/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* newfs: friendly front end to mkfs
*
* Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <locale.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/fs/ufs_fs.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>
#include <sys/sysmacros.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <libintl.h>
#include <sys/dkio.h>
#include <sys/vtoc.h>
#include <sys/mkdev.h>
#include <sys/efi_partition.h>
#include <fslib.h>
static unsigned int number(char *, char *, int, int);
static int64_t number64(char *, char *, int, int64_t);
static diskaddr_t getdiskbydev(char *);
static int yes(void);
static int notrand(char *);
static void usage();
static diskaddr_t get_device_size(int, char *);
static diskaddr_t brute_force_get_device_size(int);
static int validate_size(char *disk, diskaddr_t size);
static void exenv(void);
static struct fs *read_sb(char *);
/*PRINTFLIKE1*/
static void fatal(char *fmt, ...);
#define EPATH "PATH=/usr/sbin:/sbin:"
#define CPATH "/sbin" /* an EPATH element */
#define MB (1024 * 1024)
#define GBSEC ((1024 * 1024 * 1024) / DEV_BSIZE) /* sectors in a GB */
#define MINFREESEC ((64 * 1024 * 1024) / DEV_BSIZE) /* sectors in 64 MB */
#define MINCPG (16) /* traditional */
#define MAXDEFDENSITY (8 * 1024) /* arbitrary */
#define MINDENSITY (2 * 1024) /* traditional */
#define MIN_MTB_DENSITY (1024 * 1024)
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
#define SECTORS_PER_TERABYTE (1LL << 31)
/*
* The following constant specifies an upper limit for file system size
* that is actually a lot bigger than we expect to support with UFS. (Since
* it's specified in sectors, the file system size would be 2**44 * 512,
* which is 2**53, which is 8192 Terabytes.) However, it's useful
* for checking the basic sanity of a size value that is input on the
* command line.
*/
#define FS_SIZE_UPPER_LIMIT 0x100000000000LL
/* For use with number() */
#define NR_NONE 0
#define NR_PERCENT 0x01
/*
* The following two constants set the default block and fragment sizes.
* Both constants must be a power of 2 and meet the following constraints:
* MINBSIZE <= DESBLKSIZE <= MAXBSIZE
* DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
* DESBLKSIZE / DESFRAGSIZE <= 8
*/
#define DESBLKSIZE 8192
#define DESFRAGSIZE 1024
#ifdef DEBUG
#define dprintf(x) printf x
#else
#define dprintf(x)
#endif
static int Nflag; /* run mkfs without writing file system */
static int Tflag; /* set up file system for growth to over 1 TB */
static int verbose; /* show mkfs line before exec */
static int fsize = 0; /* fragment size */
static int fsize_flag = 0; /* fragment size was specified on cmd line */
static int bsize; /* block size */
static int ntracks; /* # tracks/cylinder */
static int ntracks_set = 0; /* true if the user specified ntracks */
static int optim = FS_OPTTIME; /* optimization, t(ime) or s(pace) */
static int nsectors; /* # sectors/track */
static int cpg; /* cylinders/cylinder group */
static int cpg_set = 0; /* true if the user specified cpg */
static int minfree = -1; /* free space threshold */
static int rpm; /* revolutions/minute of drive */
static int rpm_set = 0; /* true if the user specified rpm */
static int nrpos = 8; /* # of distinguished rotational positions */
/* 8 is the historical default */
static int nrpos_set = 0; /* true if the user specified nrpos */
static int density = 0; /* number of bytes per inode */
static int apc; /* alternates per cylinder */
static int apc_set = 0; /* true if the user specified apc */
static int rot = -1; /* rotational delay (msecs) */
static int rot_set = 0; /* true if the user specified rot */
static int maxcontig = -1; /* maximum number of contig blocks */
static int text_sb = 0; /* no disk changes; just final sb text dump */
static int binary_sb = 0; /* no disk changes; just final sb binary dump */
static int label_type; /* see types below */
/*
* The variable use_efi_dflts is an indicator of whether to use EFI logic
* or the geometry logic in laying out the filesystem. This is decided
* based on the size/type of the disk and is used only for non-EFI labeled
* disks and removable media.
*/
static int use_efi_dflts = 0;
static int isremovable = 0;
static int ishotpluggable = 0;
static char device[MAXPATHLEN];
static char cmd[BUFSIZ];
extern char *getfullrawname(); /* from libadm */
int
main(int argc, char *argv[])
{
char *special, *name;
struct stat64 st;
int status;
int option;
struct fs *sbp; /* Pointer to superblock (if present) */
diskaddr_t actual_fssize;
diskaddr_t max_possible_fssize;
diskaddr_t req_fssize = 0;
diskaddr_t fssize = 0;
char *req_fssize_str = NULL; /* requested size argument */
(void) setlocale(LC_ALL, "");
#if !defined(TEXT_DOMAIN)
#define TEXT_DOMAIN "SYS_TEST"
#endif
(void) textdomain(TEXT_DOMAIN);
opterr = 0; /* We print our own errors, disable getopt's message */
while ((option = getopt(argc, argv,
"vNBSs:C:d:t:o:a:b:f:c:m:n:r:i:T")) != EOF) {
switch (option) {
case 'S':
text_sb++;
break;
case 'B':
binary_sb++;
break;
case 'v':
verbose++;
break;
case 'N':
Nflag++;
break;
case 's':
/*
* The maximum file system size is a lot smaller
* than FS_SIZE_UPPER_LIMIT, but until we find out
* the device size and block size, we don't know
* what it is. So save the requested size in a
* string so that we can print it out later if we
* determine it's too big.
*/
req_fssize = number64("fssize", optarg, NR_NONE,
FS_SIZE_UPPER_LIMIT);
if (req_fssize < 1024)
fatal(gettext(
"%s: fssize must be at least 1024"),
optarg);
req_fssize_str = strdup(optarg);
if (req_fssize_str == NULL)
fatal(gettext(
"Insufficient memory for string copy."));
break;
case 'C':
maxcontig = number("maxcontig", optarg, NR_NONE, -1);
if (maxcontig < 0)
fatal(gettext("%s: bad maxcontig"), optarg);
break;
case 'd':
rot = number("rotdelay", optarg, NR_NONE, 0);
rot_set = 1;
if (rot < 0 || rot > 1000)
fatal(gettext(
"%s: bad rotational delay"), optarg);
break;
case 't':
ntracks = number("ntrack", optarg, NR_NONE, 16);
ntracks_set = 1;
if ((ntracks < 0) ||
(ntracks > INT_MAX))
fatal(gettext("%s: bad total tracks"), optarg);
break;
case 'o':
if (strcmp(optarg, "space") == 0)
optim = FS_OPTSPACE;
else if (strcmp(optarg, "time") == 0)
optim = FS_OPTTIME;
else
fatal(gettext(
"%s: bad optimization preference (options are `space' or `time')"), optarg);
break;
case 'a':
apc = number("apc", optarg, NR_NONE, 0);
apc_set = 1;
if (apc < 0 || apc > 32768) /* see mkfs.c */
fatal(gettext(
"%s: bad alternates per cyl"), optarg);
break;
case 'b':
bsize = number("bsize", optarg, NR_NONE, DESBLKSIZE);
if (bsize < MINBSIZE || bsize > MAXBSIZE)
fatal(gettext(
"%s: bad block size"), optarg);
break;
case 'f':
fsize = number("fragsize", optarg, NR_NONE,
DESFRAGSIZE);
fsize_flag++;
/* xxx ought to test against bsize for upper limit */
if (fsize < DEV_BSIZE)
fatal(gettext("%s: bad frag size"), optarg);
break;
case 'c':
cpg = number("cpg", optarg, NR_NONE, 16);
cpg_set = 1;
if (cpg < 1)
fatal(gettext("%s: bad cylinders/group"),
optarg);
break;
case 'm':
minfree = number("minfree", optarg, NR_PERCENT, 10);
if (minfree < 0 || minfree > 99)
fatal(gettext("%s: bad free space %%"), optarg);
break;
case 'n':
nrpos = number("nrpos", optarg, NR_NONE, 8);
nrpos_set = 1;
if (nrpos <= 0)
fatal(gettext(
"%s: bad number of rotational positions"),
optarg);
break;
case 'r':
rpm = number("rpm", optarg, NR_NONE, 3600);
rpm_set = 1;
if (rpm < 0)
fatal(gettext("%s: bad revs/minute"), optarg);
break;
case 'i':
/* xxx ought to test against fsize */
density = number("nbpi", optarg, NR_NONE, 2048);
if (density < DEV_BSIZE)
fatal(gettext("%s: bad bytes per inode"),
optarg);
break;
case 'T':
Tflag++;
break;
default:
usage();
fatal(gettext("-%c: unknown flag"), optopt);
}
}
/* At this point, there should only be one argument left: */
/* The raw-special-device itself. If not, print usage message. */
if ((argc - optind) != 1) {
usage();
exit(1);
}
name = argv[optind];
special = getfullrawname(name);
if (special == NULL) {
(void) fprintf(stderr, gettext("newfs: malloc failed\n"));
exit(1);
}
if (*special == '\0') {
if (strchr(name, '/') != NULL) {
if (stat64(name, &st) < 0) {
(void) fprintf(stderr,
gettext("newfs: %s: %s\n"),
name, strerror(errno));
exit(2);
}
fatal(gettext("%s: not a raw disk device"), name);
}
(void) snprintf(device, sizeof (device), "/dev/rdsk/%s", name);
if ((special = getfullrawname(device)) == NULL) {
(void) fprintf(stderr,
gettext("newfs: malloc failed\n"));
exit(1);
}
if (*special == '\0') {
(void) snprintf(device, sizeof (device), "/dev/%s",
name);
if ((special = getfullrawname(device)) == NULL) {
(void) fprintf(stderr,
gettext("newfs: malloc failed\n"));
exit(1);
}
if (*special == '\0')
fatal(gettext(
"%s: not a raw disk device"), name);
}
}
/*
* getdiskbydev() determines the characteristics of the special
* device on which the file system will be built. In the case
* of devices with SMI labels (that is, non-EFI labels), the
* following characteristics are set (if they were not already
* set on the command line, since the command line settings
* take precedence):
*
* nsectors - sectors per track
* ntracks - tracks per cylinder
* rpm - disk revolutions per minute
*
* apc is NOT set
*
* getdiskbydev() also sets the following quantities for all
* devices, if not already set:
*
* bsize - file system block size
* maxcontig
* label_type (efi, vtoc, or other)
*
* getdiskbydev() returns the actual size of the device, in
* sectors.
*/
actual_fssize = getdiskbydev(special);
if (req_fssize == 0) {
fssize = actual_fssize;
} else {
/*
* If the user specified a size larger than what we've
* determined as the actual size of the device, see if the
* size specified by the user can be read. If so, use it,
* since some devices and volume managers may not support
* the vtoc and EFI interfaces we use to determine device
* size.
*/
if (req_fssize > actual_fssize &&
validate_size(special, req_fssize)) {
(void) fprintf(stderr, gettext(
"Warning: the requested size of this file system\n"
"(%lld sectors) is greater than the size of the\n"
"device reported by the driver (%lld sectors).\n"
"However, a read of the device at the requested size\n"
"does succeed, so the requested size will be used.\n"),
req_fssize, actual_fssize);
fssize = req_fssize;
} else {
fssize = MIN(req_fssize, actual_fssize);
}
}
if (label_type == LABEL_TYPE_VTOC) {
if (nsectors < 0)
fatal(gettext("%s: no default #sectors/track"),
special);
if (!use_efi_dflts) {
if (ntracks < 0)
fatal(gettext("%s: no default #tracks"),
special);
}
if (rpm < 0)
fatal(gettext(
"%s: no default revolutions/minute value"),
special);
if (rpm < 60) {
(void) fprintf(stderr,
gettext("Warning: setting rpm to 60\n"));
rpm = 60;
}
}
if (label_type == LABEL_TYPE_EFI || label_type == LABEL_TYPE_OTHER) {
if (ntracks_set)
(void) fprintf(stderr, gettext(
"Warning: ntracks is obsolete for this device and will be ignored.\n"));
if (cpg_set)
(void) fprintf(stderr, gettext(
"Warning: cylinders/group is obsolete for this device and will be ignored.\n"));
if (rpm_set)
(void) fprintf(stderr, gettext(
"Warning: rpm is obsolete for this device and will be ignored.\n"));
if (rot_set)
(void) fprintf(stderr, gettext(
"Warning: rotational delay is obsolete for this device and"
" will be ignored.\n"));
if (nrpos_set)
(void) fprintf(stderr, gettext(
"Warning: number of rotational positions is obsolete for this device and\n"
"will be ignored.\n"));
if (apc_set)
(void) fprintf(stderr, gettext(
"Warning: number of alternate sectors per cylinder is obsolete for this\n"
"device and will be ignored.\n"));
/*
* We need these for the call to mkfs, even though they are
* meaningless.
*/
rpm = 60;
nrpos = 1;
apc = 0;
rot = -1;
/*
* These values are set to produce a file system with
* a cylinder group size of 48MB. For disks with
* non-EFI labels, most geometries result in cylinder
* groups of around 40 - 50 MB, so we arbitrarily choose
* 48MB for disks with EFI labels. mkfs will reduce
* cylinders per group even further if necessary.
*/
cpg = 16;
nsectors = 128;
ntracks = 48;
/*
* mkfs produces peculiar results for file systems
* that are smaller than one cylinder so don't allow
* them to be created (this check is only made for
* disks with EFI labels. Eventually, it should probably
* be enforced for all disks.)
*/
if (fssize < nsectors * ntracks) {
fatal(gettext(
"file system size must be at least %d sectors"),
nsectors * ntracks);
}
}
if (fssize > INT_MAX)
Tflag = 1;
/*
* If the user requested that the file system be set up for
* eventual growth to over a terabyte, or if it's already greater
* than a terabyte, set the inode density (nbpi) to MIN_MTB_DENSITY
* (unless the user has specified a larger nbpi), set the frag size
* equal to the block size, and set the cylinders-per-group value
* passed to mkfs to -1, which tells mkfs to make cylinder groups
* as large as possible.
*/
if (Tflag) {
if (density < MIN_MTB_DENSITY)
density = MIN_MTB_DENSITY;
fsize = bsize;
cpg = -1; /* says make cyl groups as big as possible */
} else {
if (fsize == 0)
fsize = DESFRAGSIZE;
}
if (!POWEROF2(fsize)) {
(void) fprintf(stderr, gettext(
"newfs: fragment size must a power of 2, not %d\n"), fsize);
fsize = bsize/8;
(void) fprintf(stderr, gettext(
"newfs: fragsize reset to %ld\n"), fsize);
}
/*
* The file system is limited in size by the fragment size.
* The number of fragments in the file system must fit into
* a signed 32-bit quantity, so the number of sectors in the
* file system is INT_MAX * the number of sectors in a frag.
*/
max_possible_fssize = ((uint64_t)fsize)/DEV_BSIZE * INT_MAX;
if (fssize > max_possible_fssize)
fssize = max_possible_fssize;
/*
* Now fssize is the final size of the file system (in sectors).
* If it's less than what the user requested, print a message.
*/
if (fssize < req_fssize) {
(void) fprintf(stderr, gettext(
"newfs: requested size of %s disk blocks is too large.\n"),
req_fssize_str);
(void) fprintf(stderr, gettext(
"newfs: Resetting size to %lld\n"), fssize);
}
/*
* fssize now equals the size (in sectors) of the file system
* that will be created.
*/
/* XXX - following defaults are both here and in mkfs */
if (density <= 0) {
if (fssize < GBSEC)
density = MINDENSITY;
else
density = (int)((((longlong_t)fssize + (GBSEC - 1)) /
GBSEC) * MINDENSITY);
if (density <= 0)
density = MINDENSITY;
if (density > MAXDEFDENSITY)
density = MAXDEFDENSITY;
}
if (cpg == 0) {
/*
* maxcpg calculation adapted from mkfs
* In the case of disks with EFI labels, cpg has
* already been set, so we won't enter this code.
*/
long maxcpg, maxipg;
maxipg = roundup(bsize * NBBY / 3,
bsize / sizeof (struct inode));
maxcpg = (bsize - sizeof (struct cg) - howmany(maxipg, NBBY)) /
(sizeof (long) + nrpos * sizeof (short) +
nsectors / (MAXFRAG * NBBY));
cpg = (fssize / GBSEC) * 32;
if (cpg > maxcpg)
cpg = maxcpg;
if (cpg <= 0)
cpg = MINCPG;
}
if (minfree < 0) {
minfree = (int)(((float)MINFREESEC / fssize) * 100);
if (minfree > 10)
minfree = 10;
if (minfree <= 0)
minfree = 1;
}
#ifdef i386 /* Bug 1170182 */
if (ntracks > 32 && (ntracks % 16) != 0) {
ntracks -= (ntracks % 16);
}
#endif
/*
* Confirmation
*/
if (isatty(fileno(stdin)) && !Nflag) {
/*
* If we can read a valid superblock, report the mount
* point on which this filesystem was last mounted.
*/
if (((sbp = read_sb(special)) != 0) &&
(*sbp->fs_fsmnt != '\0')) {
(void) printf(gettext(
"newfs: %s last mounted as %s\n"),
special, sbp->fs_fsmnt);
}
(void) printf(gettext(
"newfs: construct a new file system %s: (y/n)? "),
special);
(void) fflush(stdout);
if (!yes())
exit(0);
}
dprintf(("DeBuG newfs : nsect=%d ntrak=%d cpg=%d\n",
nsectors, ntracks, cpg));
/*
* If alternates-per-cylinder is ever implemented:
* need to get apc from dp->d_apc if no -a switch???
*/
(void) snprintf(cmd, sizeof (cmd), "mkfs -F ufs "
"%s%s%s%s %lld %d %d %d %d %d %d %d %d %s %d %d %d %d %s",
Nflag ? "-o N " : "", binary_sb ? "-o calcbinsb " : "",
text_sb ? "-o calcsb " : "", special,
fssize, nsectors, ntracks, bsize, fsize, cpg, minfree, rpm/60,
density, optim == FS_OPTSPACE ? "s" : "t", apc, rot, nrpos,
maxcontig, Tflag ? "y" : "n");
if (verbose) {
(void) printf("%s\n", cmd);
(void) fflush(stdout);
}
exenv();
if (status = system(cmd))
exit(status >> 8);
if (Nflag)
exit(0);
(void) snprintf(cmd, sizeof (cmd), "/usr/sbin/fsirand %s", special);
if (notrand(special) && (status = system(cmd)) != 0)
(void) fprintf(stderr,
gettext("%s: failed, status = %d\n"),
cmd, status);
return (0);
}
static void
exenv(void)
{
char *epath; /* executable file path */
char *cpath; /* current path */
if ((cpath = getenv("PATH")) == NULL) {
(void) fprintf(stderr, gettext("newfs: no PATH in env\n"));
/*
* Background: the Bourne shell interpolates "." into
* the path where said path starts with a colon, ends
* with a colon, or has two adjacent colons. Thus,
* the path ":/sbin::/usr/sbin:" is equivalent to
* ".:/sbin:.:/usr/sbin:.". Now, we have no cpath,
* and epath ends in a colon (to make for easy
* catenation in the normal case). By the above, if
* we use "", then "." becomes part of path. That's
* bad, so use CPATH (which is just a duplicate of some
* element in EPATH). No point in opening ourselves
* up to a Trojan horse attack when we don't have to....
*/
cpath = CPATH;
}
if ((epath = malloc(strlen(EPATH) + strlen(cpath) + 1)) == NULL) {
(void) fprintf(stderr, gettext("newfs: malloc failed\n"));
exit(1);
}
(void) strcpy(epath, EPATH);
(void) strcat(epath, cpath);
if (putenv(epath) < 0) {
(void) fprintf(stderr, gettext("newfs: putenv failed\n"));
exit(1);
}
}
static int
yes(void)
{
int i, b;
i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)
b = getchar();
return (i == 'y');
}
/*
* xxx Caller must run fmt through gettext(3) for us, if we ever
* xxx go the i18n route....
*/
static void
fatal(char *fmt, ...)
{
va_list pvar;
(void) fprintf(stderr, "newfs: ");
va_start(pvar, fmt);
(void) vfprintf(stderr, fmt, pvar);
va_end(pvar);
(void) putc('\n', stderr);
exit(10);
}
static diskaddr_t
getdiskbydev(char *disk)
{
struct dk_geom g;
struct dk_cinfo ci;
struct dk_minfo info;
diskaddr_t actual_size;
int fd;
if ((fd = open64(disk, 0)) < 0) {
perror(disk);
exit(1);
}
/*
* get_device_size() determines the actual size of the
* device, and also the disk's attributes, such as geometry.
*/
actual_size = get_device_size(fd, disk);
if (label_type == LABEL_TYPE_VTOC) {
/*
* Geometry information does not make sense for removable or
* hotpluggable media anyway, so indicate mkfs to use EFI
* default parameters.
*/
if (ioctl(fd, DKIOCREMOVABLE, &isremovable)) {
dprintf(("DeBuG newfs : Unable to determine if %s is"
" Removable Media. Proceeding with system"
" determined parameters.\n", disk));
isremovable = 0;
}
/* If removable check if a floppy disk */
if (isremovable) {
if (ioctl(fd, DKIOCGMEDIAINFO, &info)) {
dprintf(("DeBuG newfs : Unable to get media"
" info from %s.\n", disk));
} else {
if (info.dki_media_type == DK_FLOPPY) {
isremovable = 0;
}
}
}
if (ioctl(fd, DKIOCHOTPLUGGABLE, &ishotpluggable)) {
dprintf(("DeBuG newfs : Unable to determine if %s is"
" Hotpluggable Media. Proceeding with system"
" determined parameters.\n", disk));
ishotpluggable = 0;
}
if ((isremovable || ishotpluggable) && !Tflag)
use_efi_dflts = 1;
if (ioctl(fd, DKIOCGGEOM, &g))
fatal(gettext(
"%s: Unable to read Disk geometry"), disk);
if ((((diskaddr_t)g.dkg_ncyl * g.dkg_nhead *
g.dkg_nsect) > CHSLIMIT) && !Tflag) {
use_efi_dflts = 1;
}
dprintf(("DeBuG newfs : geom=%llu, CHSLIMIT=%d "
"isremovable = %d ishotpluggable = %d use_efi_dflts = %d\n",
(diskaddr_t)g.dkg_ncyl * g.dkg_nhead * g.dkg_nsect,
CHSLIMIT, isremovable, ishotpluggable, use_efi_dflts));
/*
* The ntracks that is passed to mkfs is decided here based
* on 'use_efi_dflts' and whether ntracks was specified as a
* command line parameter to newfs.
* If ntracks of -1 is passed to mkfs, mkfs uses DEF_TRACKS_EFI
* and DEF_SECTORS_EFI for ntracks and nsectors respectively.
*/
if (nsectors == 0)
nsectors = g.dkg_nsect;
if (ntracks == 0)
ntracks = use_efi_dflts ? -1 : g.dkg_nhead;
if (rpm == 0)
rpm = ((int)g.dkg_rpm <= 0) ? 3600: g.dkg_rpm;
}
if (bsize == 0)
bsize = DESBLKSIZE;
/*
* Adjust maxcontig by the device's maxtransfer. If maxtransfer
* information is not available, default to the min of a MB and
* maxphys.
*/
if (maxcontig == -1 && ioctl(fd, DKIOCINFO, &ci) == 0) {
maxcontig = ci.dki_maxtransfer * DEV_BSIZE;
if (maxcontig < 0) {
int error, gotit, maxphys;
gotit = fsgetmaxphys(&maxphys, &error);
/*
* If we cannot get the maxphys value, default
* to ufs_maxmaxphys (MB).
*/
if (gotit) {
maxcontig = MIN(maxphys, MB);
} else {
(void) fprintf(stderr, gettext(
"Warning: Could not get system value for maxphys. The value for maxcontig\n"
"will default to 1MB.\n"));
maxcontig = MB;
}
}
maxcontig /= bsize;
}
(void) close(fd);
return (actual_size);
}
/*
* Figure out how big the partition we're dealing with is.
*/
static diskaddr_t
get_device_size(int fd, char *name)
{
struct extvtoc vtoc;
dk_gpt_t *efi_vtoc;
diskaddr_t slicesize;
int index = read_extvtoc(fd, &vtoc);
if (index >= 0) {
label_type = LABEL_TYPE_VTOC;
} else {
if (index == VT_ENOTSUP || index == VT_ERROR) {
/* it might be an EFI label */
index = efi_alloc_and_read(fd, &efi_vtoc);
if (index >= 0)
label_type = LABEL_TYPE_EFI;
}
}
if (index < 0) {
/*
* Since both attempts to read the label failed, we're
* going to fall back to a brute force approach to
* determining the device's size: see how far out we can
* perform reads on the device.
*/
slicesize = brute_force_get_device_size(fd);
if (slicesize == 0) {
switch (index) {
case VT_ERROR:
(void) fprintf(stderr, gettext(
"newfs: %s: %s\n"), name, strerror(errno));
exit(10);
/*NOTREACHED*/
case VT_EIO:
fatal(gettext(
"%s: I/O error accessing VTOC"), name);
/*NOTREACHED*/
case VT_EINVAL:
fatal(gettext(
"%s: Invalid field in VTOC"), name);
/*NOTREACHED*/
default:
fatal(gettext(
"%s: unknown error accessing VTOC"),
name);
/*NOTREACHED*/
}
} else {
label_type = LABEL_TYPE_OTHER;
}
}
if (label_type == LABEL_TYPE_EFI) {
slicesize = efi_vtoc->efi_parts[index].p_size;
efi_free(efi_vtoc);
} else if (label_type == LABEL_TYPE_VTOC) {
slicesize = vtoc.v_part[index].p_size;
}
return (slicesize);
}
/*
* brute_force_get_device_size
*
* Determine the size of the device by seeing how far we can
* read. Doing an llseek( , , SEEK_END) would probably work
* in most cases, but we've seen at least one third-party driver
* which doesn't correctly support the SEEK_END option when the
* the device is greater than a terabyte.
*/
static diskaddr_t
brute_force_get_device_size(int fd)
{
diskaddr_t min_fail = 0;
diskaddr_t max_succeed = 0;
diskaddr_t cur_db_off;
char buf[DEV_BSIZE];
/*
* First, see if we can read the device at all, just to
* eliminate errors that have nothing to do with the
* device's size.
*/
if (((llseek(fd, (offset_t)0, SEEK_SET)) == -1) ||
((read(fd, buf, DEV_BSIZE)) == -1))
return (0); /* can't determine size */
/*
* Now, go sequentially through the multiples of 4TB
* to find the first read that fails (this isn't strictly
* the most efficient way to find the actual size if the
* size really could be anything between 0 and 2**64 bytes.
* We expect the sizes to be less than 16 TB for some time,
* so why do a bunch of reads that are larger than that?
* However, this algorithm *will* work for sizes of greater
* than 16 TB. We're just not optimizing for those sizes.)
*/
for (cur_db_off = SECTORS_PER_TERABYTE * 4;
min_fail == 0 && cur_db_off < FS_SIZE_UPPER_LIMIT;
cur_db_off += 4 * SECTORS_PER_TERABYTE) {
if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE),
SEEK_SET)) == -1) ||
((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE))
min_fail = cur_db_off;
else
max_succeed = cur_db_off;
}
if (min_fail == 0)
return (0);
/*
* We now know that the size of the device is less than
* min_fail and greater than or equal to max_succeed. Now
* keep splitting the difference until the actual size in
* sectors in known. We also know that the difference
* between max_succeed and min_fail at this time is
* 4 * SECTORS_PER_TERABYTE, which is a power of two, which
* simplifies the math below.
*/
while (min_fail - max_succeed > 1) {
cur_db_off = max_succeed + (min_fail - max_succeed)/2;
if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE),
SEEK_SET)) == -1) ||
((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE))
min_fail = cur_db_off;
else
max_succeed = cur_db_off;
}
/* the size is the last successfully read sector offset plus one */
return (max_succeed + 1);
}
/*
* validate_size
*
* Return 1 if the device appears to be at least "size" sectors long.
* Return 0 if it's shorter or we can't read it.
*/
static int
validate_size(char *disk, diskaddr_t size)
{
char buf[DEV_BSIZE];
int fd, rc;
if ((fd = open64(disk, O_RDONLY)) < 0) {
perror(disk);
exit(1);
}
if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
(read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
rc = 0;
else
rc = 1;
(void) close(fd);
return (rc);
}
/*
* read_sb(char * rawdev) - Attempt to read the superblock from a raw device
*
* Returns:
* 0 :
* Could not read a valid superblock for a variety of reasons.
* Since 'newfs' handles any fatal conditions, we're not going
* to make any guesses as to why this is failing or what should
* be done about it.
*
* struct fs *:
* A pointer to (what we think is) a valid superblock. The
* space for the superblock is static (inside the function)
* since we will only be reading the values from it.
*/
struct fs *
read_sb(char *fsdev)
{
static struct fs sblock;
struct stat64 statb;
int dskfd;
char *bufp = NULL;
int bufsz = 0;
if (stat64(fsdev, &statb) < 0)
return (0);
if ((dskfd = open64(fsdev, O_RDONLY)) < 0)
return (0);
/*
* We need a buffer whose size is a multiple of DEV_BSIZE in order
* to read from a raw device (which we were probably passed).
*/
bufsz = ((sizeof (sblock) / DEV_BSIZE) + 1) * DEV_BSIZE;
if ((bufp = malloc(bufsz)) == NULL) {
(void) close(dskfd);
return (0);
}
if (llseek(dskfd, (offset_t)SBOFF, SEEK_SET) < 0 ||
read(dskfd, bufp, bufsz) < 0) {
(void) close(dskfd);
free(bufp);
return (0);
}
(void) close(dskfd); /* Done with the file */
(void) memcpy(&sblock, bufp, sizeof (sblock));
free(bufp); /* Don't need this anymore */
if (((sblock.fs_magic != FS_MAGIC) &&
(sblock.fs_magic != MTB_UFS_MAGIC)) ||
sblock.fs_ncg < 1 || sblock.fs_cpg < 1)
return (0);
if (sblock.fs_ncg * sblock.fs_cpg < sblock.fs_ncyl ||
(sblock.fs_ncg - 1) * sblock.fs_cpg >= sblock.fs_ncyl)
return (0);
if (sblock.fs_sbsize < 0 || sblock.fs_sbsize > SBSIZE)
return (0);
return (&sblock);
}
/*
* Read the UFS file system on the raw device SPECIAL. If it does not
* appear to be a UFS file system, return non-zero, indicating that
* fsirand should be called (and it will spit out an error message).
* If it is a UFS file system, take a look at the inodes in the first
* cylinder group. If they appear to be randomized (non-zero), return
* zero, which will cause fsirand to not be called. If the inode generation
* counts are all zero, then we must call fsirand, so return non-zero.
*/
#define RANDOMIZED 0
#define NOT_RANDOMIZED 1
static int
notrand(char *special)
{
long fsbuf[SBSIZE / sizeof (long)];
struct dinode dibuf[MAXBSIZE/sizeof (struct dinode)];
struct fs *fs;
struct dinode *dip;
offset_t seekaddr;
int bno, inum;
int fd;
fs = (struct fs *)fsbuf;
if ((fd = open64(special, 0)) == -1)
return (NOT_RANDOMIZED);
if (llseek(fd, (offset_t)SBLOCK * DEV_BSIZE, 0) == -1 ||
read(fd, (char *)fs, SBSIZE) != SBSIZE ||
((fs->fs_magic != FS_MAGIC) && (fs->fs_magic != MTB_UFS_MAGIC))) {
(void) close(fd);
return (NOT_RANDOMIZED);
}
/* looks like a UFS file system; read the first cylinder group */
bsize = INOPB(fs) * sizeof (struct dinode);
inum = 0;
while (inum < fs->fs_ipg) {
bno = itod(fs, inum);
seekaddr = (offset_t)fsbtodb(fs, bno) * DEV_BSIZE;
if (llseek(fd, seekaddr, 0) == -1 ||
read(fd, (char *)dibuf, bsize) != bsize) {
(void) close(fd);
return (NOT_RANDOMIZED);
}
for (dip = dibuf; dip < &dibuf[INOPB(fs)]; dip++) {
if (dip->di_gen != 0) {
(void) close(fd);
return (RANDOMIZED);
}
inum++;
}
}
(void) close(fd);
return (NOT_RANDOMIZED);
}
static void
usage(void)
{
(void) fprintf(stderr, gettext(
"usage: newfs [ -v ] [ mkfs-options ] raw-special-device\n"));
(void) fprintf(stderr, gettext("where mkfs-options are:\n"));
(void) fprintf(stderr, gettext(
"\t-N do not create file system, just print out parameters\n"));
(void) fprintf(stderr, gettext(
"\t-T configure file system for eventual growth to over a terabyte\n"));
(void) fprintf(stderr, gettext("\t-s file system size (sectors)\n"));
(void) fprintf(stderr, gettext("\t-b block size\n"));
(void) fprintf(stderr, gettext("\t-f frag size\n"));
(void) fprintf(stderr, gettext("\t-t tracks/cylinder\n"));
(void) fprintf(stderr, gettext("\t-c cylinders/group\n"));
(void) fprintf(stderr, gettext("\t-m minimum free space %%\n"));
(void) fprintf(stderr, gettext(
"\t-o optimization preference (`space' or `time')\n"));
(void) fprintf(stderr, gettext("\t-r revolutions/minute\n"));
(void) fprintf(stderr, gettext("\t-i number of bytes per inode\n"));
(void) fprintf(stderr, gettext(
"\t-a number of alternates per cylinder\n"));
(void) fprintf(stderr, gettext("\t-C maxcontig\n"));
(void) fprintf(stderr, gettext("\t-d rotational delay\n"));
(void) fprintf(stderr, gettext(
"\t-n number of rotational positions\n"));
(void) fprintf(stderr, gettext(
"\t-S print a textual version of the calculated superblock to stdout\n"));
(void) fprintf(stderr, gettext(
"\t-B dump a binary version of the calculated superblock to stdout\n"));
}
/*
* Error-detecting version of atoi(3). Adapted from mkfs' number().
*/
static unsigned int
number(char *param, char *value, int flags, int def_value)
{
char *cs;
int n;
int cut = INT_MAX / 10; /* limit to avoid overflow */
int minus = 0;
cs = value;
if (*cs == '-') {
minus = 1;
cs += 1;
}
if ((*cs < '0') || (*cs > '9')) {
goto bail_out;
}
n = 0;
while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
n = n*10 + *cs++ - '0';
}
if (minus)
n = -n;
for (;;) {
switch (*cs++) {
case '\0':
return (n);
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
(void) fprintf(stderr, gettext(
"newfs: value for %s overflowed, using %d\n"),
param, def_value);
return (def_value);
case '%':
if (flags & NR_PERCENT)
break;
/* FALLTHROUGH */
default:
bail_out:
fatal(gettext("bad numeric arg for %s: \"%s\""),
param, value);
}
}
/* NOTREACHED */
}
/*
* Error-detecting version of atoi(3). Adapted from mkfs' number().
*/
static int64_t
number64(char *param, char *value, int flags, int64_t def_value)
{
char *cs;
int64_t n;
int64_t cut = FS_SIZE_UPPER_LIMIT/ 10; /* limit to avoid overflow */
int minus = 0;
cs = value;
if (*cs == '-') {
minus = 1;
cs += 1;
}
if ((*cs < '0') || (*cs > '9')) {
goto bail_out;
}
n = 0;
while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
n = n*10 + *cs++ - '0';
}
if (minus)
n = -n;
for (;;) {
switch (*cs++) {
case '\0':
return (n);
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
(void) fprintf(stderr, gettext(
"newfs: value for %s overflowed, using %d\n"),
param, def_value);
return (def_value);
case '%':
if (flags & NR_PERCENT)
break;
/* FALLTHROUGH */
default:
bail_out:
fatal(gettext("bad numeric arg for %s: \"%s\""),
param, value);
}
}
/* NOTREACHED */
}