_ctf_id_t tgtid;
mdb_ctf_id_t modid;
mdb_module_t *mod;
if ((mod = mdb_get_module()) == NULL || (mfp = mod->mod_ctfp) == NULL) {
mdb_ctf_warn(flags, "no ctf data found for mdb module %s\n",
mod->mod_name);
return (set_errno(EMDB_NOCTF));
}
if ((mid = ctf_lookup_by_name(mfp, mdb_typename)) == CTF_ERR) {
mdb_ctf_warn(flags, "couldn't find ctf data for "
"type %s in mdb module %s\n",
mdb_typename, mod->mod_name);
return (set_errno(ctf_to_errno(ctf_errno(mfp))));
}
set_ctf_id(&modid, mfp, mid);
if (mdb_ctf_lookup_by_name(target_typename, &tgtid) != 0) {
mdb_ctf_warn(flags,
"couldn't find type %s in target's ctf data\n",
target_typename);
return (set_errno(EMDB_NOCTF));
}
/*
* Read the data out of the target's address space.
*/
if ((size = mdb_ctf_type_size(tgtid)) == -1UL) {
mdb_ctf_warn(flags, "couldn't determine size of type %s\n",
target_typename);
return (-1); /* errno is set for us */
}
tgtbuf = mdb_alloc(size, UM_SLEEP | UM_GC);
if (mdb_vread(tgtbuf, size, addr) < 0) {
mdb_ctf_warn(flags, "couldn't read %s from %p\n",
target_typename, addr);
return (-1); /* errno is set for us */
}
return (vread_helper(modid, modbuf, tgtid, tgtbuf, NULL, flags));
}
/*
* Note: mdb_ctf_readsym() doesn't take separate parameters for the name
* of the target's type vs the mdb module's type. Use with complicated
* types (e.g. structs) may result in unnecessary failure if a member of
* the struct has been changed in the target, but is not actually needed
* by the mdb module. Use mdb_lookup_by_name() + mdb_ctf_vread() to
* avoid this problem.
*/
int
mdb_ctf_readsym(void *buf, const char *typename, const char *name, uint_t flags)
{
GElf_Sym sym;
if (mdb_lookup_by_obj(MDB_TGT_OBJ_EVERY, name, &sym) != 0) {
mdb_ctf_warn(flags, "couldn't find symbol %s\n", name);
return (-1); /* errno is set for us */
}
return (mdb_ctf_vread(buf, typename, typename, sym.st_value, flags));
}
ctf_file_t *
mdb_ctf_bufopen(const void *ctf_va, size_t ctf_size, const void *sym_va,
Shdr *symhdr, const void *str_va, Shdr *strhdr, int *errp)
{
ctf_sect_t ctdata, symtab, strtab;
ctdata.cts_name = ".SUNW_ctf";
ctdata.cts_type = SHT_PROGBITS;
ctdata.cts_flags = 0;
ctdata.cts_data = ctf_va;
ctdata.cts_size = ctf_size;
ctdata.cts_entsize = 1;
ctdata.cts_offset = 0;
symtab.cts_name = ".symtab";
symtab.cts_type = symhdr->sh_type;
symtab.cts_flags = symhdr->sh_flags;
symtab.cts_data = sym_va;
symtab.cts_size = symhdr->sh_size;
symtab.cts_entsize = symhdr->sh_entsize;
symtab.cts_offset = symhdr->sh_offset;
strtab.cts_name = ".strtab";
strtab.cts_type = strhdr->sh_type;
strtab.cts_flags = strhdr->sh_flags;
strtab.cts_data = str_va;
strtab.cts_size = strhdr->sh_size;
strtab.cts_entsize = strhdr->sh_entsize;
strtab.cts_offset = strhdr->sh_offset;
return (ctf_bufopen(&ctdata, &symtab, &strtab, errp));
}
int
mdb_ctf_synthetics_init(void)
{
int err;
if ((mdb.m_synth = ctf_create(&err)) == NULL)
return (set_errno(ctf_to_errno(err)));
return (0);
}
void
mdb_ctf_synthetics_fini(void)
{
if (mdb.m_synth == NULL)
return;
ctf_close(mdb.m_synth);
mdb.m_synth = NULL;
}
int
mdb_ctf_synthetics_create_base(int kind)
{
const synth_intrinsic_t *synp;
const synth_typedef_t *sytp;
int err;
ctf_id_t id;
ctf_file_t *cp = mdb.m_synth;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
switch (kind) {
case SYNTHETIC_ILP32:
synp = synth_builtins32;
sytp = synth_typedefs32;
break;
case SYNTHETIC_LP64:
synp = synth_builtins64;
sytp = synth_typedefs64;
break;
default:
mdb_dprintf(MDB_DBG_CTF, "invalid type of intrinsic: %d\n",
kind);
return (1);
}
err = 0;
for (; synp->syn_name != NULL; synp++) {
if (synp->syn_kind == CTF_K_INTEGER) {
err = ctf_add_integer(cp, CTF_ADD_ROOT, synp->syn_name,
&synp->syn_enc);
} else {
err = ctf_add_float(cp, CTF_ADD_ROOT, synp->syn_name,
&synp->syn_enc);
}
if (err == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "couldn't add synthetic "
"type: %s\n", synp->syn_name);
goto discard;
}
}
if (ctf_update(cp) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types\n");
goto discard;
}
for (; sytp->syt_src != NULL; sytp++) {
id = ctf_lookup_by_name(cp, sytp->syt_src);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "cailed to lookup %s: %s\n",
sytp->syt_src, ctf_errmsg(ctf_errno(cp)));
goto discard;
}
if (ctf_add_typedef(cp, CTF_ADD_ROOT, sytp->syt_targ, id) ==
CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "couldn't add typedef %s "
"%s: %s\n", sytp->syt_targ, sytp->syt_src,
ctf_errmsg(ctf_errno(cp)));
goto discard;
}
}
if (ctf_update(cp) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types\n");
goto discard;
}
return (0);
discard:
err = set_errno(ctf_to_errno(ctf_errno(cp)));
(void) ctf_discard(cp);
return (err);
}
int
mdb_ctf_synthetics_reset(void)
{
mdb_ctf_synthetics_fini();
return (mdb_ctf_synthetics_init());
}
int
mdb_ctf_add_typedef(const char *name, const mdb_ctf_id_t *p, mdb_ctf_id_t *new)
{
ctf_id_t rid;
mdb_ctf_id_t tid;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
if (mdb_ctf_lookup_by_name(name, &tid) == 0) {
mdb_dprintf(MDB_DBG_CTF, "failed to add type %s: a type "
"with that name already exists\n", name);
return (set_errno(EEXIST));
}
rid = ctf_add_type(mdb.m_synth, mcip->mci_fp, mcip->mci_id);
if (rid == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add reference type: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
rid = ctf_add_typedef(mdb.m_synth, CTF_ADD_ROOT, name, rid);
if (rid == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add typedef: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (new != NULL)
set_ctf_id(new, mdb.m_synth, rid);
return (0);
}
int
mdb_ctf_add_struct(const char *name, mdb_ctf_id_t *rid)
{
mdb_ctf_id_t tid;
ctf_id_t id;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
if (name != NULL && mdb_ctf_lookup_by_name(name, &tid) == 0) {
mdb_dprintf(MDB_DBG_CTF, "failed to add type %s: a type "
"with that name already exists\n", name);
return (set_errno(EEXIST));
}
if ((id = ctf_add_struct(mdb.m_synth, CTF_ADD_ROOT, name)) ==
CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add struct: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (rid != NULL)
set_ctf_id(rid, mdb.m_synth, id);
return (0);
}
int
mdb_ctf_add_union(const char *name, mdb_ctf_id_t *rid)
{
mdb_ctf_id_t tid;
ctf_id_t id;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
if (name != NULL && mdb_ctf_lookup_by_name(name, &tid) == 0) {
mdb_dprintf(MDB_DBG_CTF, "failed to add type %s: a type "
"with that name already exists\n", name);
return (set_errno(EEXIST));
}
if ((id = ctf_add_union(mdb.m_synth, CTF_ADD_ROOT, name)) ==
CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add union: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (rid != NULL)
set_ctf_id(rid, mdb.m_synth, id);
return (0);
}
int
mdb_ctf_add_member(const mdb_ctf_id_t *p, const char *name,
const mdb_ctf_id_t *mtype, mdb_ctf_id_t *rid)
{
ctf_id_t id, mtid;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
mdb_ctf_impl_t *mcim = (mdb_ctf_impl_t *)mtype;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (DCMD_ERR);
}
if (mcip->mci_fp != mdb.m_synth) {
mdb_dprintf(MDB_DBG_CTF, "requested to add member to a type "
"that wasn't created from a synthetic\n");
return (set_errno(EINVAL));
}
mtid = ctf_add_type(mdb.m_synth, mcim->mci_fp, mcim->mci_id);
if (mtid == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add member type: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
id = ctf_add_member(mdb.m_synth, mcip->mci_id, name, mtid);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add member %s: %s\n",
name, ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (rid != NULL)
set_ctf_id(rid, mdb.m_synth, id);
return (0);
}
int
mdb_ctf_add_array(const mdb_ctf_arinfo_t *marp, mdb_ctf_id_t *rid)
{
mdb_ctf_impl_t *mcip;
ctf_arinfo_t car;
ctf_id_t id;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
car.ctr_nelems = marp->mta_nelems;
mcip = (mdb_ctf_impl_t *)&marp->mta_contents;
id = ctf_add_type(mdb.m_synth, mcip->mci_fp, mcip->mci_id);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add member type: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
car.ctr_contents = id;
mcip = (mdb_ctf_impl_t *)&marp->mta_index;
id = ctf_add_type(mdb.m_synth, mcip->mci_fp, mcip->mci_id);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add member type: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
car.ctr_index = id;
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
id = ctf_add_array(mdb.m_synth, CTF_ADD_ROOT, &car);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (rid != NULL)
set_ctf_id(rid, mdb.m_synth, id);
return (0);
}
int
mdb_ctf_add_pointer(const mdb_ctf_id_t *p, mdb_ctf_id_t *rid)
{
ctf_id_t id;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)p;
if (mdb.m_synth == NULL) {
mdb_printf("synthetic types disabled: ctf create failed\n");
return (1);
}
id = ctf_add_type(mdb.m_synth, mcip->mci_fp, mcip->mci_id);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add pointer type: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
id = ctf_add_pointer(mdb.m_synth, CTF_ADD_ROOT, id);
if (id == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add pointer: %s\n",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (rid != NULL)
set_ctf_id(rid, mdb.m_synth, id);
return (0);
}
int
mdb_ctf_type_delete(const mdb_ctf_id_t *id)
{
int ret;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)id;
if (mcip->mci_fp != mdb.m_synth) {
mdb_warn("bad ctf_file_t, expected synth container\n");
return (1);
}
ret = ctf_delete_type(mcip->mci_fp, mcip->mci_id);
if (ret != 0) {
mdb_dprintf(MDB_DBG_CTF, "failed to delete synthetic type: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
if (ctf_update(mdb.m_synth) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types: %s",
ctf_errmsg(ctf_errno(mdb.m_synth)));
return (set_errno(ctf_to_errno(ctf_errno(mdb.m_synth))));
}
return (0);
}
static int
mdb_ctf_synthetics_file_cb(mdb_ctf_id_t id, void *arg)
{
ctf_file_t *targ = arg;
mdb_ctf_impl_t *mcip = (mdb_ctf_impl_t *)&id;
if (ctf_add_type(targ, mcip->mci_fp, mcip->mci_id) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to add type %d: %s\n",
mcip->mci_id, ctf_errmsg(ctf_errno(mcip->mci_fp)));
return (set_errno(ctf_to_errno(ctf_errno(mcip->mci_fp))));
}
return (0);
}
int
mdb_ctf_synthetics_from_file(const char *file)
{
ctf_file_t *fp, *syn = mdb.m_synth;
int ret;
type_iter_t ti;
if (syn == NULL) {
mdb_warn("synthetic types disabled: ctf create failed\n");
return (1);
}
if ((fp = mdb_ctf_open(file, &ret)) == NULL) {
mdb_warn("failed to parse ctf data in %s: %s\n", file,
ctf_errmsg(ret));
return (1);
}
ret = DCMD_OK;
ti.ti_fp = fp;
ti.ti_arg = syn;
ti.ti_cb = mdb_ctf_synthetics_file_cb;
if (ctf_type_iter(fp, type_iter_cb, &ti) == CTF_ERR) {
ret = set_errno(ctf_to_errno(ctf_errno(fp)));
mdb_warn("failed to add types");
goto cleanup;
}
if (ctf_update(syn) == CTF_ERR) {
mdb_dprintf(MDB_DBG_CTF, "failed to update synthetic types\n");
ret = set_errno(ctf_to_errno(ctf_errno(fp)));
}
cleanup:
ctf_close(fp);
if (ret != 0)
(void) ctf_discard(syn);
return (ret);
}
int
mdb_ctf_synthetics_to_file(const char *file)
{
int err;
ctf_file_t *fp = mdb.m_synth;
if (fp == NULL) {
mdb_warn("synthetic types are disabled, not writing "
"anything\n");
return (DCMD_ERR);
}
err = mdb_ctf_write(file, fp);
if (err != 0) {
if (err == CTF_ERR)
(void) set_errno(ctf_to_errno(ctf_errno(fp)));
else
(void) set_errno(err);
err = DCMD_ERR;
} else {
err = DCMD_OK;
}
return (err);
}