/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Keep track of duplicate fragment references (elsewhere called
* blocks for ancient historical reasons).
*
* The duplicates are kept in a binary tree to attempt to minimize
* search times when checking the block lists of all active inodes
* for multiple uses. This is opposed to using a simple linear list
* that is traversed for every block, as is used in the traditional
* fsck. It can be very time-expensive if there's more than just a
* very few duplicates, and typically there are either none or lots.
*
* For each multiply-claimed fragment, we note all of the claiming
* inodes and their corresponding logical block numbers. This allows
* reporting exactly which parts of which files were damaged, which
* provides at least a chance of recovering the bulk of the data on
* a seriously-corrupted filesystem.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/avl.h>
#define _KERNEL
#include <sys/fs/ufs_fsdir.h> /* for struct direct */
#undef _KERNEL
#include <sys/debug.h>
#include "fsck.h"
#define OFFSETOF(type, elt) ((size_t)(&((type *)NULL)->elt))
/*
* For each physical fragment with multiple claimants, the specifics
* of each claim are recorded. This means there are N+1 AVL trees in
* use: one for each fragment's claimant table, plus one that orders
* the fragments themselves.
*
* The table of fragments simply has the physical fragment number
* (pfn) and has the root of the tree of the associated claimants. It
* is keyed by the pfn and called dup_frags.
*
* The subsidiary trees list inodes and logical fragment number (lfn)
* for each claimant. They are keyed first by inode number and then
* by lfn. Both are needed, as it is possible for one inode to have
* multiple claims on the same fragment.
*/
typedef struct claimant {
fsck_ino_t cl_inode;
daddr32_t cl_lfn;
avl_node_t cl_avl;
} claimant_t;
typedef struct fragment {
daddr32_t fr_pfn;
avl_tree_t fr_claimants;
avl_node_t fr_avl;
} fragment_t;
typedef struct reference {
daddr32_t ref_lfn;
daddr32_t ref_pfn;
avl_node_t ref_avl;
} reference_t;
typedef struct inode_dup {
fsck_ino_t id_ino;
avl_tree_t id_fragments;
avl_node_t id_avl;
} inode_dup_t;
static avl_tree_t dup_frags;
static void free_invert_frags(avl_tree_t *);
static void report_dup_lfn_pfn(daddr32_t, daddr32_t, daddr32_t, daddr32_t);
static inode_dup_t *new_inode_dup(fsck_ino_t);
static void invert_frags(avl_tree_t *, avl_tree_t *);
static void report_inode_dups(inode_dup_t *);
static int by_ino_cmp(const void *, const void *);
static int by_lfn_cmp(const void *, const void *);
static claimant_t *alloc_claimant(fsck_ino_t, daddr32_t);
static fragment_t *alloc_dup(daddr32_t);
static int claimant_cmp(const void *, const void *);
static int fragment_cmp(const void *, const void *);
static int decrement_claimant(fragment_t *, fsck_ino_t, daddr32_t);
static int increment_claimant(fragment_t *, fsck_ino_t, daddr32_t);
/*
* Simple accessor function for the outside world so only we need to
* see and interpret our data structures.
*/
int
have_dups(void)
{
return (avl_numnodes(&dup_frags) > 0);
}
/*
* Locates, creates, and deletes a record of a duplicate reference.
*
* For DB_INCR, returns true if the dup was added to the tree.
* For DB_DECR, returns true if the dup was in the tree.
*/
int
find_dup_ref(daddr32_t fragno, fsck_ino_t ino, daddr32_t lfn, int flags)
{
fragment_t key;
fragment_t *dup;
avl_index_t where;
int added = 0;
int removed = 0;
if (avl_first(&dup_frags) == NULL) {
if (flags & DB_CREATE)
avl_create(&dup_frags, fragment_cmp,
sizeof (fragment_t),
OFFSETOF(fragment_t, fr_avl));
else
return (0);
}
key.fr_pfn = fragno;
dup = avl_find(&dup_frags, (void *)&key, &where);
if ((dup == NULL) & (flags & DB_CREATE)) {
dup = alloc_dup(fragno);
avl_insert(&dup_frags, (void *)dup, where);
}
if (dup != NULL) {
if (flags & DB_INCR) {
if (debug)
(void) printf(
"adding claim by ino %d as lfn %d\n",
ino, lfn);
added = increment_claimant(dup, ino, lfn);
} else if (flags & DB_DECR) {
/*
* Note that dup may be invalidated by this call.
*/
removed = decrement_claimant(dup, ino, lfn);
if (debug)
(void) printf(
"check for claimant ino %d lfn %d returned %d\n",
ino, lfn, removed);
}
}
return (added || removed || (dup != NULL));
}
/*
* Dump the duplicates table in a relatively user-friendly form.
* The idea is that the output can be useful when trying to manually
* work out which block belongs to which of the claiming inodes.
*
* What we have is a tree of duplicates indexed by physical
* fragment number. What we want to report is:
*
* Inode %d:
* Logical Offset 0x%08llx, Physical Fragment %d
* Logical Offsets 0x%08llx - 0x%08llx, Physical Fragments %d - %d
* ...
* Inode %d:
* Logical Offsets 0x%08llx - 0x%08llx, Physical Fragments %d - %d
* ...
*/
int
report_dups(int quiet)
{
int overlaps;
inode_dup_t *inode;
fragment_t *dup;
avl_tree_t inode_frags;
overlaps = 0;
ASSERT(have_dups());
/*
* Figure out how many actual dups are still around.
* This tells us whether or not we can mark the
* filesystem clean.
*/
dup = avl_first(&dup_frags);
while (dup != NULL) {
if (avl_numnodes(&dup->fr_claimants) > 1) {
overlaps++;
break;
}
dup = AVL_NEXT(&dup_frags, dup);
}
/*
* Now report on every object that still exists that
* had *any* dups associated with it.
*/
if (!quiet) {
(void) puts("\nSome blocks that were found to be in "
"multiple files are still\nassigned to "
"file(s).\nFragments sorted by inode and "
"logical offsets:");
invert_frags(&dup_frags, &inode_frags);
inode = avl_first(&inode_frags);
while (inode != NULL) {
report_inode_dups(inode);
inode = AVL_NEXT(&inode_frags, inode);
}
(void) printf("\n");
free_invert_frags(&inode_frags);
}
return (overlaps);
}
static void
report_inode_dups(inode_dup_t *inode)
{
reference_t *dup;
daddr32_t first_lfn, last_lfn, first_pfn, last_pfn;
(void) printf("Inode %d:\n", inode->id_ino);
dup = avl_first(&inode->id_fragments);
first_lfn = last_lfn = dup->ref_lfn;
first_pfn = last_pfn = dup->ref_pfn;
while ((dup = AVL_NEXT(&inode->id_fragments, dup)) != NULL) {
if (((last_lfn + 1) != dup->ref_lfn) ||
((last_pfn + 1) != dup->ref_pfn)) {
report_dup_lfn_pfn(first_lfn, last_lfn,
first_pfn, last_pfn);
first_lfn = last_lfn = dup->ref_lfn;
first_pfn = last_pfn = dup->ref_pfn;
}
}
report_dup_lfn_pfn(first_lfn, last_lfn, first_pfn, last_pfn);
}
static void
report_dup_lfn_pfn(daddr32_t first_lfn, daddr32_t last_lfn,
daddr32_t first_pfn, daddr32_t last_pfn)
{
if ((first_lfn == last_lfn) && (first_pfn == last_pfn)) {
(void) printf(
" Logical Offset 0x%08llx Physical Fragment %d\n",
(longlong_t)first_lfn * sblock.fs_fsize, first_pfn);
} else {
(void) printf(
" Logical Offsets 0x%08llx - 0x%08llx, "
"Physical Fragments %d - %d\n",
(longlong_t)first_lfn * sblock.fs_fsize,
(longlong_t)last_lfn * sblock.fs_fsize,
first_pfn, last_pfn);
}
}
/*
* Given a tree of fragment_ts, each element of which has an integral
* sub-tree of claimant_ts, produce a tree of inode_dup_ts, each element
* of which has an integral sub-tree of reference_ts.
*/
static void
invert_frags(avl_tree_t *source, avl_tree_t *target)
{
fragment_t *src_frag;
claimant_t *src_claim;
inode_dup_t *tgt_inode;
inode_dup_t tgt_inode_key;
reference_t *tgt_ref;
reference_t tgt_ref_key;
avl_index_t where;
avl_create(target, by_ino_cmp, sizeof (inode_dup_t),
OFFSETOF(inode_dup_t, id_avl));
src_frag = avl_first(source);
while (src_frag != NULL) {
src_claim = avl_first(&src_frag->fr_claimants);
while (src_claim != NULL) {
/*
* Have we seen this inode before?
*/
tgt_inode_key.id_ino = src_claim->cl_inode;
tgt_inode = avl_find(target, (void *)&tgt_inode_key,
&where);
if (tgt_inode == NULL) {
/*
* No, so set up a record for it.
*/
tgt_inode = new_inode_dup(src_claim->cl_inode);
avl_insert(target, (void *)tgt_inode, where);
}
/*
* Now, how about this logical fragment? In
* theory, we should never see a duplicate, since
* a given lfn only exists once for a given inode.
* As such, we ignore duplicate hits.
*/
tgt_ref_key.ref_lfn = src_claim->cl_lfn;
tgt_ref = avl_find(&tgt_inode->id_fragments,
(void *)&tgt_ref_key, &where);
if (tgt_ref == NULL) {
/*
* Haven't seen it, add it.
*/
tgt_ref = (reference_t *)malloc(
sizeof (reference_t));
if (tgt_ref == NULL)
errexit("Out of memory in "
"invert_frags\n");
tgt_ref->ref_lfn = src_claim->cl_lfn;
tgt_ref->ref_pfn = src_frag->fr_pfn;
avl_insert(&tgt_inode->id_fragments,
(void *)tgt_ref, where);
}
src_claim = AVL_NEXT(&src_frag->fr_claimants,
src_claim);
}
src_frag = AVL_NEXT(source, src_frag);
}
}
/*
* Discard memory associated with the inverted fragments tree created
* by report_dups() via invert_frags().
*/
static void
free_invert_frags(avl_tree_t *tree)
{
void *outer = NULL; /* traversal cookie */
void *inner; /* traversal cookie */
inode_dup_t *inode_dup;
reference_t *ref_dup;
while ((inode_dup = avl_destroy_nodes(tree, &outer)) != NULL) {
inner = NULL;
while ((ref_dup = avl_destroy_nodes(&inode_dup->id_fragments,
&inner)) != NULL) {
free((void *)ref_dup);
}
avl_destroy(&inode_dup->id_fragments);
free((void *)inode_dup);
}
avl_destroy(tree);
}
/*
* Discard all memory allocations associated with the current duplicates
* table.
*/
void
free_dup_state(void)
{
void *dup_cookie = NULL;
void *claim_cookie;
fragment_t *fragv;
claimant_t *claimv;
while ((fragv = avl_destroy_nodes(&dup_frags, &dup_cookie)) != NULL) {
claim_cookie = NULL;
while ((claimv = avl_destroy_nodes(&fragv->fr_claimants,
&claim_cookie)) != NULL) {
free((void *)claimv);
}
avl_destroy(&fragv->fr_claimants);
free((void *)fragv);
}
avl_destroy(&dup_frags);
}
/*
* If the given claimant has not been seen before, add it to DUP's
* list of them. It's not fatal for the same PFN/INODE/LFN to get
* added twice, because pass1b() will add the same dups that pass1()
* did, plus one.
*/
static int
increment_claimant(fragment_t *dup, fsck_ino_t ino, daddr32_t lfn)
{
avl_index_t where;
claimant_t *claimant;
claimant_t key;
int added = 0;
key.cl_inode = ino;
key.cl_lfn = lfn;
claimant = avl_find(&dup->fr_claimants, &key, &where);
if (claimant == NULL) {
if (debug)
(void) printf("inserting claimant\n");
claimant = alloc_claimant(ino, lfn);
avl_insert(&dup->fr_claimants, (void *)claimant, where);
statemap[ino] |= INCLEAR;
/*
* If the inode is to be cleared and has zero links then remove
* the zero link bit as it will be cleared anyway. If INZLINK
* is being removed and it's a directory inode then add the
* inode to the orphan directory list.
*/
if (statemap[ino] & INZLINK) {
statemap[ino] &= ~INZLINK;
if (statemap[ino] & DSTATE) {
add_orphan_dir(ino);
}
}
added = 1;
}
return (added);
}
/*
* If the given claimant is on DUP's list, remove it. It is not
* an error for the claimant to not be on the list.
*/
static int
decrement_claimant(fragment_t *dup, fsck_ino_t ino, daddr32_t lfn)
{
avl_index_t where;
claimant_t *claimant;
claimant_t key;
int busy = 0;
key.cl_inode = ino;
key.cl_lfn = lfn;
claimant = avl_find(&dup->fr_claimants, &key, &where);
if (claimant != NULL) {
avl_remove(&dup->fr_claimants, claimant);
if (avl_numnodes(&dup->fr_claimants) == 0) {
avl_destroy(&dup->fr_claimants);
avl_remove(&dup_frags, (void *)dup);
free((void *)dup);
} else {
busy = 1;
}
}
return (busy);
}
static claimant_t *
alloc_claimant(fsck_ino_t inode, daddr32_t lfn)
{
claimant_t *new = (claimant_t *)malloc(sizeof (claimant_t));
if (new == NULL)
errexit("Out of memory in alloc_claimant()\n");
new->cl_inode = inode;
new->cl_lfn = lfn;
return (new);
}
static fragment_t *
alloc_dup(daddr32_t pfn)
{
fragment_t *new = (fragment_t *)malloc(sizeof (fragment_t));
if (new == NULL)
errexit("Out of memory in alloc_dup()\n");
new->fr_pfn = pfn;
avl_create(&new->fr_claimants, claimant_cmp, sizeof (fragment_t),
OFFSETOF(claimant_t, cl_avl));
return (new);
}
/*
* Compare two fragment_t instances for avl_find(). It requires a
* return value of -1/0/1, so we can't just hand back left - right.
*/
static int
fragment_cmp(const void *vlp, const void *vrp)
{
const fragment_t *lp = (const fragment_t *)vlp;
const fragment_t *rp = (const fragment_t *)vrp;
int cmp = lp->fr_pfn - rp->fr_pfn;
if (cmp < 0)
cmp = -1;
else if (cmp > 0)
cmp = 1;
return (cmp);
}
/*
* Compare two claimant_t instances for avl_find(). It requires a
* return value of -1/0/1, so we can't just hand back left - right.
*/
static int
claimant_cmp(const void *vlp, const void *vrp)
{
const claimant_t *lp = (const claimant_t *)vlp;
const claimant_t *rp = (const claimant_t *)vrp;
int cmp;
cmp = lp->cl_inode - rp->cl_inode;
if (cmp == 0) {
/*
* lfn < 0 is a wildcard lfn match.
*/
if ((lp->cl_lfn >= 0) && (rp->cl_lfn >= 0))
cmp = lp->cl_lfn - rp->cl_lfn;
}
if (cmp < 0)
cmp = -1;
else if (cmp > 0)
cmp = 1;
return (cmp);
}
static int
by_ino_cmp(const void *vlp, const void *vrp)
{
const inode_dup_t *lp = (const inode_dup_t *)vlp;
const inode_dup_t *rp = (const inode_dup_t *)vrp;
int cmp;
cmp = lp->id_ino - rp->id_ino;
if (cmp < 0)
cmp = -1;
else if (cmp > 0)
cmp = 1;
return (cmp);
}
static int
by_lfn_cmp(const void *vlp, const void *vrp)
{
const reference_t *lp = (const reference_t *)vlp;
const reference_t *rp = (const reference_t *)vrp;
int cmp;
cmp = lp->ref_lfn - rp->ref_lfn;
if (cmp < 0)
cmp = -1;
else if (cmp > 0)
cmp = 1;
return (cmp);
}
static inode_dup_t *
new_inode_dup(fsck_ino_t inode)
{
inode_dup_t *new;
new = (inode_dup_t *)malloc(sizeof (inode_dup_t));
if (new == NULL)
errexit("Out of memory in new_inode_dup\n");
new->id_ino = inode;
avl_create(&new->id_fragments, by_lfn_cmp, sizeof (reference_t),
OFFSETOF(reference_t, ref_avl));
return (new);
}