/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011 Gary Mills
*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
*/
/*
* This file contains functions to implement automatic configuration
* of scsi disks.
*/
#include "global.h"
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <ctype.h>
#include "misc.h"
#include "param.h"
#include "ctlr_scsi.h"
#include "auto_sense.h"
#include "partition.h"
#include "label.h"
#include "startup.h"
#include "analyze.h"
#include "io.h"
#include "hardware_structs.h"
#include "menu_fdisk.h"
#define DISK_NAME_MAX 256
extern int nctypes;
extern struct ctlr_type ctlr_types[];
/*
* Marker for free hog partition
*/
#define HOG (-1)
/*
* Default partition tables
*
* Disk capacity root swap usr
* ------------- ---- ---- ---
* 0mb to 64mb 0 0 remainder
* 64mb to 180mb 16mb 16mb remainder
* 180mb to 280mb 16mb 32mb remainder
* 280mb to 380mb 24mb 32mb remainder
* 380mb to 600mb 32mb 32mb remainder
* 600mb to 1gb 32mb 64mb remainder
* 1gb to 2gb 64mb 128mb remainder
* 2gb on up 128mb 128mb remainder
*/
struct part_table {
int partitions[NDKMAP];
};
static struct part_table part_table_64mb = {
{ 0, 0, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_180mb = {
{ 16, 16, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_280mb = {
{ 16, 32, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_380mb = {
{ 24, 32, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_600mb = {
{ 32, 32, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_1gb = {
{ 32, 64, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_2gb = {
{ 64, 128, 0, 0, 0, 0, HOG, 0}
};
static struct part_table part_table_infinity = {
{ 128, 128, 0, 0, 0, 0, HOG, 0}
};
static struct default_partitions {
diskaddr_t min_capacity;
diskaddr_t max_capacity;
struct part_table *part_table;
} default_partitions[] = {
{ 0, 64, &part_table_64mb }, /* 0 to 64 mb */
{ 64, 180, &part_table_180mb }, /* 64 to 180 mb */
{ 180, 280, &part_table_280mb }, /* 180 to 280 mb */
{ 280, 380, &part_table_380mb }, /* 280 to 380 mb */
{ 380, 600, &part_table_600mb }, /* 380 to 600 mb */
{ 600, 1024, &part_table_1gb }, /* 600 to 1 gb */
{ 1024, 2048, &part_table_2gb }, /* 1 to 2 gb */
{ 2048, INFINITY, &part_table_infinity }, /* 2 gb on up */
};
#define DEFAULT_PARTITION_TABLE_SIZE \
(sizeof (default_partitions) / sizeof (struct default_partitions))
/*
* msgs for check()
*/
#define FORMAT_MSG "Auto configuration via format.dat"
#define GENERIC_MSG "Auto configuration via generic SCSI-2"
/*
* Disks on symbios(Hardwire raid controller) return a fixed number
* of heads(64)/cylinders(64) and adjust the cylinders depending
* capacity of the configured lun.
* In such a case we get number of physical cylinders < 3 which
* is the minimum required by solaris(2 reserved + 1 data cylinders).
* Hence try to adjust the cylinders by reducing the "nsect/nhead".
*
*/
/*
* assuming a minimum of 32 block cylinders.
*/
#define MINIMUM_NO_HEADS 2
#define MINIMUM_NO_SECTORS 16
#define MINIMUM_NO_CYLINDERS 128
#if defined(_SUNOS_VTOC_8)
/* These are 16-bit fields */
#define MAXIMUM_NO_HEADS 65535
#define MAXIMUM_NO_SECTORS 65535
#define MAXIMUM_NO_CYLINDERS 65535
#endif /* defined(_SUNOS_VTOC_8) */
/*
* minimum number of cylinders required by Solaris.
*/
#define SUN_MIN_CYL 3
/*
* ANSI prototypes for local static functions
*/
static struct disk_type *generic_disk_sense(
int fd,
int can_prompt,
struct dk_label *label,
struct scsi_inquiry *inquiry,
struct scsi_capacity_16 *capacity,
char *disk_name);
static int use_existing_disk_type(
int fd,
int can_prompt,
struct dk_label *label,
struct scsi_inquiry *inquiry,
struct disk_type *disk_type,
struct scsi_capacity_16 *capacity);
int build_default_partition(struct dk_label *label,
int ctrl_type);
static struct disk_type *find_scsi_disk_type(
char *disk_name,
struct dk_label *label);
static struct disk_type *find_scsi_disk_by_name(
char *disk_name);
static struct ctlr_type *find_scsi_ctlr_type(void);
static struct ctlr_info *find_scsi_ctlr_info(
struct dk_cinfo *dkinfo);
static struct disk_type *new_scsi_disk_type(
int fd,
char *disk_name,
struct dk_label *label);
static struct disk_info *find_scsi_disk_info(
struct dk_cinfo *dkinfo);
static struct disk_type *new_direct_disk_type(int fd, char *disk_name,
struct dk_label *label);
static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc);
static int auto_label_init(struct dk_label *label);
static struct ctlr_type *find_ctlr_type(ushort_t);
static struct ctlr_info *find_ctlr_info(struct dk_cinfo *, ushort_t);
static struct disk_info *find_disk_info(struct dk_cinfo *, ushort_t);
static char *get_sun_disk_name(
char *disk_name,
struct scsi_inquiry *inquiry);
static char *strcopy(
char *dst,
char *src,
int n);
static int adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl,
uint_t *nsect, uint_t *nhead);
static void compute_chs_values(diskaddr_t total_capacity,
diskaddr_t usable_capacity, uint_t *pcylp,
uint_t *nheadp, uint_t *nsectp);
#if defined(_SUNOS_VTOC_8)
static diskaddr_t square_box(
diskaddr_t capacity,
uint_t *dim1, uint_t lim1,
uint_t *dim2, uint_t lim2,
uint_t *dim3, uint_t lim3);
#endif /* defined(_SUNOS_VTOC_8) */
/*
* We need to get information necessary to construct a *new* efi
* label type
*/
struct disk_type *
auto_efi_sense(int fd, struct efi_info *label)
{
struct dk_gpt *vtoc;
int i;
struct disk_type *disk, *dp;
struct disk_info *disk_info;
struct ctlr_info *ctlr;
struct dk_cinfo dkinfo;
struct partition_info *part;
if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
if (option_msg && diag_msg) {
err_print("DKIOCINFO failed\n");
}
return (NULL);
}
if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT ||
cur_ctype->ctype_ctype == DKC_VBD ||
cur_ctype->ctype_ctype == DKC_BLKDEV)) {
ctlr = find_ctlr_info(&dkinfo, cur_ctype->ctype_ctype);
disk_info = find_disk_info(&dkinfo, cur_ctype->ctype_ctype);
} else {
ctlr = find_scsi_ctlr_info(&dkinfo);
disk_info = find_scsi_disk_info(&dkinfo);
}
/*
* get vendor, product, revision and capacity info.
*/
if (get_disk_info(fd, label, disk_info) == -1) {
return ((struct disk_type *)NULL);
}
/*
* Now build the default partition table
*/
if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) {
err_print("efi_alloc_and_init failed. \n");
return ((struct disk_type *)NULL);
}
label->e_parts = vtoc;
/*
* Create a whole hog EFI partition table:
* S0 takes the whole disk except the primary EFI label,
* backup EFI label, and the reserved partition.
*/
vtoc->efi_parts[0].p_tag = V_USR;
vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba
- EFI_MIN_RESV_SIZE + 1;
/*
* S1-S6 are unassigned slices.
*/
for (i = 1; i < vtoc->efi_nparts - 2; i ++) {
vtoc->efi_parts[i].p_tag = V_UNASSIGNED;
vtoc->efi_parts[i].p_start = 0;
vtoc->efi_parts[i].p_size = 0;
}
/*
* The reserved slice
*/
vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED;
vtoc->efi_parts[vtoc->efi_nparts - 1].p_start =
vtoc->efi_last_u_lba - EFI_MIN_RESV_SIZE + 1;
vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = EFI_MIN_RESV_SIZE;
/*
* Now stick all of it into the disk_type struct
*/
disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
assert(disk_info->disk_ctlr == ctlr);
dp = ctlr->ctlr_ctype->ctype_dlist;
if (dp == NULL) {
ctlr->ctlr_ctype->ctype_dlist = dp;
} else {
while (dp->dtype_next != NULL) {
dp = dp->dtype_next;
}
dp->dtype_next = disk;
}
disk->dtype_next = NULL;
disk->vendor = strdup(label->vendor);
disk->product = strdup(label->product);
disk->revision = strdup(label->revision);
if (disk->vendor == NULL ||
disk->product == NULL ||
disk->revision == NULL) {
free(disk->vendor);
free(disk->product);
free(disk->revision);
free(disk);
return (NULL);
}
disk->capacity = label->capacity;
part = (struct partition_info *)
zalloc(sizeof (struct partition_info));
disk->dtype_plist = part;
part->pinfo_name = alloc_string("default");
part->pinfo_next = NULL;
part->etoc = vtoc;
bzero(disk_info->v_volume, LEN_DKL_VVOL);
disk_info->disk_parts = part;
return (disk);
}
static int
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
{
void *data = dk_ioc->dki_data;
int error;
dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
error = ioctl(fd, cmd, (void *)dk_ioc);
dk_ioc->dki_data = data;
return (error);
}
static struct ctlr_type *
find_ctlr_type(ushort_t type)
{
struct mctlr_list *mlp;
assert(type == DKC_DIRECT ||
type == DKC_VBD ||
type == DKC_BLKDEV);
mlp = controlp;
while (mlp != NULL) {
if (mlp->ctlr_type->ctype_ctype == type) {
return (mlp->ctlr_type);
}
mlp = mlp->next;
}
impossible("no DIRECT/VBD/BLKDEV controller type");
return ((struct ctlr_type *)NULL);
}
static struct ctlr_info *
find_ctlr_info(struct dk_cinfo *dkinfo, ushort_t type)
{
struct ctlr_info *ctlr;
assert(type == DKC_DIRECT ||
type == DKC_VBD ||
type == DKC_BLKDEV);
for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
if (ctlr->ctlr_addr == dkinfo->dki_addr &&
ctlr->ctlr_space == dkinfo->dki_space &&
ctlr->ctlr_ctype->ctype_ctype == dkinfo->dki_ctype) {
return (ctlr);
}
}
impossible("no DIRECT/VBD/BLKDEV controller info");
/*NOTREACHED*/
return ((struct ctlr_info *)NULL);
}
static struct disk_info *
find_disk_info(struct dk_cinfo *dkinfo, ushort_t type)
{
struct disk_info *disk;
struct dk_cinfo *dp;
assert(type == DKC_DIRECT ||
type == DKC_VBD ||
type == DKC_BLKDEV);
for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
dp = &disk->disk_dkinfo;
if (dp->dki_ctype == dkinfo->dki_ctype &&
dp->dki_cnum == dkinfo->dki_cnum &&
dp->dki_unit == dkinfo->dki_unit &&
strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
return (disk);
}
}
impossible("No DIRECT/VBD/BLKDEV disk info instance\n");
/*NOTREACHED*/
return ((struct disk_info *)NULL);
}
/*
* To convert EFI to SMI labels, we need to get label geometry.
* Unfortunately at this time there is no good way to do so.
* DKIOCGGEOM will fail if disk is EFI labeled. So we hack around
* it and clear EFI label, do a DKIOCGGEOM and put the EFI label
* back on disk.
* This routine gets the label geometry and initializes the label
* It uses cur_file as opened device.
* returns 0 if succeeds or -1 if failed.
*/
static int
auto_label_init(struct dk_label *label)
{
dk_efi_t dk_ioc;
dk_efi_t dk_ioc_back;
efi_gpt_t *data = NULL;
efi_gpt_t *databack = NULL;
struct dk_geom disk_geom;
struct dk_minfo disk_info;
efi_gpt_t *backsigp;
int fd = cur_file;
int rval = -1;
int efisize = EFI_LABEL_SIZE * 2;
int success = 0;
uint64_t sig;
uint64_t backsig;
if ((data = calloc(efisize, 1)) == NULL) {
err_print("auto_label_init: calloc failed\n");
goto auto_label_init_out;
}
dk_ioc.dki_data = data;
dk_ioc.dki_lba = 1;
dk_ioc.dki_length = efisize;
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) {
err_print("auto_label_init: GETEFI failed\n");
goto auto_label_init_out;
}
if ((databack = calloc(efisize, 1)) == NULL) {
err_print("auto_label_init calloc2 failed");
goto auto_label_init_out;
}
/* get the LBA size and capacity */
if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
err_print("auto_label_init: dkiocgmediainfo failed\n");
goto auto_label_init_out;
}
if (disk_info.dki_lbsize == 0) {
if (option_msg && diag_msg) {
err_print("auto_lbal_init: assuming 512 byte"
"block size");
}
disk_info.dki_lbsize = DEV_BSIZE;
}
dk_ioc_back.dki_data = databack;
/*
* back up efi label goes to capacity - 1, we are reading an extra block
* before the back up label.
*/
dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1;
dk_ioc_back.dki_length = efisize;
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) {
err_print("auto_label_init: GETEFI backup failed\n");
goto auto_label_init_out;
}
sig = dk_ioc.dki_data->efi_gpt_Signature;
dk_ioc.dki_data->efi_gpt_Signature = 0x0;
enter_critical();
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
err_print("auto_label_init: SETEFI failed\n");
exit_critical();
goto auto_label_init_out;
}
backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + cur_blksz);
backsig = backsigp->efi_gpt_Signature;
backsigp->efi_gpt_Signature = 0;
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) {
err_print("auto_label_init: SETEFI backup failed\n");
}
if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0)
err_print("auto_label_init: GGEOM failed\n");
else
success = 1;
dk_ioc.dki_data->efi_gpt_Signature = sig;
backsigp->efi_gpt_Signature = backsig;
if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) {
err_print("auto_label_init: SETEFI revert backup failed\n");
success = 0;
}
if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) {
err_print("auto_label_init: SETEFI revert failed\n");
success = 0;
}
exit_critical();
if (success == 0)
goto auto_label_init_out;
ncyl = disk_geom.dkg_ncyl;
acyl = disk_geom.dkg_acyl;
nhead = disk_geom.dkg_nhead;
nsect = disk_geom.dkg_nsect;
pcyl = ncyl + acyl;
label->dkl_pcyl = pcyl;
label->dkl_ncyl = ncyl;
label->dkl_acyl = acyl;
label->dkl_nhead = nhead;
label->dkl_nsect = nsect;
label->dkl_apc = 0;
label->dkl_intrlv = 1;
label->dkl_rpm = disk_geom.dkg_rpm;
label->dkl_magic = DKL_MAGIC;
(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
"%s cyl %u alt %u hd %u sec %u",
"DEFAULT", ncyl, acyl, nhead, nsect);
rval = 0;
#if defined(_FIRMWARE_NEEDS_FDISK)
(void) auto_solaris_part(label);
ncyl = label->dkl_ncyl;
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
if (!build_default_partition(label, DKC_DIRECT)) {
rval = -1;
}
(void) checksum(label, CK_MAKESUM);
auto_label_init_out:
if (data)
free(data);
if (databack)
free(databack);
return (rval);
}
static struct disk_type *
new_direct_disk_type(
int fd,
char *disk_name,
struct dk_label *label)
{
struct disk_type *dp;
struct disk_type *disk;
struct ctlr_info *ctlr;
struct dk_cinfo dkinfo;
struct partition_info *part = NULL;
struct partition_info *pt;
struct disk_info *disk_info;
int i;
/*
* Get the disk controller info for this disk
*/
if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
if (option_msg && diag_msg) {
err_print("DKIOCINFO failed\n");
}
return (NULL);
}
/*
* Find the ctlr_info for this disk.
*/
ctlr = find_ctlr_info(&dkinfo, dkinfo.dki_ctype);
/*
* Allocate a new disk type for the direct controller.
*/
disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
/*
* Find the disk_info instance for this disk.
*/
disk_info = find_disk_info(&dkinfo, dkinfo.dki_ctype);
/*
* The controller and the disk should match.
*/
assert(disk_info->disk_ctlr == ctlr);
/*
* Link the disk into the list of disks
*/
dp = ctlr->ctlr_ctype->ctype_dlist;
if (dp == NULL) {
ctlr->ctlr_ctype->ctype_dlist = dp;
} else {
while (dp->dtype_next != NULL) {
dp = dp->dtype_next;
}
dp->dtype_next = disk;
}
disk->dtype_next = NULL;
/*
* Allocate and initialize the disk name.
*/
disk->dtype_asciilabel = alloc_string(disk_name);
/*
* Initialize disk geometry info
*/
disk->dtype_pcyl = label->dkl_pcyl;
disk->dtype_ncyl = label->dkl_ncyl;
disk->dtype_acyl = label->dkl_acyl;
disk->dtype_nhead = label->dkl_nhead;
disk->dtype_nsect = label->dkl_nsect;
disk->dtype_rpm = label->dkl_rpm;
part = (struct partition_info *)
zalloc(sizeof (struct partition_info));
pt = disk->dtype_plist;
if (pt == NULL) {
disk->dtype_plist = part;
} else {
while (pt->pinfo_next != NULL) {
pt = pt->pinfo_next;
}
pt->pinfo_next = part;
}
part->pinfo_next = NULL;
/*
* Set up the partition name
*/
part->pinfo_name = alloc_string("default");
/*
* Fill in the partition info from the label
*/
for (i = 0; i < NDKMAP; i++) {
#if defined(_SUNOS_VTOC_8)
part->pinfo_map[i] = label->dkl_map[i];
#elif defined(_SUNOS_VTOC_16)
part->pinfo_map[i].dkl_cylno =
label->dkl_vtoc.v_part[i].p_start /
((blkaddr_t)(disk->dtype_nhead *
disk->dtype_nsect - apc));
part->pinfo_map[i].dkl_nblk =
label->dkl_vtoc.v_part[i].p_size;
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
}
/*
* Use the VTOC if valid, or install a default
*/
if (label->dkl_vtoc.v_version == V_VERSION) {
(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
LEN_DKL_VVOL);
part->vtoc = label->dkl_vtoc;
} else {
(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
set_vtoc_defaults(part);
}
/*
* Link the disk to the partition map
*/
disk_info->disk_parts = part;
return (disk);
}
/*
* Get a disk type that has label info. This is used to convert
* EFI label to SMI label
*/
struct disk_type *
auto_direct_get_geom_label(int fd, struct dk_label *label)
{
struct disk_type *disk_type;
if (auto_label_init(label) != 0) {
err_print("auto_direct_get_geom_label: failed to get label"
"geometry");
return (NULL);
} else {
disk_type = new_direct_disk_type(fd, "DEFAULT", label);
return (disk_type);
}
}
/*
* Auto-sense a scsi disk configuration, ie get the information
* necessary to construct a label. We have two different
* ways to auto-sense a scsi disk:
* - format.dat override, via inquiry name
* - generic scsi, via standard mode sense and inquiry
* Depending on how and when we are called, and/or
* change geometry and reformat.
*/
struct disk_type *
auto_sense(
int fd,
int can_prompt,
struct dk_label *label)
{
struct scsi_inquiry inquiry;
struct scsi_capacity_16 capacity;
struct disk_type *disk_type;
char disk_name[DISK_NAME_MAX];
int force_format_dat = 0;
int force_generic = 0;
u_ioparam_t ioparam;
int deflt;
char *buf;
/*
* First, if expert mode, find out if the user
* wants to override any of the standard methods.
*/
if (can_prompt && expert_mode) {
deflt = 1;
ioparam.io_charlist = confirm_list;
if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam,
&deflt, DATA_INPUT) == 0) {
force_format_dat = 1;
} else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam,
&deflt, DATA_INPUT) == 0) {
force_generic = 1;
}
}
/*
* Get the Inquiry data. If this fails, there's
* no hope for this disk, so give up.
*/
if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) {
return ((struct disk_type *)NULL);
}
if (option_msg && diag_msg) {
err_print("Product id: ");
print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid));
err_print("\n");
}
/*
* Get the Read Capacity
*/
if (uscsi_read_capacity(fd, &capacity)) {
return ((struct disk_type *)NULL);
}
/*
* If the reported capacity is set to zero, then the disk
* is not usable. If the reported capacity is set to all
* 0xf's, then this disk is too large. These could only
* happen with a device that supports LBAs larger than 64
* bits which are not defined by any current T10 standards
* or by error responding from target.
*/
if ((capacity.sc_capacity == 0) ||
(capacity.sc_capacity == UINT_MAX64)) {
if (option_msg && diag_msg) {
err_print("Invalid capacity\n");
}
return ((struct disk_type *)NULL);
}
if (option_msg && diag_msg) {
err_print("blocks: %llu (0x%llx)\n",
capacity.sc_capacity, capacity.sc_capacity);
err_print("blksize: %u\n", capacity.sc_lbasize);
}
/*
* Extract the disk name for the format.dat override
*/
(void) get_sun_disk_name(disk_name, &inquiry);
if (option_msg && diag_msg) {
err_print("disk name: `%s`\n", disk_name);
}
buf = zalloc(cur_blksz);
if (scsi_rdwr(DIR_READ, fd, (diskaddr_t)0, 1, (caddr_t)buf,
F_SILENT, NULL)) {
free(buf);
return ((struct disk_type *)NULL);
}
free(buf);
/*
* Figure out which method we use for auto sense.
* If a particular method fails, we fall back to
* the next possibility.
*/
if (force_generic) {
return (generic_disk_sense(fd, can_prompt, label,
&inquiry, &capacity, disk_name));
}
/*
* Try for an existing format.dat first
*/
if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) {
if (use_existing_disk_type(fd, can_prompt, label,
&inquiry, disk_type, &capacity)) {
return (disk_type);
}
if (force_format_dat) {
return (NULL);
}
}
/*
* Otherwise, try using generic SCSI-2 sense and inquiry.
*/
return (generic_disk_sense(fd, can_prompt, label,
&inquiry, &capacity, disk_name));
}
/*ARGSUSED*/
static struct disk_type *
generic_disk_sense(
int fd,
int can_prompt,
struct dk_label *label,
struct scsi_inquiry *inquiry,
struct scsi_capacity_16 *capacity,
char *disk_name)
{
struct disk_type *disk;
int setdefault = 0;
uint_t pcyl = 0;
uint_t ncyl = 0;
uint_t acyl = 0;
uint_t nhead = 0;
uint_t nsect = 0;
int rpm = 0;
diskaddr_t nblocks = 0;
diskaddr_t tblocks = 0;
union {
struct mode_format page3;
uchar_t buf3[MAX_MODE_SENSE_SIZE];
} u_page3;
union {
struct mode_geometry page4;
uchar_t buf4[MAX_MODE_SENSE_SIZE];
} u_page4;
struct mode_format *page3 = &u_page3.page3;
struct mode_geometry *page4 = &u_page4.page4;
struct scsi_ms_header header;
/*
* If the name of this disk appears to be "SUN", use it,
* otherwise construct a name out of the generic
* Inquiry info. If it turns out that we already
* have a SUN disk type of this name that differs
* in geometry, we will revert to the generic name
* anyway.
*/
if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) {
(void) get_generic_disk_name(disk_name, inquiry);
}
/*
* Get the number of blocks from Read Capacity data. Note that
* the logical block address range from 0 to capacity->sc_capacity.
* Limit the size to 2 TB (UINT32_MAX) to use with SMI labels.
*/
tblocks = (capacity->sc_capacity + 1);
if (tblocks > UINT32_MAX)
nblocks = UINT32_MAX;
else
nblocks = tblocks;
/*
* Get current Page 3 - Format Parameters page
*/
if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT,
(caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) {
setdefault = 1;
}
/*
* Get current Page 4 - Drive Geometry page
*/
if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT,
(caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) {
setdefault = 1;
}
if (setdefault != 1) {
/* The inquiry of mode page 3 & page 4 are successful */
/*
* Correct for byte order if necessary
*/
page4->rpm = BE_16(page4->rpm);
page4->step_rate = BE_16(page4->step_rate);
page3->tracks_per_zone = BE_16(page3->tracks_per_zone);
page3->alt_sect_zone = BE_16(page3->alt_sect_zone);
page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone);
page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol);
page3->sect_track = BE_16(page3->sect_track);
page3->data_bytes_sect = BE_16(page3->data_bytes_sect);
page3->interleave = BE_16(page3->interleave);
page3->track_skew = BE_16(page3->track_skew);
page3->cylinder_skew = BE_16(page3->cylinder_skew);
/*
* Construct a new label out of the sense data,
* Inquiry and Capacity.
*
* If the disk capacity is > 1TB then simply compute
* the CHS values based on the total disk capacity and
* not use the values from mode-sense data.
*/
if (tblocks > INT32_MAX) {
compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
&nsect);
} else {
pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) +
page4->cyl_lb;
nhead = page4->heads;
nsect = page3->sect_track;
}
rpm = page4->rpm;
/*
* If the number of physical cylinders reported is less
* the SUN_MIN_CYL(3) then try to adjust the geometry so that
* we have atleast SUN_MIN_CYL cylinders.
*/
if (pcyl < SUN_MIN_CYL) {
if (nhead == 0 || nsect == 0) {
setdefault = 1;
} else if (adjust_disk_geometry(
(diskaddr_t)(capacity->sc_capacity + 1),
&pcyl, &nhead, &nsect)) {
setdefault = 1;
}
}
}
/*
* Mode sense page 3 and page 4 are obsolete in SCSI-3. For
* newly developed large sector size disk, we will not rely on
* those two pages but compute geometry directly.
*/
if ((setdefault == 1) || (capacity->sc_lbasize != DEV_BSIZE)) {
/*
* If the number of cylinders or the number of heads reported
* is zero, we think the inquiry of page 3 and page 4 failed.
* We will set the geometry infomation by ourselves.
*/
compute_chs_values(tblocks, nblocks, &pcyl, &nhead, &nsect);
}
/*
* The sd driver reserves 2 cylinders the backup disk label and
* the deviceid. Set the number of data cylinders to pcyl-acyl.
*/
acyl = DK_ACYL;
ncyl = pcyl - acyl;
if (option_msg && diag_msg) {
err_print("Geometry:\n");
err_print(" pcyl: %u\n", pcyl);
err_print(" ncyl: %u\n", ncyl);
err_print(" heads: %u\n", nhead);
err_print(" nsects: %u\n", nsect);
err_print(" acyl: %u\n", acyl);
#if defined(_SUNOS_VTOC_16)
err_print(" bcyl: %u\n", bcyl);
#endif /* defined(_SUNOS_VTOC_16) */
err_print(" rpm: %d\n", rpm);
err_print(" nblocks: %llu\n", nblocks);
}
/*
* Some drives do not support page4 or report 0 for page4->rpm,
* adjust it to AVG_RPM, 3600.
*/
if (rpm < MIN_RPM || rpm > MAX_RPM) {
if (option_msg && diag_msg)
err_print("The current rpm value %d is invalid,"
" adjusting it to %d\n", rpm, AVG_RPM);
rpm = AVG_RPM;
}
/*
* Some drives report 0 for nsect (page 3, byte 10 and 11) if they
* have variable number of sectors per track. So adjust nsect.
* Also the value is defined as vendor specific, hence check if
* it is in a tolerable range. The values (32 and 4 below) are
* chosen so that this change below does not generate a different
* geometry for currently supported sun disks.
*/
if ((nsect == 0) ||
((diskaddr_t)pcyl * nhead * nsect) < (nblocks - nblocks/32) ||
((diskaddr_t)pcyl * nhead * nsect) > (nblocks + nblocks/4)) {
if (nblocks > (pcyl * nhead)) {
err_print("Mode sense page(3) reports nsect value"
" as %d, adjusting it to %llu\n",
nsect, nblocks / (pcyl * nhead));
nsect = nblocks / (pcyl * nhead);
} else {
/* convert capacity to nsect * nhead * pcyl */
err_print("\nWARNING: Disk geometry is based on "
"capacity data.\n\n");
compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
&nsect);
ncyl = pcyl - acyl;
if (option_msg && diag_msg) {
err_print("Geometry:(after adjustment)\n");
err_print(" pcyl: %u\n", pcyl);
err_print(" ncyl: %u\n", ncyl);
err_print(" heads: %u\n", nhead);
err_print(" nsects: %u\n", nsect);
err_print(" acyl: %u\n", acyl);
#if defined(_SUNOS_VTOC_16)
err_print(" bcyl: %u\n", bcyl);
#endif
err_print(" rpm: %d\n", rpm);
err_print(" nblocks: %llu\n", nblocks);
}
}
}
/*
* Some drives report their physical geometry such that
* it is greater than the actual capacity. Adjust the
* geometry to allow for this, so we don't run off
* the end of the disk.
*/
if (((diskaddr_t)pcyl * nhead * nsect) > nblocks) {
uint_t p = pcyl;
if (option_msg && diag_msg) {
err_print("Computed capacity (%llu) exceeds actual "
"disk capacity (%llu)\n",
(diskaddr_t)pcyl * nhead * nsect, nblocks);
}
do {
pcyl--;
} while (((diskaddr_t)pcyl * nhead * nsect) > nblocks);
if (can_prompt && expert_mode && !option_f) {
/*
* Try to adjust nsect instead of pcyl to see if we
* can optimize. For compatability reasons do this
* only in expert mode (refer to bug 1144812).
*/
uint_t n = nsect;
do {
n--;
} while (((diskaddr_t)p * nhead * n) > nblocks);
if (((diskaddr_t)p * nhead * n) >
((diskaddr_t)pcyl * nhead * nsect)) {
u_ioparam_t ioparam;
int deflt = 1;
/*
* Ask the user for a choice here.
*/
ioparam.io_bounds.lower = 1;
ioparam.io_bounds.upper = 2;
err_print("1. Capacity = %llu, with pcyl = %u "
"nhead = %u nsect = %u\n",
((diskaddr_t)pcyl * nhead * nsect),
pcyl, nhead, nsect);
err_print("2. Capacity = %llu, with pcyl = %u "
"nhead = %u nsect = %u\n",
((diskaddr_t)p * nhead * n),
p, nhead, n);
if (input(FIO_INT, "Select one of the above "
"choices ", ':', &ioparam,
&deflt, DATA_INPUT) == 2) {
pcyl = p;
nsect = n;
}
}
}
}
#if defined(_SUNOS_VTOC_8)
/*
* Finally, we need to make sure we don't overflow any of the
* fields in our disk label. To do this we need to `square
* the box' so to speak. We will lose bits here.
*/
if ((pcyl > MAXIMUM_NO_CYLINDERS &&
((nsect > MAXIMUM_NO_SECTORS) ||
(nhead > MAXIMUM_NO_HEADS))) ||
((nsect > MAXIMUM_NO_SECTORS) &&
(nhead > MAXIMUM_NO_HEADS))) {
err_print("This disk is too big to label. "
" You will lose some blocks.\n");
}
if ((pcyl > MAXIMUM_NO_CYLINDERS) ||
(nsect > MAXIMUM_NO_SECTORS) ||
(nhead > MAXIMUM_NO_HEADS)) {
u_ioparam_t ioparam;
int order;
char msg[256];
order = ((pcyl > nhead)<<2) |
((pcyl > nsect)<<1) |
(nhead > nsect);
switch (order) {
case 0x7: /* pcyl > nhead > nsect */
nblocks =
square_box(nblocks,
&pcyl, MAXIMUM_NO_CYLINDERS,
&nhead, MAXIMUM_NO_HEADS,
&nsect, MAXIMUM_NO_SECTORS);
break;
case 0x6: /* pcyl > nsect > nhead */
nblocks =
square_box(nblocks,
&pcyl, MAXIMUM_NO_CYLINDERS,
&nsect, MAXIMUM_NO_SECTORS,
&nhead, MAXIMUM_NO_HEADS);
break;
case 0x4: /* nsect > pcyl > nhead */
nblocks =
square_box(nblocks,
&nsect, MAXIMUM_NO_SECTORS,
&pcyl, MAXIMUM_NO_CYLINDERS,
&nhead, MAXIMUM_NO_HEADS);
break;
case 0x0: /* nsect > nhead > pcyl */
nblocks =
square_box(nblocks,
&nsect, MAXIMUM_NO_SECTORS,
&nhead, MAXIMUM_NO_HEADS,
&pcyl, MAXIMUM_NO_CYLINDERS);
break;
case 0x3: /* nhead > pcyl > nsect */
nblocks =
square_box(nblocks,
&nhead, MAXIMUM_NO_HEADS,
&pcyl, MAXIMUM_NO_CYLINDERS,
&nsect, MAXIMUM_NO_SECTORS);
break;
case 0x1: /* nhead > nsect > pcyl */
nblocks =
square_box(nblocks,
&nhead, MAXIMUM_NO_HEADS,
&nsect, MAXIMUM_NO_SECTORS,
&pcyl, MAXIMUM_NO_CYLINDERS);
break;
default:
/* How did we get here? */
impossible("label overflow adjustment");
/* Do something useful */
nblocks =
square_box(nblocks,
&nhead, MAXIMUM_NO_HEADS,
&nsect, MAXIMUM_NO_SECTORS,
&pcyl, MAXIMUM_NO_CYLINDERS);
break;
}
if (option_msg && diag_msg &&
(capacity->sc_capacity + 1 != nblocks)) {
err_print("After adjusting geometry you lost"
" %llu of %llu blocks.\n",
(capacity->sc_capacity + 1 - nblocks),
capacity->sc_capacity + 1);
}
while (can_prompt && expert_mode && !option_f) {
int deflt = 1;
/*
* Allow user to modify this by hand if desired.
*/
(void) sprintf(msg,
"\nGeometry: %u heads, %u sectors %u cylinders"
" result in %llu out of %llu blocks.\n"
"Do you want to modify the device geometry",
nhead, nsect, pcyl,
nblocks, capacity->sc_capacity + 1);
ioparam.io_charlist = confirm_list;
if (input(FIO_MSTR, msg, '?', &ioparam,
&deflt, DATA_INPUT) != 0)
break;
ioparam.io_bounds.lower = MINIMUM_NO_HEADS;
ioparam.io_bounds.upper = MAXIMUM_NO_HEADS;
nhead = input(FIO_INT, "Number of heads", ':',
&ioparam, (int *)&nhead, DATA_INPUT);
ioparam.io_bounds.lower = MINIMUM_NO_SECTORS;
ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS;
nsect = input(FIO_INT,
"Number of sectors per track",
':', &ioparam, (int *)&nsect, DATA_INPUT);
ioparam.io_bounds.lower = SUN_MIN_CYL;
ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS;
pcyl = input(FIO_INT, "Number of cylinders",
':', &ioparam, (int *)&pcyl, DATA_INPUT);
nblocks = (diskaddr_t)nhead * nsect * pcyl;
if (nblocks > capacity->sc_capacity + 1) {
err_print("Warning: %llu blocks exceeds "
"disk capacity of %llu blocks\n",
nblocks,
capacity->sc_capacity + 1);
}
}
}
#endif /* defined(_SUNOS_VTOC_8) */
ncyl = pcyl - acyl;
if (option_msg && diag_msg) {
err_print("\nGeometry after adjusting for capacity:\n");
err_print(" pcyl: %u\n", pcyl);
err_print(" ncyl: %u\n", ncyl);
err_print(" heads: %u\n", nhead);
err_print(" nsects: %u\n", nsect);
err_print(" acyl: %u\n", acyl);
err_print(" rpm: %d\n", rpm);
}
(void) memset((char *)label, 0, sizeof (struct dk_label));
label->dkl_magic = DKL_MAGIC;
(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
"%s cyl %u alt %u hd %u sec %u",
disk_name, ncyl, acyl, nhead, nsect);
label->dkl_pcyl = pcyl;
label->dkl_ncyl = ncyl;
label->dkl_acyl = acyl;
label->dkl_nhead = nhead;
label->dkl_nsect = nsect;
label->dkl_apc = 0;
label->dkl_intrlv = 1;
label->dkl_rpm = rpm;
#if defined(_FIRMWARE_NEEDS_FDISK)
if (auto_solaris_part(label) == -1)
goto err;
ncyl = label->dkl_ncyl;
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
if (!build_default_partition(label, DKC_SCSI_CCS)) {
goto err;
}
(void) checksum(label, CK_MAKESUM);
/*
* Find an existing disk type defined for this disk.
* For this to work, both the name and geometry must
* match. If there is no such type, but there already
* is a disk defined with that name, but with a different
* geometry, construct a new generic disk name out of
* the inquiry information. Whatever name we're
* finally using, if there's no such disk type defined,
* build a new disk definition.
*/
if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) {
if (find_scsi_disk_by_name(disk_name) != NULL) {
char old_name[DISK_NAME_MAX];
(void) strcpy(old_name, disk_name);
(void) get_generic_disk_name(disk_name,
inquiry);
if (option_msg && diag_msg) {
err_print(
"Changing disk type name from '%s' to '%s'\n", old_name, disk_name);
}
(void) snprintf(label->dkl_asciilabel,
sizeof (label->dkl_asciilabel),
"%s cyl %u alt %u hd %u sec %u",
disk_name, ncyl, acyl, nhead, nsect);
(void) checksum(label, CK_MAKESUM);
disk = find_scsi_disk_type(disk_name, label);
}
if (disk == NULL) {
disk = new_scsi_disk_type(fd, disk_name, label);
if (disk == NULL)
goto err;
}
}
return (disk);
err:
if (option_msg && diag_msg) {
err_print(
"Configuration via generic SCSI-2 information failed\n");
}
return (NULL);
}
/*ARGSUSED*/
static int
use_existing_disk_type(
int fd,
int can_prompt,
struct dk_label *label,
struct scsi_inquiry *inquiry,
struct disk_type *disk_type,
struct scsi_capacity_16 *capacity)
{
int pcyl;
int acyl;
int nhead;
int nsect;
int rpm;
/*
* Construct a new label out of the format.dat
*/
pcyl = disk_type->dtype_pcyl;
acyl = disk_type->dtype_acyl;
ncyl = disk_type->dtype_ncyl;
nhead = disk_type->dtype_nhead;
nsect = disk_type->dtype_nsect;
rpm = disk_type->dtype_rpm;
if (option_msg && diag_msg) {
err_print("Format.dat geometry:\n");
err_print(" pcyl: %u\n", pcyl);
err_print(" heads: %u\n", nhead);
err_print(" nsects: %u\n", nsect);
err_print(" acyl: %u\n", acyl);
err_print(" rpm: %d\n", rpm);
}
(void) memset((char *)label, 0, sizeof (struct dk_label));
label->dkl_magic = DKL_MAGIC;
(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
"%s cyl %u alt %u hd %u sec %u",
disk_type->dtype_asciilabel,
ncyl, acyl, nhead, nsect);
label->dkl_pcyl = pcyl;
label->dkl_ncyl = ncyl;
label->dkl_acyl = acyl;
label->dkl_nhead = nhead;
label->dkl_nsect = nsect;
label->dkl_apc = 0;
label->dkl_intrlv = 1;
label->dkl_rpm = rpm;
if (!build_default_partition(label, DKC_SCSI_CCS)) {
goto err;
}
(void) checksum(label, CK_MAKESUM);
return (1);
err:
if (option_msg && diag_msg) {
err_print(
"Configuration via format.dat geometry failed\n");
}
return (0);
}
int
build_default_partition(
struct dk_label *label,
int ctrl_type)
{
int i;
int ncyls[NDKMAP];
diskaddr_t nblks;
int cyl;
struct dk_vtoc *vtoc;
struct part_table *pt;
struct default_partitions *dpt;
diskaddr_t capacity;
int freecyls;
int blks_per_cyl;
int ncyl;
#ifdef lint
ctrl_type = ctrl_type;
#endif
/*
* Install a default vtoc
*/
vtoc = &label->dkl_vtoc;
vtoc->v_version = V_VERSION;
vtoc->v_nparts = NDKMAP;
vtoc->v_sanity = VTOC_SANE;
for (i = 0; i < NDKMAP; i++) {
vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag;
vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag;
}
/*
* Find a partition that matches this disk. Capacity
* is in integral number of megabytes.
*/
capacity = ((diskaddr_t)(label->dkl_ncyl) * label->dkl_nhead *
label->dkl_nsect) / (diskaddr_t)((1024 * 1024) / cur_blksz);
dpt = default_partitions;
for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) {
if (capacity >= dpt->min_capacity &&
capacity < dpt->max_capacity) {
break;
}
}
if (i == DEFAULT_PARTITION_TABLE_SIZE) {
if (option_msg && diag_msg) {
err_print("No matching default partition (%llu)\n",
capacity);
}
return (0);
}
pt = dpt->part_table;
/*
* Go through default partition table, finding fixed
* sized entries.
*/
freecyls = label->dkl_ncyl;
blks_per_cyl = label->dkl_nhead * label->dkl_nsect;
for (i = 0; i < NDKMAP; i++) {
if (pt->partitions[i] == HOG || pt->partitions[i] == 0) {
ncyls[i] = 0;
} else {
/*
* Calculate number of cylinders necessary
* for specified size, rounding up to
* the next greatest integral number of
* cylinders. Always give what they
* asked or more, never less.
*/
nblks = pt->partitions[i] * ((1024*1024)/cur_blksz);
nblks += (blks_per_cyl - 1);
ncyls[i] = nblks / blks_per_cyl;
freecyls -= ncyls[i];
}
}
if (freecyls < 0) {
if (option_msg && diag_msg) {
for (i = 0; i < NDKMAP; i++) {
if (ncyls[i] == 0)
continue;
err_print("Partition %d: %u cyls\n",
i, ncyls[i]);
}
err_print("Free cylinders exhausted (%d)\n",
freecyls);
}
return (0);
}
#if defined(i386)
/*
* Set the default boot partition to 1 cylinder
*/
ncyls[8] = 1;
freecyls -= 1;
/*
* If current disk type is not a SCSI disk,
* set the default alternates partition to 2 cylinders
*/
if (ctrl_type != DKC_SCSI_CCS) {
ncyls[9] = 2;
freecyls -= 2;
}
#endif /* defined(i386) */
/*
* Set the free hog partition to whatever space remains.
* It's an error to have more than one HOG partition,
* but we don't verify that here.
*/
for (i = 0; i < NDKMAP; i++) {
if (pt->partitions[i] == HOG) {
assert(ncyls[i] == 0);
ncyls[i] = freecyls;
break;
}
}
/*
* Error checking
*/
ncyl = 0;
for (i = 0; i < NDKMAP; i++) {
ncyl += ncyls[i];
}
assert(ncyl == (label->dkl_ncyl));
/*
* Finally, install the partition in the label.
*/
cyl = 0;
#if defined(_SUNOS_VTOC_16)
for (i = NDKMAP/2; i < NDKMAP; i++) {
if (i == 2 || ncyls[i] == 0)
continue;
label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
cyl += ncyls[i];
}
for (i = 0; i < NDKMAP/2; i++) {
#elif defined(_SUNOS_VTOC_8)
for (i = 0; i < NDKMAP; i++) {
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_16) */
if (i == 2 || ncyls[i] == 0) {
#if defined(_SUNOS_VTOC_8)
if (i != 2) {
label->dkl_map[i].dkl_cylno = 0;
label->dkl_map[i].dkl_nblk = 0;
}
#endif
continue;
}
#if defined(_SUNOS_VTOC_8)
label->dkl_map[i].dkl_cylno = cyl;
label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl;
#elif defined(_SUNOS_VTOC_16)
label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
cyl += ncyls[i];
}
/*
* Set the whole disk partition
*/
#if defined(_SUNOS_VTOC_8)
label->dkl_map[2].dkl_cylno = 0;
label->dkl_map[2].dkl_nblk =
label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect;
#elif defined(_SUNOS_VTOC_16)
label->dkl_vtoc.v_part[2].p_start = 0;
label->dkl_vtoc.v_part[2].p_size =
(label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead *
label->dkl_nsect;
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
if (option_msg && diag_msg) {
float scaled;
err_print("\n");
for (i = 0; i < NDKMAP; i++) {
#if defined(_SUNOS_VTOC_8)
if (label->dkl_map[i].dkl_nblk == 0)
#elif defined(_SUNOS_VTOC_16)
if (label->dkl_vtoc.v_part[i].p_size == 0)
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
continue;
err_print("Partition %d: ", i);
#if defined(_SUNOS_VTOC_8)
scaled = bn2mb(label->dkl_map[i].dkl_nblk);
#elif defined(_SUNOS_VTOC_16)
scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size);
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
if (scaled > 1024.0) {
err_print("%6.2fGB ", scaled/1024.0);
} else {
err_print("%6.2fMB ", scaled);
}
#if defined(_SUNOS_VTOC_8)
err_print(" %6d cylinders\n",
label->dkl_map[i].dkl_nblk/blks_per_cyl);
#elif defined(_SUNOS_VTOC_16)
err_print(" %6d cylinders\n",
label->dkl_vtoc.v_part[i].p_size/blks_per_cyl);
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
}
err_print("\n");
}
return (1);
}
/*
* Find an existing scsi disk definition by this name,
* if possible.
*/
static struct disk_type *
find_scsi_disk_type(
char *disk_name,
struct dk_label *label)
{
struct ctlr_type *ctlr;
struct disk_type *dp;
ctlr = find_scsi_ctlr_type();
for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
if (dp->dtype_asciilabel) {
if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) &&
dp->dtype_pcyl == label->dkl_pcyl &&
dp->dtype_ncyl == label->dkl_ncyl &&
dp->dtype_acyl == label->dkl_acyl &&
dp->dtype_nhead == label->dkl_nhead &&
dp->dtype_nsect == label->dkl_nsect) {
return (dp);
}
}
}
return ((struct disk_type *)NULL);
}
/*
* Find an existing scsi disk definition by this name,
* if possible.
*/
static struct disk_type *
find_scsi_disk_by_name(
char *disk_name)
{
struct ctlr_type *ctlr;
struct disk_type *dp;
ctlr = find_scsi_ctlr_type();
for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
if (dp->dtype_asciilabel) {
if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) {
return (dp);
}
}
}
return ((struct disk_type *)NULL);
}
/*
* Return a pointer to the ctlr_type structure for SCSI
* disks. This list is built into the program, so there's
* no chance of not being able to find it, unless someone
* totally mangles the code.
*/
static struct ctlr_type *
find_scsi_ctlr_type()
{
struct mctlr_list *mlp;
mlp = controlp;
while (mlp != NULL) {
if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) {
return (mlp->ctlr_type);
}
mlp = mlp->next;
}
impossible("no SCSI controller type");
return ((struct ctlr_type *)NULL);
}
/*
* Return a pointer to the scsi ctlr_info structure. This
* structure is allocated the first time format sees a
* disk on this controller, so it must be present.
*/
static struct ctlr_info *
find_scsi_ctlr_info(
struct dk_cinfo *dkinfo)
{
struct ctlr_info *ctlr;
if (dkinfo->dki_ctype != DKC_SCSI_CCS) {
return (NULL);
}
for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
if (ctlr->ctlr_addr == dkinfo->dki_addr &&
ctlr->ctlr_space == dkinfo->dki_space &&
ctlr->ctlr_ctype->ctype_ctype == DKC_SCSI_CCS) {
return (ctlr);
}
}
impossible("no SCSI controller info");
return ((struct ctlr_info *)NULL);
}
static struct disk_type *
new_scsi_disk_type(
int fd,
char *disk_name,
struct dk_label *label)
{
struct disk_type *dp;
struct disk_type *disk;
struct ctlr_info *ctlr;
struct dk_cinfo dkinfo;
struct partition_info *part;
struct partition_info *pt;
struct disk_info *disk_info;
int i;
/*
* Get the disk controller info for this disk
*/
if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
if (option_msg && diag_msg) {
err_print("DKIOCINFO failed\n");
}
return (NULL);
}
/*
* Find the ctlr_info for this disk.
*/
ctlr = find_scsi_ctlr_info(&dkinfo);
/*
* Allocate a new disk type for the SCSI controller.
*/
disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
/*
* Find the disk_info instance for this disk.
*/
disk_info = find_scsi_disk_info(&dkinfo);
/*
* The controller and the disk should match.
*/
assert(disk_info->disk_ctlr == ctlr);
/*
* Link the disk into the list of disks
*/
dp = ctlr->ctlr_ctype->ctype_dlist;
if (dp == NULL) {
ctlr->ctlr_ctype->ctype_dlist = disk;
} else {
while (dp->dtype_next != NULL) {
dp = dp->dtype_next;
}
dp->dtype_next = disk;
}
disk->dtype_next = NULL;
/*
* Allocate and initialize the disk name.
*/
disk->dtype_asciilabel = alloc_string(disk_name);
/*
* Initialize disk geometry info
*/
disk->dtype_pcyl = label->dkl_pcyl;
disk->dtype_ncyl = label->dkl_ncyl;
disk->dtype_acyl = label->dkl_acyl;
disk->dtype_nhead = label->dkl_nhead;
disk->dtype_nsect = label->dkl_nsect;
disk->dtype_rpm = label->dkl_rpm;
/*
* Attempt to match the partition map in the label
* with a know partition for this disk type.
*/
for (part = disk->dtype_plist; part; part = part->pinfo_next) {
if (parts_match(label, part)) {
break;
}
}
/*
* If no match was made, we need to create a partition
* map for this disk.
*/
if (part == NULL) {
part = (struct partition_info *)
zalloc(sizeof (struct partition_info));
pt = disk->dtype_plist;
if (pt == NULL) {
disk->dtype_plist = part;
} else {
while (pt->pinfo_next != NULL) {
pt = pt->pinfo_next;
}
pt->pinfo_next = part;
}
part->pinfo_next = NULL;
/*
* Set up the partition name
*/
part->pinfo_name = alloc_string("default");
/*
* Fill in the partition info from the label
*/
for (i = 0; i < NDKMAP; i++) {
#if defined(_SUNOS_VTOC_8)
part->pinfo_map[i] = label->dkl_map[i];
#elif defined(_SUNOS_VTOC_16)
part->pinfo_map[i].dkl_cylno =
label->dkl_vtoc.v_part[i].p_start /
((blkaddr32_t)(disk->dtype_nhead *
disk->dtype_nsect - apc));
part->pinfo_map[i].dkl_nblk =
label->dkl_vtoc.v_part[i].p_size;
#else
#error No VTOC format defined.
#endif /* defined(_SUNOS_VTOC_8) */
}
}
/*
* Use the VTOC if valid, or install a default
*/
if (label->dkl_vtoc.v_version == V_VERSION) {
(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
LEN_DKL_VVOL);
part->vtoc = label->dkl_vtoc;
} else {
(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
set_vtoc_defaults(part);
}
/*
* Link the disk to the partition map
*/
disk_info->disk_parts = part;
return (disk);
}
/*
* Delete a disk type from disk type list.
*/
int
delete_disk_type(struct disk_type *disk_type)
{
struct ctlr_type *ctlr;
struct disk_type *dp, *disk;
if (cur_ctype->ctype_ctype == DKC_DIRECT ||
cur_ctype->ctype_ctype == DKC_VBD ||
cur_ctype->ctype_ctype == DKC_BLKDEV)
ctlr = find_ctlr_type(cur_ctype->ctype_ctype);
else
ctlr = find_scsi_ctlr_type();
if (ctlr == NULL || ctlr->ctype_dlist == NULL) {
return (-1);
}
disk = ctlr->ctype_dlist;
if (disk == disk_type) {
ctlr->ctype_dlist = disk->dtype_next;
if (cur_label == L_TYPE_EFI)
free(disk->dtype_plist->etoc);
free(disk->dtype_plist);
free(disk->vendor);
free(disk->product);
free(disk->revision);
free(disk);
return (0);
} else {
for (dp = disk->dtype_next; dp != NULL;
disk = disk->dtype_next, dp = dp->dtype_next) {
if (dp == disk_type) {
disk->dtype_next = dp->dtype_next;
if (cur_label == L_TYPE_EFI)
free(dp->dtype_plist->etoc);
free(dp->dtype_plist);
free(dp->vendor);
free(dp->product);
free(dp->revision);
free(dp);
return (0);
}
}
return (-1);
}
}
static struct disk_info *
find_scsi_disk_info(
struct dk_cinfo *dkinfo)
{
struct disk_info *disk;
struct dk_cinfo *dp;
for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
assert(dkinfo->dki_ctype == DKC_SCSI_CCS);
dp = &disk->disk_dkinfo;
if (dp->dki_ctype == dkinfo->dki_ctype &&
dp->dki_cnum == dkinfo->dki_cnum &&
dp->dki_unit == dkinfo->dki_unit &&
strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
return (disk);
}
}
impossible("No SCSI disk info instance\n");
return ((struct disk_info *)NULL);
}
static char *
get_sun_disk_name(
char *disk_name,
struct scsi_inquiry *inquiry)
{
/*
* Extract the sun name of the disk
*/
(void) memset(disk_name, 0, DISK_NAME_MAX);
(void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7);
return (disk_name);
}
char *
get_generic_disk_name(
char *disk_name,
struct scsi_inquiry *inquiry)
{
char *p;
(void) memset(disk_name, 0, DISK_NAME_MAX);
p = strcopy(disk_name, inquiry->inq_vid,
sizeof (inquiry->inq_vid));
*p++ = '-';
p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid));
*p++ = '-';
p = strcopy(p, inquiry->inq_revision,
sizeof (inquiry->inq_revision));
return (disk_name);
}
/*
* Copy a string of characters from src to dst, for at
* most n bytes. Strip all leading and trailing spaces,
* and stop if there are any non-printable characters.
* Return ptr to the next character to be filled.
*/
static char *
strcopy(
char *dst,
char *src,
int n)
{
int i;
while (*src == ' ' && n > 0) {
src++;
n--;
}
for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) {
if (*src == ' ') {
i++;
} else {
while (i-- > 0)
*dst++ = ' ';
*dst++ = *src;
}
}
*dst = 0;
return (dst);
}
/*
* adjust disk geometry.
* This is used when disk reports a disk geometry page having
* no of physical cylinders is < 3 which is the minimum required
* by Solaris (2 for storing labels and at least one as a data
* cylinder )
*/
int
adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, uint_t *nhead,
uint_t *nsect)
{
uint_t lcyl = *cyl;
uint_t lnhead = *nhead;
uint_t lnsect = *nsect;
assert(lcyl < SUN_MIN_CYL);
/*
* reduce nsect by 2 for each iteration and re-calculate
* the number of cylinders.
*/
while (lnsect > MINIMUM_NO_SECTORS &&
lcyl < MINIMUM_NO_CYLINDERS) {
/*
* make sure that we do not go below MINIMUM_NO_SECTORS.
*/
lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2);
lcyl = (capacity) / (lnhead * lnsect);
}
/*
* If the geometry still does not satisfy
* MINIMUM_NO_CYLINDERS then try to reduce the
* no of heads.
*/
while (lnhead > MINIMUM_NO_HEADS &&
lcyl < MINIMUM_NO_CYLINDERS) {
lnhead = max(MINIMUM_NO_HEADS, lnhead / 2);
lcyl = (capacity) / (lnhead * lnsect);
}
/*
* now we should have atleast SUN_MIN_CYL cylinders.
* If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS
* and MINIMUM_NO_HEADS then return error.
*/
if (lcyl < SUN_MIN_CYL)
return (1);
else {
*cyl = lcyl;
*nhead = lnhead;
*nsect = lnsect;
return (0);
}
}
#if defined(_SUNOS_VTOC_8)
/*
* Reduce the size of one dimention below a specified
* limit with a minimum loss of volume. Dimenstions are
* assumed to be passed in form the largest value (the one
* that needs to be reduced) to the smallest value. The
* values will be twiddled until they are all less than or
* equal to their limit. Returns the number in the new geometry.
*/
static diskaddr_t
square_box(
diskaddr_t capacity,
uint_t *dim1, uint_t lim1,
uint_t *dim2, uint_t lim2,
uint_t *dim3, uint_t lim3)
{
uint_t i;
/*
* Although the routine should work with any ordering of
* parameters, it's most efficient if they are passed in
* in decreasing magnitude.
*/
assert(*dim1 >= *dim2);
assert(*dim2 >= *dim3);
/*
* This is done in a very arbitrary manner. We could try to
* find better values but I can't come up with a method that
* would run in a reasonable amount of time. That could take
* approximately 65535 * 65535 iterations of a dozen flops each
* or well over 4G flops.
*
* First:
*
* Let's see how far we can go with bitshifts w/o losing
* any blocks.
*/
for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++)
;
if (i) {
*dim1 = ((*dim1)>>i);
*dim3 = ((*dim3)<<i);
}
if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) {
double d[4];
/*
* Second:
*
* Set the highest value at its limit then calculate errors,
* adjusting the 2nd highest value (we get better resolution
* that way).
*/
d[1] = lim1;
d[3] = *dim3;
d[2] = (double)capacity/(d[1]*d[3]);
/*
* If we overflowed the middle term, set it to its limit and
* chose a new low term.
*/
if (d[2] > lim2) {
d[2] = lim2;
d[3] = (double)capacity/(d[1]*d[2]);
}
/*
* Convert to integers.
*/
*dim1 = (int)d[1];
*dim2 = (int)d[2];
*dim3 = (int)d[3];
}
/*
* Fixup any other possible problems.
* If this happens, we need a new disklabel format.
*/
if (*dim1 > lim1) *dim1 = lim1;
if (*dim2 > lim2) *dim2 = lim2;
if (*dim3 > lim3) *dim3 = lim3;
return (*dim1 * *dim2 * *dim3);
}
#endif /* defined(_SUNOS_VTOC_8) */
/*
* Calculate CHS values based on the capacity data.
*
* NOTE: This function is same as cmlb_convert_geomerty() function in
* cmlb kernel module.
*/
static void
compute_chs_values(diskaddr_t total_capacity, diskaddr_t usable_capacity,
uint_t *pcylp, uint_t *nheadp, uint_t *nsectp)
{
/* Unlabeled SCSI floppy device */
if (total_capacity < 160) {
/* Less than 80K */
*nheadp = 1;
*pcylp = total_capacity;
*nsectp = 1;
return;
} else if (total_capacity <= 0x1000) {
*nheadp = 2;
*pcylp = 80;
*nsectp = total_capacity / (80 * 2);
return;
}
/*
* For all devices we calculate cylinders using the heads and sectors
* we assign based on capacity of the device. The algorithm is
* designed to be compatible with the way other operating systems
* lay out fdisk tables for X86 and to insure that the cylinders never
* exceed 65535 to prevent problems with X86 ioctls that report
* geometry.
* For some smaller disk sizes we report geometry that matches those
* used by X86 BIOS usage. For larger disks, we use SPT that are
* multiples of 63, since other OSes that are not limited to 16-bits
* for cylinders stop at 63 SPT we make do by using multiples of 63 SPT.
*
* The following table (in order) illustrates some end result
* calculations:
*
* Maximum number of blocks nhead nsect
*
* 2097152 (1GB) 64 32
* 16777216 (8GB) 128 32
* 1052819775 (502.02GB) 255 63
* 2105639550 (0.98TB) 255 126
* 3158459325 (1.47TB) 255 189
* 4211279100 (1.96TB) 255 252
* 5264098875 (2.45TB) 255 315
* ...
*/
if (total_capacity <= 0x200000) {
*nheadp = 64;
*nsectp = 32;
} else if (total_capacity <= 0x01000000) {
*nheadp = 128;
*nsectp = 32;
} else {
*nheadp = 255;
/* make nsect be smallest multiple of 63 */
*nsectp = ((total_capacity +
(UINT16_MAX * 255 * 63) - 1) /
(UINT16_MAX * 255 * 63)) * 63;
if (*nsectp == 0)
*nsectp = (UINT16_MAX / 63) * 63;
}
if (usable_capacity < total_capacity)
*pcylp = usable_capacity / ((*nheadp) * (*nsectp));
else
*pcylp = total_capacity / ((*nheadp) * (*nsectp));
}