/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Devfsadm replaces drvconfig, audlinks, disks, tapes, ports, devlinks
* as a general purpose device administrative utility. It creates
* devices special files in /devices and logical links in /dev, and
* coordinates updates to /etc/path_to_instance with the kernel. It
* operates in both command line mode to handle user or script invoked
* reconfiguration updates, and operates in daemon mode to handle dynamic
* reconfiguration for hotplugging support.
*/
#include <string.h>
#include <deflt.h>
#include <tsol/label.h>
#include <bsm/devices.h>
#include <bsm/devalloc.h>
#include <utime.h>
#include <sys/param.h>
#include <bsm/libbsm.h>
#include <zone.h>
#include "devfsadm_impl.h"
/* externs from devalloc.c */
extern void _reset_devalloc(int);
extern void _update_devalloc_db(devlist_t *, int, int, char *, char *);
extern int _da_check_for_usb(char *, char *);
/* create or remove nodes or links. unset with -n */
static int file_mods = TRUE;
/* cleanup mode. Set with -C */
static int cleanup = FALSE;
/* devlinks -d compatibility */
static int devlinks_debug = FALSE;
/* flag to check if system is labeled */
int system_labeled = FALSE;
/* flag to enable/disable device allocation with -e/-d */
static int devalloc_flag = 0;
/* flag that indicates if device allocation is on or not */
static int devalloc_is_on = 0;
/* flag to update device allocation database for this device type */
static int update_devdb = 0;
/*
* devices to be deallocated with -d :
* audio, floppy, cd, floppy, tape, rmdisk.
*/
static char *devalloc_list[10] = {DDI_NT_AUDIO, DDI_NT_CD, DDI_NT_CD_CHAN,
DDI_NT_FD, DDI_NT_TAPE, DDI_NT_BLOCK_CHAN,
DDI_NT_UGEN, DDI_NT_USB_ATTACHMENT_POINT,
DDI_NT_SCSI_NEXUS, NULL};
/* list of allocatable devices */
static devlist_t devlist;
/* load a single driver only. set with -i */
static int single_drv = FALSE;
static char *driver = NULL;
/* attempt to load drivers or defer attach nodes */
static int load_attach_drv = TRUE;
/* reload all driver.conf files */
static int update_all_drivers = FALSE;
/* set if invoked via /usr/lib/devfsadm/devfsadmd */
static int daemon_mode = FALSE;
/* set if event_handler triggered */
int event_driven = FALSE;
/* output directed to syslog during daemon mode if set */
static int logflag = FALSE;
/* build links in /dev. -x to turn off */
static int build_dev = TRUE;
/* build nodes in /devices. -y to turn off */
static int build_devices = TRUE;
/* -z to turn off */
static int flush_path_to_inst_enable = TRUE;
/* variables used for path_to_inst flushing */
static int inst_count = 0;
static mutex_t count_lock;
static cond_t cv;
/* variables for minor_fini thread */
static mutex_t minor_fini_mutex;
static int minor_fini_canceled = TRUE;
static int minor_fini_delayed = FALSE;
static cond_t minor_fini_cv;
static int minor_fini_timeout = MINOR_FINI_TIMEOUT_DEFAULT;
/* single-threads /dev modification */
static sema_t dev_sema;
/* the program we were invoked as; ie argv[0] */
static char *prog;
/* pointers to create/remove link lists */
static create_list_t *create_head = NULL;
static remove_list_t *remove_head = NULL;
/* supports the class -c option */
static char **classes = NULL;
static int num_classes = 0;
/* used with verbose option -v or -V */
static int num_verbose = 0;
static char **verbose = NULL;
static struct mperm *minor_perms = NULL;
static driver_alias_t *driver_aliases = NULL;
/* set if -r alternate root given */
static char *root_dir = "";
/* /devices or <rootdir>/devices */
static char *devices_dir = DEVICES;
/* /dev or <rootdir>/dev */
static char *dev_dir = DEV;
/* /etc/dev or <rootdir>/etc/dev */
static char *etc_dev_dir = ETCDEV;
/*
* writable root (for lock files and doors during install).
* This is also root dir for /dev attr dir during install.
*/
static char *attr_root = NULL;
/* /etc/path_to_inst unless -p used */
static char *inst_file = INSTANCE_FILE;
/* /usr/lib/devfsadm/linkmods unless -l used */
static char *module_dirs = MODULE_DIRS;
/* default uid/gid used if /etc/minor_perm entry not found */
static uid_t root_uid;
static gid_t sys_gid;
/* /etc/devlink.tab unless devlinks -t used */
static char *devlinktab_file = NULL;
/* File and data structure to reserve enumerate IDs */
static char *enumerate_file = ENUMERATE_RESERVED;
static enumerate_file_t *enumerate_reserved = NULL;
/* set if /dev link is new. speeds up rm_stale_links */
static int linknew = TRUE;
/* variables for devlink.tab compat processing */
static devlinktab_list_t *devlinktab_list = NULL;
static unsigned int devlinktab_line = 0;
/* cache head for devfsadm_enumerate*() functions */
static numeral_set_t *head_numeral_set = NULL;
/* list list of devfsadm modules */
static module_t *module_head = NULL;
/* name_to_major list used in utility function */
static n2m_t *n2m_list = NULL;
/* cache of some links used for performance */
static linkhead_t *headlinkhead = NULL;
/* locking variables to prevent multiples writes to /dev */
static int hold_dev_lock = FALSE;
static int hold_daemon_lock = FALSE;
static int dev_lock_fd;
static int daemon_lock_fd;
static char dev_lockfile[PATH_MAX + 1];
static char daemon_lockfile[PATH_MAX + 1];
/* last devinfo node/minor processed. used for performance */
static di_node_t lnode;
static di_minor_t lminor;
static char lphy_path[PATH_MAX + 1] = {""};
/* Globals used by the link database */
static di_devlink_handle_t devlink_cache;
static int update_database = FALSE;
/* Globals used to set logindev perms */
static struct login_dev *login_dev_cache = NULL;
static int login_dev_enable = FALSE;
/* Global to use devinfo snapshot cache */
static int use_snapshot_cache = FALSE;
/* Global for no-further-processing hash */
static item_t **nfp_hash;
static mutex_t nfp_mutex = DEFAULTMUTEX;
/*
* Directories not removed even when empty. They are packaged, or may
* be referred to from a non-global zone. The dirs must be listed in
* canonical form i.e. without leading "/dev/"
*/
static char *sticky_dirs[] =
{"dsk", "rdsk", "term", "lofi", "rlofi", NULL};
/* Devname globals */
static int lookup_door_fd = -1;
static char *lookup_door_path;
static void load_dev_acl(void);
static void update_drvconf(major_t, int);
static void check_reconfig_state(void);
static int s_stat(const char *, struct stat *);
static int is_blank(char *);
/* sysevent queue related globals */
static mutex_t syseventq_mutex = DEFAULTMUTEX;
static syseventq_t *syseventq_front;
static syseventq_t *syseventq_back;
static void process_syseventq();
static di_node_t devi_root_node = DI_NODE_NIL;
int
main(int argc, char *argv[])
{
struct passwd *pw;
struct group *gp;
pid_t pid;
(void) setlocale(LC_ALL, "");
(void) textdomain(TEXT_DOMAIN);
if ((prog = strrchr(argv[0], '/')) == NULL) {
prog = argv[0];
} else {
prog++;
}
if (getuid() != 0) {
err_print(MUST_BE_ROOT);
devfsadm_exit(1);
/*NOTREACHED*/
}
if (getzoneid() != GLOBAL_ZONEID) {
err_print(MUST_BE_GLOBAL_ZONE);
devfsadm_exit(1);
}
/*
* Close all files except stdin/stdout/stderr
*/
closefrom(3);
if ((pw = getpwnam(DEFAULT_DEV_USER)) != NULL) {
root_uid = pw->pw_uid;
} else {
err_print(CANT_FIND_USER, DEFAULT_DEV_USER);
root_uid = (uid_t)0; /* assume 0 is root */
}
/* the default group is sys */
if ((gp = getgrnam(DEFAULT_DEV_GROUP)) != NULL) {
sys_gid = gp->gr_gid;
} else {
err_print(CANT_FIND_GROUP, DEFAULT_DEV_GROUP);
sys_gid = (gid_t)3; /* assume 3 is sys */
}
(void) umask(0);
system_labeled = is_system_labeled();
if (system_labeled == FALSE) {
/*
* is_system_labeled() will return false in case we are
* starting before the first reboot after Trusted Extensions
* is enabled. Check the setting in /etc/system to see if
* TX is enabled (even if not yet booted).
*/
if (defopen("/etc/system") == 0) {
if (defread("set sys_labeling=1") != NULL)
system_labeled = TRUE;
/* close defaults file */
(void) defopen(NULL);
}
}
/*
* Check if device allocation is enabled.
*/
devalloc_is_on = (da_is_on() == 1) ? 1 : 0;
#ifdef DEBUG
if (system_labeled == FALSE) {
struct stat tx_stat;
/* test hook: see also mkdevalloc.c and allocate.c */
system_labeled = is_system_labeled_debug(&tx_stat);
}
#endif
parse_args(argc, argv);
(void) sema_init(&dev_sema, 1, USYNC_THREAD, NULL);
/* Initialize device allocation list */
devlist.audio = devlist.cd = devlist.floppy = devlist.tape =
devlist.rmdisk = NULL;
if (daemon_mode == TRUE) {
/*
* Build /dev and /devices before daemonizing if
* reconfig booting and daemon invoked with alternate
* root. This is to support install.
*/
if (getenv(RECONFIG_BOOT) != NULL && root_dir[0] != '\0') {
vprint(INFO_MID, CONFIGURING);
load_dev_acl();
update_drvconf((major_t)-1, 0);
process_devinfo_tree();
(void) modctl(MODSETMINIROOT);
}
/*
* fork before detaching from tty in order to print error
* message if unable to acquire file lock. locks not preserved
* across forks. Even under debug we want to fork so that
* when executed at boot we don't hang.
*/
if (fork() != 0) {
devfsadm_exit(0);
/*NOTREACHED*/
}
/* set directory to / so it coredumps there */
if (chdir("/") == -1) {
err_print(CHROOT_FAILED, strerror(errno));
}
/* only one daemon can run at a time */
if ((pid = enter_daemon_lock()) == getpid()) {
detachfromtty();
(void) cond_init(&cv, USYNC_THREAD, 0);
(void) mutex_init(&count_lock, USYNC_THREAD, 0);
if (thr_create(NULL, NULL,
(void *(*)(void *))instance_flush_thread,
NULL, THR_DETACHED, NULL) != 0) {
err_print(CANT_CREATE_THREAD, "daemon",
strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
/* start the minor_fini_thread */
(void) mutex_init(&minor_fini_mutex, USYNC_THREAD, 0);
(void) cond_init(&minor_fini_cv, USYNC_THREAD, 0);
if (thr_create(NULL, NULL,
(void *(*)(void *))minor_fini_thread,
NULL, THR_DETACHED, NULL)) {
err_print(CANT_CREATE_THREAD, "minor_fini",
strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
/*
* logindevperms need only be set
* in daemon mode and when root dir is "/".
*/
if (root_dir[0] == '\0')
login_dev_enable = TRUE;
daemon_update();
devfsadm_exit(0);
/*NOTREACHED*/
} else {
err_print(DAEMON_RUNNING, pid);
devfsadm_exit(1);
/*NOTREACHED*/
}
} else {
/* not a daemon, so just build /dev and /devices */
/*
* If turning off device allocation, load the
* minor_perm file because process_devinfo_tree() will
* need this in order to reset the permissions of the
* device files.
*/
if (devalloc_flag == DA_OFF) {
read_minor_perm_file();
}
process_devinfo_tree();
if (devalloc_flag != 0)
/* Enable/disable device allocation */
_reset_devalloc(devalloc_flag);
}
return (0);
}
static void
update_drvconf(major_t major, int flags)
{
if (modctl(MODLOADDRVCONF, major, flags) != 0)
err_print(gettext("update_drvconf failed for major %d\n"),
major);
}
static void
load_dev_acl()
{
if (load_devpolicy() != 0)
err_print(gettext("device policy load failed\n"));
load_minor_perm_file();
}
/*
* As devfsadm is run early in boot to provide the kernel with
* minor_perm info, we might as well check for reconfig at the
* same time to avoid running devfsadm twice. This gets invoked
* earlier than the env variable RECONFIG_BOOT is set up.
*/
static void
check_reconfig_state()
{
struct stat sb;
if (s_stat("/reconfigure", &sb) == 0) {
(void) modctl(MODDEVNAME, MODDEVNAME_RECONFIG, 0);
}
}
static void
modctl_sysavail()
{
/*
* Inform /dev that system is available, that
* implicit reconfig can now be performed.
*/
(void) modctl(MODDEVNAME, MODDEVNAME_SYSAVAIL, 0);
}
static void
set_lock_root(void)
{
struct stat sb;
char *lock_root;
size_t len;
lock_root = attr_root ? attr_root : root_dir;
len = strlen(lock_root) + strlen(ETCDEV) + 1;
etc_dev_dir = s_malloc(len);
(void) snprintf(etc_dev_dir, len, "%s%s", lock_root, ETCDEV);
if (s_stat(etc_dev_dir, &sb) != 0) {
s_mkdirp(etc_dev_dir, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);
} else if (!S_ISDIR(sb.st_mode)) {
err_print(NOT_DIR, etc_dev_dir);
devfsadm_exit(1);
/*NOTREACHED*/
}
}
/*
* Parse arguments for all 6 programs handled from devfsadm.
*/
static void
parse_args(int argc, char *argv[])
{
char opt;
char get_linkcompat_opts = FALSE;
char *compat_class;
int num_aliases = 0;
int len;
int retval;
int config = TRUE;
int bind = FALSE;
int force_flag = FALSE;
struct aliases *ap = NULL;
struct aliases *a_head = NULL;
struct aliases *a_tail = NULL;
struct modconfig mc;
(void) bzero(&mc, sizeof (mc));
if (strcmp(prog, DISKS) == 0) {
compat_class = "disk";
get_linkcompat_opts = TRUE;
} else if (strcmp(prog, TAPES) == 0) {
compat_class = "tape";
get_linkcompat_opts = TRUE;
} else if (strcmp(prog, PORTS) == 0) {
compat_class = "port";
get_linkcompat_opts = TRUE;
} else if (strcmp(prog, AUDLINKS) == 0) {
compat_class = "audio";
get_linkcompat_opts = TRUE;
} else if (strcmp(prog, DEVLINKS) == 0) {
devlinktab_file = DEVLINKTAB_FILE;
build_devices = FALSE;
load_attach_drv = FALSE;
while ((opt = getopt(argc, argv, "dnr:st:vV:")) != EOF) {
switch (opt) {
case 'd':
file_mods = FALSE;
flush_path_to_inst_enable = FALSE;
devlinks_debug = TRUE;
break;
case 'n':
/* prevent driver loading and deferred attach */
load_attach_drv = FALSE;
break;
case 'r':
set_root_devices_dev_dir(optarg);
if (zone_pathcheck(root_dir) !=
DEVFSADM_SUCCESS)
devfsadm_exit(1);
/*NOTREACHED*/
break;
case 's':
/*
* suppress. don't create/remove links/nodes
* useful with -v or -V
*/
file_mods = FALSE;
flush_path_to_inst_enable = FALSE;
break;
case 't':
/* supply a non-default table file */
devlinktab_file = optarg;
break;
case 'v':
/* documented verbose flag */
add_verbose_id(VERBOSE_MID);
break;
case 'V':
/* undocumented for extra verbose levels */
add_verbose_id(optarg);
break;
default:
usage();
break;
}
}
if (optind < argc) {
usage();
}
} else if (strcmp(prog, DRVCONFIG) == 0) {
int update_only = 0;
build_dev = FALSE;
while ((opt =
getopt(argc, argv, "a:bc:dfi:m:np:R:r:suvV:x")) != EOF) {
switch (opt) {
case 'a':
ap = calloc(sizeof (struct aliases), 1);
ap->a_name = dequote(optarg);
len = strlen(ap->a_name) + 1;
if (len > MAXMODCONFNAME) {
err_print(ALIAS_TOO_LONG,
MAXMODCONFNAME, ap->a_name);
devfsadm_exit(1);
/*NOTREACHED*/
}
ap->a_len = len;
if (a_tail == NULL) {
a_head = ap;
} else {
a_tail->a_next = ap;
}
a_tail = ap;
num_aliases++;
bind = TRUE;
break;
case 'b':
bind = TRUE;
break;
case 'c':
(void) strcpy(mc.drvclass, optarg);
break;
case 'd':
/*
* need to keep for compatibility, but
* do nothing.
*/
break;
case 'f':
force_flag = TRUE;
break;
case 'i':
single_drv = TRUE;
(void) strcpy(mc.drvname, optarg);
driver = s_strdup(optarg);
break;
case 'm':
mc.major = atoi(optarg);
break;
case 'n':
/* prevent driver loading and deferred attach */
load_attach_drv = FALSE;
break;
case 'p':
/* specify alternate path_to_inst file */
inst_file = s_strdup(optarg);
break;
case 'R':
/*
* Private flag for suninstall to populate
* device information on the installed root.
*/
root_dir = s_strdup(optarg);
if (zone_pathcheck(root_dir) !=
DEVFSADM_SUCCESS)
devfsadm_exit(devfsadm_copy());
/*NOTREACHED*/
break;
case 'r':
devices_dir = s_strdup(optarg);
if (zone_pathcheck(devices_dir) !=
DEVFSADM_SUCCESS)
devfsadm_exit(1);
/*NOTREACHED*/
break;
case 's':
/*
* suppress. don't create nodes
* useful with -v or -V
*/
file_mods = FALSE;
flush_path_to_inst_enable = FALSE;
break;
case 'u':
/*
* Invoked via update_drv(1m) to update
* the kernel's driver/alias binding
* when removing one or more aliases.
*/
config = FALSE;
break;
case 'v':
/* documented verbose flag */
add_verbose_id(VERBOSE_MID);
break;
case 'V':
/* undocumented for extra verbose levels */
add_verbose_id(optarg);
break;
case 'x':
update_only = 1;
break;
default:
usage();
}
}
if (optind < argc) {
usage();
}
if (bind == TRUE) {
if ((mc.major == -1) || (mc.drvname[0] == NULL)) {
err_print(MAJOR_AND_B_FLAG);
devfsadm_exit(1);
/*NOTREACHED*/
}
mc.flags = 0;
if (force_flag)
mc.flags |= MOD_UNBIND_OVERRIDE;
if (update_only)
mc.flags |= MOD_ADDMAJBIND_UPDATE;
mc.num_aliases = num_aliases;
mc.ap = a_head;
retval = modctl((config == TRUE) ? MODADDMAJBIND :
MODREMDRVALIAS, NULL, (caddr_t)&mc);
if (retval < 0) {
err_print((config == TRUE) ? MODCTL_ADDMAJBIND :
MODCTL_REMMAJBIND);
}
devfsadm_exit(retval);
/*NOTREACHED*/
}
} else if ((strcmp(prog, DEVFSADM) == 0) ||
(strcmp(prog, DEVFSADMD) == 0)) {
char *zonename = NULL;
int init_drvconf = 0;
int init_perm = 0;
int public_mode = 0;
int init_sysavail = 0;
if (strcmp(prog, DEVFSADMD) == 0) {
daemon_mode = TRUE;
}
devlinktab_file = DEVLINKTAB_FILE;
while ((opt = getopt(argc, argv,
"a:Cc:deIi:l:np:PR:r:sSt:uvV:x:")) != EOF) {
if (opt == 'I' || opt == 'P' || opt == 'S') {
if (public_mode)
usage();
} else {
if (init_perm || init_drvconf || init_sysavail)
usage();
public_mode = 1;
}
switch (opt) {
case 'a':
attr_root = s_strdup(optarg);
break;
case 'C':
cleanup = TRUE;
break;
case 'c':
num_classes++;
classes = s_realloc(classes,
num_classes * sizeof (char *));
classes[num_classes - 1] = optarg;
break;
case 'd':
if (daemon_mode == FALSE) {
/*
* Device allocation to be disabled.
*/
devalloc_flag = DA_OFF;
build_dev = FALSE;
}
break;
case 'e':
if (daemon_mode == FALSE) {
/*
* Device allocation to be enabled.
*/
devalloc_flag = DA_ON;
build_dev = FALSE;
}
break;
case 'I': /* update kernel driver.conf cache */
if (daemon_mode == TRUE)
usage();
init_drvconf = 1;
break;
case 'i':
single_drv = TRUE;
driver = s_strdup(optarg);
break;
case 'l':
/* specify an alternate module load path */
module_dirs = s_strdup(optarg);
break;
case 'n':
/* prevent driver loading and deferred attach */
load_attach_drv = FALSE;
break;
case 'p':
/* specify alternate path_to_inst file */
inst_file = s_strdup(optarg);
break;
case 'P':
if (daemon_mode == TRUE)
usage();
/* load minor_perm and device_policy */
init_perm = 1;
break;
case 'R':
/*
* Private flag for suninstall to populate
* device information on the installed root.
*/
root_dir = s_strdup(optarg);
devfsadm_exit(devfsadm_copy());
/*NOTREACHED*/
break;
case 'r':
set_root_devices_dev_dir(optarg);
break;
case 's':
/*
* suppress. don't create/remove links/nodes
* useful with -v or -V
*/
file_mods = FALSE;
flush_path_to_inst_enable = FALSE;
break;
case 'S':
if (daemon_mode == TRUE)
usage();
init_sysavail = 1;
break;
case 't':
devlinktab_file = optarg;
break;
case 'u': /* complete configuration after */
/* adding a driver update-only */
if (daemon_mode == TRUE)
usage();
update_all_drivers = TRUE;
break;
case 'v':
/* documented verbose flag */
add_verbose_id(VERBOSE_MID);
break;
case 'V':
/* undocumented: specify verbose lvl */
add_verbose_id(optarg);
break;
case 'x':
/*
* x is the "private switch" option. The
* goal is to not suck up all the other
* option letters.
*/
if (strcmp(optarg, "update_devlinksdb") == 0) {
update_database = TRUE;
} else if (strcmp(optarg, "no_dev") == 0) {
/* don't build /dev */
build_dev = FALSE;
} else if (strcmp(optarg, "no_devices") == 0) {
/* don't build /devices */
build_devices = FALSE;
} else if (strcmp(optarg, "no_p2i") == 0) {
/* don't flush path_to_inst */
flush_path_to_inst_enable = FALSE;
} else if (strcmp(optarg, "use_dicache") == 0) {
use_snapshot_cache = TRUE;
} else {
usage();
}
break;
default:
usage();
break;
}
}
if (optind < argc) {
usage();
}
/*
* We're not in zone mode; Check to see if the rootpath
* collides with any zonepaths.
*/
if (zonename == NULL) {
if (zone_pathcheck(root_dir) != DEVFSADM_SUCCESS)
devfsadm_exit(1);
/*NOTREACHED*/
}
if (init_drvconf || init_perm || init_sysavail) {
/*
* Load minor perm before force-loading drivers
* so the correct permissions are picked up.
*/
if (init_perm) {
check_reconfig_state();
load_dev_acl();
}
if (init_drvconf)
update_drvconf((major_t)-1, 0);
if (init_sysavail)
modctl_sysavail();
devfsadm_exit(0);
/*NOTREACHED*/
}
}
if (get_linkcompat_opts == TRUE) {
build_devices = FALSE;
load_attach_drv = FALSE;
num_classes++;
classes = s_realloc(classes, num_classes *
sizeof (char *));
classes[num_classes - 1] = compat_class;
while ((opt = getopt(argc, argv, "Cnr:svV:")) != EOF) {
switch (opt) {
case 'C':
cleanup = TRUE;
break;
case 'n':
/* prevent driver loading or deferred attach */
load_attach_drv = FALSE;
break;
case 'r':
set_root_devices_dev_dir(optarg);
if (zone_pathcheck(root_dir) !=
DEVFSADM_SUCCESS)
devfsadm_exit(1);
/*NOTREACHED*/
break;
case 's':
/* suppress. don't create/remove links/nodes */
/* useful with -v or -V */
file_mods = FALSE;
flush_path_to_inst_enable = FALSE;
break;
case 'v':
/* documented verbose flag */
add_verbose_id(VERBOSE_MID);
break;
case 'V':
/* undocumented for extra verbose levels */
add_verbose_id(optarg);
break;
default:
usage();
}
}
if (optind < argc) {
usage();
}
}
set_lock_root();
}
void
usage(void)
{
if (strcmp(prog, DEVLINKS) == 0) {
err_print(DEVLINKS_USAGE);
} else if (strcmp(prog, DRVCONFIG) == 0) {
err_print(DRVCONFIG_USAGE);
} else if ((strcmp(prog, DEVFSADM) == 0) ||
(strcmp(prog, DEVFSADMD) == 0)) {
err_print(DEVFSADM_USAGE);
} else {
err_print(COMPAT_LINK_USAGE);
}
devfsadm_exit(1);
/*NOTREACHED*/
}
static void
devi_tree_walk(struct dca_impl *dcip, int flags, char *ev_subclass)
{
char *msg, *name;
struct mlist mlist = {0};
di_node_t node;
vprint(CHATTY_MID, "devi_tree_walk: root=%s, minor=%s, driver=%s,"
" error=%d, flags=%u\n", dcip->dci_root,
dcip->dci_minor ? dcip->dci_minor : "<NULL>",
dcip->dci_driver ? dcip->dci_driver : "<NULL>", dcip->dci_error,
dcip->dci_flags);
assert(dcip->dci_root);
if (dcip->dci_flags & DCA_LOAD_DRV) {
node = di_init_driver(dcip->dci_driver, flags);
msg = DRIVER_FAILURE;
name = dcip->dci_driver;
} else {
node = di_init(dcip->dci_root, flags);
msg = DI_INIT_FAILED;
name = dcip->dci_root;
}
if (node == DI_NODE_NIL) {
dcip->dci_error = errno;
/*
* Rapid hotplugging (commonly seen during USB testing),
* may remove a device before the create event for it
* has been processed. To prevent alarming users with
* a superfluous message, we suppress error messages
* for ENXIO and hotplug.
*/
if (!(errno == ENXIO && (dcip->dci_flags & DCA_HOT_PLUG)))
err_print(msg, name, strerror(dcip->dci_error));
return;
}
if (dcip->dci_flags & DCA_FLUSH_PATHINST)
flush_path_to_inst();
dcip->dci_arg = &mlist;
devi_root_node = node; /* protected by lock_dev() */
vprint(CHATTY_MID, "walking device tree\n");
(void) di_walk_minor(node, NULL, DI_CHECK_ALIAS, dcip,
check_minor_type);
process_deferred_links(dcip, DCA_CREATE_LINK);
dcip->dci_arg = NULL;
/*
* Finished creating devfs files and dev links.
* Log sysevent.
*/
if (ev_subclass)
build_and_enq_event(EC_DEV_ADD, ev_subclass, dcip->dci_root,
node, dcip->dci_minor);
/* Add new device to device allocation database */
if (system_labeled && update_devdb) {
_update_devalloc_db(&devlist, 0, DA_ADD, NULL, root_dir);
update_devdb = 0;
}
devi_root_node = DI_NODE_NIL; /* protected by lock_dev() */
di_fini(node);
}
static void
process_deferred_links(struct dca_impl *dcip, int flags)
{
struct mlist *dep;
struct minor *mp, *smp;
vprint(CHATTY_MID, "processing deferred links\n");
dep = dcip->dci_arg;
/*
* The list head is not used during the deferred create phase
*/
dcip->dci_arg = NULL;
assert(dep);
assert((dep->head == NULL) ^ (dep->tail != NULL));
assert(flags == DCA_FREE_LIST || flags == DCA_CREATE_LINK);
for (smp = NULL, mp = dep->head; mp; mp = mp->next) {
if (flags == DCA_CREATE_LINK)
(void) check_minor_type(mp->node, mp->minor, dcip);
free(smp);
smp = mp;
}
free(smp);
}
/*
* Called in non-daemon mode to take a snap shot of the devinfo tree.
* Then it calls the appropriate functions to build /devices and /dev.
* It also flushes path_to_inst.
* Except in the devfsadm -i (single driver case), the flags used by devfsadm
* needs to match DI_CACHE_SNAPSHOT_FLAGS. That will make DINFOCACHE snapshot
* updated.
*/
void
process_devinfo_tree()
{
uint_t flags;
struct dca_impl dci;
char name[MAXNAMELEN];
char *fcn = "process_devinfo_tree: ";
vprint(CHATTY_MID, "%senter\n", fcn);
dca_impl_init("/", NULL, &dci);
lock_dev();
/*
* Update kernel driver.conf cache when devfsadm/drvconfig
* is invoked to build /devices and /dev.
*/
if (update_all_drivers || load_attach_drv) {
update_drvconf((major_t)-1,
update_all_drivers ? MOD_LOADDRVCONF_RECONF : 0);
}
if (single_drv == TRUE) {
/*
* load a single driver, but walk the entire devinfo tree
*/
if (load_attach_drv == FALSE)
err_print(DRV_LOAD_REQD);
vprint(CHATTY_MID, "%sattaching driver (%s)\n", fcn, driver);
dci.dci_flags |= DCA_LOAD_DRV;
(void) snprintf(name, sizeof (name), "%s", driver);
dci.dci_driver = name;
flags = DINFOCPYALL | DINFOPATH;
} else if (load_attach_drv == TRUE) {
/*
* Load and attach all drivers, then walk the entire tree.
* If the cache flag is set, use DINFOCACHE to get cached
* data.
*/
if (use_snapshot_cache == TRUE) {
flags = DINFOCACHE;
vprint(CHATTY_MID, "%susing snapshot cache\n", fcn);
} else {
vprint(CHATTY_MID, "%sattaching all drivers\n", fcn);
flags = DI_CACHE_SNAPSHOT_FLAGS;
if (cleanup) {
/*
* remove dangling entries from /etc/devices
* files.
*/
flags |= DINFOCLEANUP;
}
}
} else {
/*
* For devlinks, disks, ports, tapes and devfsadm -n,
* just need to take a snapshot with active devices.
*/
vprint(CHATTY_MID, "%staking snapshot of active devices\n",
fcn);
flags = DINFOCPYALL;
}
if (((load_attach_drv == TRUE) || (single_drv == TRUE)) &&
(build_devices == TRUE)) {
dci.dci_flags |= DCA_FLUSH_PATHINST;
}
/* handle pre-cleanup operations desired by the modules. */
pre_and_post_cleanup(RM_PRE);
devi_tree_walk(&dci, flags, NULL);
if (dci.dci_error) {
devfsadm_exit(1);
/*NOTREACHED*/
}
/* handle post-cleanup operations desired by the modules. */
pre_and_post_cleanup(RM_POST);
unlock_dev(SYNC_STATE);
}
/*ARGSUSED*/
static void
print_cache_signal(int signo)
{
if (signal(SIGUSR1, print_cache_signal) == SIG_ERR) {
err_print("signal SIGUSR1 failed: %s\n", strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
}
static void
revoke_lookup_door(void)
{
if (lookup_door_fd != -1) {
if (door_revoke(lookup_door_fd) == -1) {
err_print("door_revoke of %s failed - %s\n",
lookup_door_path, strerror(errno));
}
}
}
/*ARGSUSED*/
static void
catch_exit(int signo)
{
revoke_lookup_door();
}
/*
* Register with eventd for messages. Create doors for synchronous
* link creation.
*/
static void
daemon_update(void)
{
int fd;
char *fcn = "daemon_update: ";
char door_file[MAXPATHLEN];
const char *subclass_list;
sysevent_handle_t *sysevent_hp;
vprint(CHATTY_MID, "%senter\n", fcn);
if (signal(SIGUSR1, print_cache_signal) == SIG_ERR) {
err_print("signal SIGUSR1 failed: %s\n", strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
if (signal(SIGTERM, catch_exit) == SIG_ERR) {
err_print("signal SIGTERM failed: %s\n", strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
if (snprintf(door_file, sizeof (door_file),
"%s%s", attr_root ? attr_root : root_dir, DEVFSADM_SERVICE_DOOR)
>= sizeof (door_file)) {
err_print("update_daemon failed to open sysevent service "
"door\n");
devfsadm_exit(1);
/*NOTREACHED*/
}
if ((sysevent_hp = sysevent_open_channel_alt(
door_file)) == NULL) {
err_print(CANT_CREATE_DOOR,
door_file, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
if (sysevent_bind_subscriber(sysevent_hp, event_handler) != 0) {
err_print(CANT_CREATE_DOOR,
door_file, strerror(errno));
(void) sysevent_close_channel(sysevent_hp);
devfsadm_exit(1);
/*NOTREACHED*/
}
subclass_list = EC_SUB_ALL;
if (sysevent_register_event(sysevent_hp, EC_ALL, &subclass_list, 1)
!= 0) {
err_print(CANT_CREATE_DOOR,
door_file, strerror(errno));
(void) sysevent_unbind_subscriber(sysevent_hp);
(void) sysevent_close_channel(sysevent_hp);
devfsadm_exit(1);
/*NOTREACHED*/
}
if (snprintf(door_file, sizeof (door_file), "%s/%s",
etc_dev_dir, DEVFSADM_SYNCH_DOOR) >= sizeof (door_file)) {
err_print(CANT_CREATE_DOOR, DEVFSADM_SYNCH_DOOR,
strerror(ENAMETOOLONG));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) s_unlink(door_file);
if ((fd = open(door_file, O_RDWR | O_CREAT, SYNCH_DOOR_PERMS)) == -1) {
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) close(fd);
if ((fd = door_create(sync_handler, NULL,
DOOR_REFUSE_DESC | DOOR_NO_CANCEL)) == -1) {
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
(void) s_unlink(door_file);
devfsadm_exit(1);
/*NOTREACHED*/
}
if (fattach(fd, door_file) == -1) {
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
(void) s_unlink(door_file);
devfsadm_exit(1);
/*NOTREACHED*/
}
/*
* devname_lookup_door
*/
if (snprintf(door_file, sizeof (door_file), "%s/%s",
etc_dev_dir, DEVNAME_LOOKUP_DOOR) >= sizeof (door_file)) {
err_print(CANT_CREATE_DOOR, DEVNAME_LOOKUP_DOOR,
strerror(ENAMETOOLONG));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) s_unlink(door_file);
if ((fd = open(door_file, O_RDWR | O_CREAT, S_IRUSR|S_IWUSR)) == -1) {
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) close(fd);
if ((fd = door_create(devname_lookup_handler, NULL,
DOOR_REFUSE_DESC)) == -1) {
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
(void) s_unlink(door_file);
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) fdetach(door_file);
lookup_door_path = s_strdup(door_file);
retry:
if (fattach(fd, door_file) == -1) {
if (errno == EBUSY)
goto retry;
err_print(CANT_CREATE_DOOR, door_file, strerror(errno));
(void) s_unlink(door_file);
devfsadm_exit(1);
/*NOTREACHED*/
}
lookup_door_fd = fd;
/* pass down the door name to kernel for door_ki_open */
if (devname_kcall(MODDEVNAME_LOOKUPDOOR, (void *)door_file) != 0)
err_print(DEVNAME_CONTACT_FAILED, strerror(errno));
vprint(CHATTY_MID, "%spausing\n", fcn);
for (;;) {
(void) pause();
}
}
/*ARGSUSED*/
static void
sync_handler(void *cookie, char *ap, size_t asize,
door_desc_t *dp, uint_t ndesc)
{
door_cred_t dcred;
struct dca_off *dcp, rdca;
struct dca_impl dci;
/*
* Must be root to make this call
* If caller is not root, don't touch its data.
*/
if (door_cred(&dcred) != 0 || dcred.dc_euid != 0) {
dcp = &rdca;
dcp->dca_error = EPERM;
goto out;
}
assert(ap);
assert(asize == sizeof (*dcp));
dcp = (void *)ap;
/*
* Root is always present and is the first component of "name" member
*/
assert(dcp->dca_root == 0);
/*
* The structure passed in by the door_client uses offsets
* instead of pointers to work across address space boundaries.
* Now copy the data into a structure (dca_impl) which uses
* pointers.
*/
dci.dci_root = &dcp->dca_name[dcp->dca_root];
dci.dci_minor = dcp->dca_minor ? &dcp->dca_name[dcp->dca_minor] : NULL;
dci.dci_driver =
dcp->dca_driver ? &dcp->dca_name[dcp->dca_driver] : NULL;
dci.dci_error = 0;
dci.dci_flags = dcp->dca_flags | (dci.dci_driver ? DCA_LOAD_DRV : 0);
dci.dci_arg = NULL;
lock_dev();
devi_tree_walk(&dci, DINFOCPYALL, NULL);
dcp->dca_error = dci.dci_error;
if (dcp->dca_flags & DCA_DEVLINK_SYNC)
unlock_dev(SYNC_STATE);
else
unlock_dev(CACHE_STATE);
out: (void) door_return((char *)dcp, sizeof (*dcp), NULL, 0);
}
static void
lock_dev(void)
{
vprint(CHATTY_MID, "lock_dev(): entered\n");
if (build_dev == FALSE)
return;
/* lockout other threads from /dev */
while (sema_wait(&dev_sema) != 0)
;
/*
* Lock out other devfsadm processes from /dev.
* If this wasn't the last process to run,
* clear caches
*/
if (enter_dev_lock() != getpid()) {
invalidate_enumerate_cache();
rm_all_links_from_cache();
(void) di_devlink_close(&devlink_cache, DI_LINK_ERROR);
/* send any sysevents that were queued up. */
process_syseventq();
}
/*
* (re)load the reverse links database if not
* already cached.
*/
if (devlink_cache == NULL)
devlink_cache = di_devlink_open(root_dir, 0);
/*
* If modules were unloaded, reload them. Also use module status
* as an indication that we should check to see if other binding
* files need to be reloaded.
*/
if (module_head == NULL) {
load_modules();
read_minor_perm_file();
read_driver_aliases_file();
read_devlinktab_file();
read_logindevperm_file();
read_enumerate_file();
}
if (module_head != NULL)
return;
if (strcmp(prog, DEVLINKS) == 0) {
if (devlinktab_list == NULL) {
err_print(NO_LINKTAB, devlinktab_file);
err_print(NO_MODULES, module_dirs);
err_print(ABORTING);
devfsadm_exit(1);
/*NOTREACHED*/
}
} else {
err_print(NO_MODULES, module_dirs);
if (strcmp(prog, DEVFSADM) == 0) {
err_print(MODIFY_PATH);
}
}
}
/*
* Unlock the device. If we are processing a CACHE_STATE call, we signal a
* minor_fini_thread delayed SYNC_STATE at the end of the call. If we are
* processing a SYNC_STATE call, we cancel any minor_fini_thread SYNC_STATE
* at both the start and end of the call since we will be doing the SYNC_STATE.
*/
static void
unlock_dev(int flag)
{
assert(flag == SYNC_STATE || flag == CACHE_STATE);
vprint(CHATTY_MID, "unlock_dev(): entered\n");
/* If we are starting a SYNC_STATE, cancel minor_fini_thread SYNC */
if (flag == SYNC_STATE) {
(void) mutex_lock(&minor_fini_mutex);
minor_fini_canceled = TRUE;
minor_fini_delayed = FALSE;
(void) mutex_unlock(&minor_fini_mutex);
}
if (build_dev == FALSE)
return;
if (devlink_cache == NULL) {
err_print(NO_DEVLINK_CACHE);
}
assert(devlink_cache);
if (flag == SYNC_STATE) {
unload_modules();
if (update_database)
(void) di_devlink_update(devlink_cache);
(void) di_devlink_close(&devlink_cache, 0);
/*
* now that the devlinks db cache has been flushed, it is safe
* to send any sysevents that were queued up.
*/
process_syseventq();
}
exit_dev_lock(0);
(void) mutex_lock(&minor_fini_mutex);
if (flag == SYNC_STATE) {
/* We did a SYNC_STATE, cancel minor_fini_thread SYNC */
minor_fini_canceled = TRUE;
minor_fini_delayed = FALSE;
} else {
/* We did a CACHE_STATE, start delayed minor_fini_thread SYNC */
minor_fini_canceled = FALSE;
minor_fini_delayed = TRUE;
(void) cond_signal(&minor_fini_cv);
}
(void) mutex_unlock(&minor_fini_mutex);
(void) sema_post(&dev_sema);
}
/*
* Check that if -r is set, it is not any part of a zone--- that is, that
* the zonepath is not a substring of the root path.
*/
static int
zone_pathcheck(char *checkpath)
{
void *dlhdl = NULL;
char *name;
char root[MAXPATHLEN]; /* resolved devfsadm root path */
char zroot[MAXPATHLEN]; /* zone root path */
char rzroot[MAXPATHLEN]; /* resolved zone root path */
char tmp[MAXPATHLEN];
FILE *cookie;
int err = DEVFSADM_SUCCESS;
if (checkpath[0] == '\0')
return (DEVFSADM_SUCCESS);
/*
* Check if zones is available on this system.
*/
if ((dlhdl = dlopen(LIBZONECFG_PATH, RTLD_LAZY)) == NULL) {
return (DEVFSADM_SUCCESS);
}
bzero(root, sizeof (root));
if (resolvepath(checkpath, root, sizeof (root) - 1) == -1) {
/*
* In this case the user has done "devfsadm -r" on some path
* which does not yet exist, or we got some other misc. error.
* We punt and don't resolve the path in this case.
*/
(void) strlcpy(root, checkpath, sizeof (root));
}
if (strlen(root) > 0 && (root[strlen(root) - 1] != '/')) {
(void) snprintf(tmp, sizeof (tmp), "%s/", root);
(void) strlcpy(root, tmp, sizeof (root));
}
cookie = setzoneent();
while ((name = getzoneent(cookie)) != NULL) {
/* Skip the global zone */
if (strcmp(name, GLOBAL_ZONENAME) == 0) {
free(name);
continue;
}
if (zone_get_zonepath(name, zroot, sizeof (zroot)) != Z_OK) {
free(name);
continue;
}
bzero(rzroot, sizeof (rzroot));
if (resolvepath(zroot, rzroot, sizeof (rzroot) - 1) == -1) {
/*
* Zone path doesn't exist, or other misc error,
* so we try using the non-resolved pathname.
*/
(void) strlcpy(rzroot, zroot, sizeof (rzroot));
}
if (strlen(rzroot) > 0 && (rzroot[strlen(rzroot) - 1] != '/')) {
(void) snprintf(tmp, sizeof (tmp), "%s/", rzroot);
(void) strlcpy(rzroot, tmp, sizeof (rzroot));
}
/*
* Finally, the comparison. If the zone root path is a
* leading substring of the root path, fail.
*/
if (strncmp(rzroot, root, strlen(rzroot)) == 0) {
err_print(ZONE_PATHCHECK, root, name);
err = DEVFSADM_FAILURE;
free(name);
break;
}
free(name);
}
endzoneent(cookie);
(void) dlclose(dlhdl);
return (err);
}
/*
* Called by the daemon when it receives an event from the devfsadm SLM
* to syseventd.
*
* The devfsadm SLM uses a private event channel for communication to
* devfsadmd set-up via private libsysevent interfaces. This handler is
* used to bind to the devfsadmd channel for event delivery.
* The devfsadmd SLM insures single calls to this routine as well as
* synchronized event delivery.
*
*/
static void
event_handler(sysevent_t *ev)
{
char *path;
char *minor;
char *subclass;
char *dev_ev_subclass;
char *driver_name;
nvlist_t *attr_list = NULL;
int err = 0;
int instance;
int branch_event = 0;
/*
* If this is event-driven, then we cannot trust the static devlist
* to be correct.
*/
event_driven = TRUE;
subclass = sysevent_get_subclass_name(ev);
vprint(EVENT_MID, "event_handler: %s id:0X%llx\n",
subclass, sysevent_get_seq(ev));
if (strcmp(subclass, ESC_DEVFS_START) == 0) {
return;
}
/* Check if event is an instance modification */
if (strcmp(subclass, ESC_DEVFS_INSTANCE_MOD) == 0) {
devfs_instance_mod();
return;
}
if (sysevent_get_attr_list(ev, &attr_list) != 0) {
vprint(EVENT_MID, "event_handler: can not get attr list\n");
return;
}
if (strcmp(subclass, ESC_DEVFS_DEVI_ADD) == 0 ||
strcmp(subclass, ESC_DEVFS_DEVI_REMOVE) == 0 ||
strcmp(subclass, ESC_DEVFS_MINOR_CREATE) == 0 ||
strcmp(subclass, ESC_DEVFS_MINOR_REMOVE) == 0) {
if ((err = nvlist_lookup_string(attr_list, DEVFS_PATHNAME,
&path)) != 0)
goto out;
if (nvlist_lookup_string(attr_list, DEVFS_DEVI_CLASS,
&dev_ev_subclass) != 0)
dev_ev_subclass = NULL;
if (nvlist_lookup_string(attr_list, DEVFS_DRIVER_NAME,
&driver_name) != 0)
driver_name = NULL;
if (nvlist_lookup_int32(attr_list, DEVFS_INSTANCE,
&instance) != 0)
instance = -1;
if (nvlist_lookup_int32(attr_list, DEVFS_BRANCH_EVENT,
&branch_event) != 0)
branch_event = 0;
if (nvlist_lookup_string(attr_list, DEVFS_MINOR_NAME,
&minor) != 0)
minor = NULL;
lock_dev();
if (strcmp(ESC_DEVFS_DEVI_ADD, subclass) == 0) {
add_minor_pathname(path, NULL, dev_ev_subclass);
if (branch_event) {
build_and_enq_event(EC_DEV_BRANCH,
ESC_DEV_BRANCH_ADD, path, DI_NODE_NIL,
NULL);
}
} else if (strcmp(ESC_DEVFS_MINOR_CREATE, subclass) == 0) {
add_minor_pathname(path, minor, dev_ev_subclass);
} else if (strcmp(ESC_DEVFS_MINOR_REMOVE, subclass) == 0) {
hot_cleanup(path, minor, dev_ev_subclass, driver_name,
instance);
} else { /* ESC_DEVFS_DEVI_REMOVE */
hot_cleanup(path, NULL, dev_ev_subclass,
driver_name, instance);
if (branch_event) {
build_and_enq_event(EC_DEV_BRANCH,
ESC_DEV_BRANCH_REMOVE, path, DI_NODE_NIL,
NULL);
}
}
unlock_dev(CACHE_STATE);
} else if (strcmp(subclass, ESC_DEVFS_BRANCH_ADD) == 0 ||
strcmp(subclass, ESC_DEVFS_BRANCH_REMOVE) == 0) {
if ((err = nvlist_lookup_string(attr_list,
DEVFS_PATHNAME, &path)) != 0)
goto out;
/* just log ESC_DEV_BRANCH... event */
if (strcmp(subclass, ESC_DEVFS_BRANCH_ADD) == 0)
dev_ev_subclass = ESC_DEV_BRANCH_ADD;
else
dev_ev_subclass = ESC_DEV_BRANCH_REMOVE;
lock_dev();
build_and_enq_event(EC_DEV_BRANCH, dev_ev_subclass, path,
DI_NODE_NIL, NULL);
unlock_dev(CACHE_STATE);
} else
err_print(UNKNOWN_EVENT, subclass);
out:
if (err)
err_print(EVENT_ATTR_LOOKUP_FAILED, strerror(err));
nvlist_free(attr_list);
}
static void
dca_impl_init(char *root, char *minor, struct dca_impl *dcip)
{
assert(root);
dcip->dci_root = root;
dcip->dci_minor = minor;
dcip->dci_driver = NULL;
dcip->dci_error = 0;
dcip->dci_flags = 0;
dcip->dci_arg = NULL;
}
/*
* Kernel logs a message when a devinfo node is attached. Try to create
* /dev and /devices for each minor node. minorname can be NULL.
*/
void
add_minor_pathname(char *node, char *minor, char *ev_subclass)
{
struct dca_impl dci;
vprint(CHATTY_MID, "add_minor_pathname: node_path=%s minor=%s\n",
node, minor ? minor : "NULL");
dca_impl_init(node, minor, &dci);
/*
* Restrict hotplug link creation if daemon
* started with -i option.
*/
if (single_drv == TRUE) {
dci.dci_driver = driver;
}
/*
* We are being invoked in response to a hotplug event.
*/
dci.dci_flags = DCA_HOT_PLUG | DCA_CHECK_TYPE;
devi_tree_walk(&dci, DINFOPROP|DINFOMINOR, ev_subclass);
}
static di_node_t
find_clone_node()
{
static di_node_t clone_node = DI_NODE_NIL;
if (clone_node == DI_NODE_NIL)
clone_node = di_init("/pseudo/clone@0", DINFOPROP);
return (clone_node);
}
static int
is_descendent_of(di_node_t node, char *driver)
{
while (node != DI_NODE_NIL) {
char *drv = di_driver_name(node);
if (strcmp(drv, driver) == 0)
return (1);
node = di_parent_node(node);
}
return (0);
}
/*
* Checks the minor type. If it is an alias node, then lookup
* the real node/minor first, then call minor_process() to
* do the real work.
*/
static int
check_minor_type(di_node_t node, di_minor_t minor, void *arg)
{
ddi_minor_type minor_type;
di_node_t clone_node;
char *mn;
char *nt;
struct mlist *dep;
struct dca_impl *dcip = arg;
assert(dcip);
dep = dcip->dci_arg;
mn = di_minor_name(minor);
/*
* We match driver here instead of in minor_process
* as we want the actual driver name. This check is
* unnecessary during deferred processing.
*/
if (dep &&
((dcip->dci_driver && !is_descendent_of(node, dcip->dci_driver)) ||
(dcip->dci_minor && strcmp(mn, dcip->dci_minor)))) {
return (DI_WALK_CONTINUE);
}
if ((dcip->dci_flags & DCA_CHECK_TYPE) &&
(nt = di_minor_nodetype(minor)) &&
(strcmp(nt, DDI_NT_NET) == 0)) {
dcip->dci_flags &= ~DCA_CHECK_TYPE;
}
minor_type = di_minor_type(minor);
if (minor_type == DDM_MINOR) {
minor_process(node, minor, dep);
} else if (minor_type == DDM_ALIAS) {
struct mlist *cdep, clone_del = {0};
clone_node = find_clone_node();
if (clone_node == DI_NODE_NIL) {
err_print(DI_INIT_FAILED, "clone", strerror(errno));
return (DI_WALK_CONTINUE);
}
cdep = dep ? &clone_del : NULL;
minor_process(clone_node, minor, cdep);
/*
* cache "alias" minor node and free "clone" minor
*/
if (cdep != NULL && cdep->head != NULL) {
assert(cdep->tail != NULL);
cache_deferred_minor(dep, node, minor);
dcip->dci_arg = cdep;
process_deferred_links(dcip, DCA_FREE_LIST);
dcip->dci_arg = dep;
}
}
return (DI_WALK_CONTINUE);
}
/*
* This is the entry point for each minor node, whether walking
* the entire tree via di_walk_minor() or processing a hotplug event
* for a single devinfo node (via hotplug ndi_devi_online()).
*/
/*ARGSUSED*/
static void
minor_process(di_node_t node, di_minor_t minor, struct mlist *dep)
{
create_list_t *create;
int defer;
vprint(CHATTY_MID, "minor_process: node=%s, minor=%s\n",
di_node_name(node), di_minor_name(minor));
if (dep != NULL) {
/*
* Reset /devices node to minor_perm perm/ownership
* if we are here to deactivate device allocation
*/
if (build_devices == TRUE) {
reset_node_permissions(node, minor);
}
if (build_dev == FALSE) {
return;
}
/*
* This function will create any nodes for /etc/devlink.tab.
* If devlink.tab handles link creation, we don't call any
* devfsadm modules since that could cause duplicate caching
* in the enumerate functions if different re strings are
* passed that are logically identical. I'm still not
* convinced this would cause any harm, but better to be safe.
*
* Deferred processing is available only for devlinks
* created through devfsadm modules.
*/
if (process_devlink_compat(minor, node) == TRUE) {
return;
}
} else {
vprint(CHATTY_MID, "minor_process: deferred processing\n");
}
/*
* look for relevant link create rules in the modules, and
* invoke the link create callback function to build a link
* if there is a match.
*/
defer = 0;
for (create = create_head; create != NULL; create = create->next) {
if ((minor_matches_rule(node, minor, create) == TRUE) &&
class_ok(create->create->device_class) ==
DEVFSADM_SUCCESS) {
if (call_minor_init(create->modptr) ==
DEVFSADM_FAILURE) {
continue;
}
/*
* If NOT doing the deferred creates (i.e. 1st pass) and
* rule requests deferred processing cache the minor
* data.
*
* If deferred processing (2nd pass), create links
* ONLY if rule requests deferred processing.
*/
if (dep && ((create->create->flags & CREATE_MASK) ==
CREATE_DEFER)) {
defer = 1;
continue;
} else if (dep == NULL &&
((create->create->flags & CREATE_MASK) !=
CREATE_DEFER)) {
continue;
}
if ((*(create->create->callback_fcn))
(minor, node) == DEVFSADM_TERMINATE) {
break;
}
}
}
if (defer)
cache_deferred_minor(dep, node, minor);
}
/*
* Cache node and minor in defer list.
*/
static void
cache_deferred_minor(
struct mlist *dep,
di_node_t node,
di_minor_t minor)
{
struct minor *mp;
const char *fcn = "cache_deferred_minor";
vprint(CHATTY_MID, "%s node=%s, minor=%s\n", fcn,
di_node_name(node), di_minor_name(minor));
if (dep == NULL) {
vprint(CHATTY_MID, "%s: cannot cache during "
"deferred processing. Ignoring minor\n", fcn);
return;
}
mp = (struct minor *)s_zalloc(sizeof (struct minor));
mp->node = node;
mp->minor = minor;
mp->next = NULL;
assert(dep->head == NULL || dep->tail != NULL);
if (dep->head == NULL) {
dep->head = mp;
} else {
dep->tail->next = mp;
}
dep->tail = mp;
}
/*
* Check to see if "create" link creation rule matches this node/minor.
* If it does, return TRUE.
*/
static int
minor_matches_rule(di_node_t node, di_minor_t minor, create_list_t *create)
{
char *m_nodetype, *m_drvname;
if (create->create->node_type != NULL) {
m_nodetype = di_minor_nodetype(minor);
assert(m_nodetype != NULL);
switch (create->create->flags & TYPE_MASK) {
case TYPE_EXACT:
if (strcmp(create->create->node_type, m_nodetype) !=
0) {
return (FALSE);
}
break;
case TYPE_PARTIAL:
if (strncmp(create->create->node_type, m_nodetype,
strlen(create->create->node_type)) != 0) {
return (FALSE);
}
break;
case TYPE_RE:
if (regexec(&(create->node_type_comp), m_nodetype,
0, NULL, 0) != 0) {
return (FALSE);
}
break;
}
}
if (create->create->drv_name != NULL) {
m_drvname = di_driver_name(node);
switch (create->create->flags & DRV_MASK) {
case DRV_EXACT:
if (strcmp(create->create->drv_name, m_drvname) != 0) {
return (FALSE);
}
break;
case DRV_RE:
if (regexec(&(create->drv_name_comp), m_drvname,
0, NULL, 0) != 0) {
return (FALSE);
}
break;
}
}
return (TRUE);
}
/*
* If no classes were given on the command line, then return DEVFSADM_SUCCESS.
* Otherwise, return DEVFSADM_SUCCESS if the device "class" from the module
* matches one of the device classes given on the command line,
* otherwise, return DEVFSADM_FAILURE.
*/
static int
class_ok(char *class)
{
int i;
if (num_classes == 0) {
return (DEVFSADM_SUCCESS);
}
for (i = 0; i < num_classes; i++) {
if (strcmp(class, classes[i]) == 0) {
return (DEVFSADM_SUCCESS);
}
}
return (DEVFSADM_FAILURE);
}
/*
* call minor_fini on active modules, then unload ALL modules
*/
static void
unload_modules(void)
{
module_t *module_free;
create_list_t *create_free;
remove_list_t *remove_free;
while (create_head != NULL) {
create_free = create_head;
create_head = create_head->next;
if ((create_free->create->flags & TYPE_RE) == TYPE_RE) {
regfree(&(create_free->node_type_comp));
}
if ((create_free->create->flags & DRV_RE) == DRV_RE) {
regfree(&(create_free->drv_name_comp));
}
free(create_free);
}
while (remove_head != NULL) {
remove_free = remove_head;
remove_head = remove_head->next;
free(remove_free);
}
while (module_head != NULL) {
if ((module_head->minor_fini != NULL) &&
((module_head->flags & MODULE_ACTIVE) == MODULE_ACTIVE)) {
(void) (*(module_head->minor_fini))();
}
vprint(MODLOAD_MID, "unloading module %s\n", module_head->name);
free(module_head->name);
(void) dlclose(module_head->dlhandle);
module_free = module_head;
module_head = module_head->next;
free(module_free);
}
}
/*
* Load devfsadm logical link processing modules.
*/
static void
load_modules(void)
{
DIR *mod_dir;
struct dirent *entp;
char cdir[PATH_MAX + 1];
char *last;
char *mdir = module_dirs;
char *fcn = "load_modules: ";
while (*mdir != '\0') {
while (*mdir == ':') {
mdir++;
}
if (*mdir == '\0') {
continue;
}
last = strchr(mdir, ':');
if (last == NULL) {
last = mdir + strlen(mdir);
}
(void) strncpy(cdir, mdir, last - mdir);
cdir[last - mdir] = '\0';
mdir += strlen(cdir);
if ((mod_dir = opendir(cdir)) == NULL) {
vprint(MODLOAD_MID, "%sopendir(%s): %s\n",
fcn, cdir, strerror(errno));
continue;
}
while ((entp = readdir(mod_dir)) != NULL) {
if ((strcmp(entp->d_name, ".") == 0) ||
(strcmp(entp->d_name, "..") == 0)) {
continue;
}
load_module(entp->d_name, cdir);
}
s_closedir(mod_dir);
}
}
static void
load_module(char *mname, char *cdir)
{
_devfsadm_create_reg_t *create_reg;
_devfsadm_remove_reg_V1_t *remove_reg;
create_list_t *create_list_element;
create_list_t **create_list_next;
remove_list_t *remove_list_element;
remove_list_t **remove_list_next;
char epath[PATH_MAX + 1], *end;
char *fcn = "load_module: ";
char *dlerrstr;
void *dlhandle;
module_t *module;
int flags;
int n;
int i;
/* ignore any file which does not end in '.so' */
if ((end = strstr(mname, MODULE_SUFFIX)) != NULL) {
if (end[strlen(MODULE_SUFFIX)] != '\0') {
return;
}
} else {
return;
}
(void) snprintf(epath, sizeof (epath), "%s/%s", cdir, mname);
if ((dlhandle = dlopen(epath, RTLD_LAZY)) == NULL) {
dlerrstr = dlerror();
err_print(DLOPEN_FAILED, epath,
dlerrstr ? dlerrstr : "unknown error");
return;
}
/* dlsym the _devfsadm_create_reg structure */
if (NULL == (create_reg = (_devfsadm_create_reg_t *)
dlsym(dlhandle, _DEVFSADM_CREATE_REG))) {
vprint(MODLOAD_MID, "dlsym(%s, %s): symbol not found\n", epath,
_DEVFSADM_CREATE_REG);
} else {
vprint(MODLOAD_MID, "%sdlsym(%s, %s) succeeded\n",
fcn, epath, _DEVFSADM_CREATE_REG);
}
/* dlsym the _devfsadm_remove_reg structure */
if (NULL == (remove_reg = (_devfsadm_remove_reg_V1_t *)
dlsym(dlhandle, _DEVFSADM_REMOVE_REG))) {
vprint(MODLOAD_MID, "dlsym(%s,\n\t%s): symbol not found\n",
epath, _DEVFSADM_REMOVE_REG);
} else {
vprint(MODLOAD_MID, "dlsym(%s, %s): succeeded\n",
epath, _DEVFSADM_REMOVE_REG);
}
vprint(MODLOAD_MID, "module %s loaded\n", epath);
module = (module_t *)s_malloc(sizeof (module_t));
module->name = s_strdup(epath);
module->dlhandle = dlhandle;
/* dlsym other module functions, to be called later */
module->minor_fini = (int (*)())dlsym(dlhandle, MINOR_FINI);
module->minor_init = (int (*)())dlsym(dlhandle, MINOR_INIT);
module->flags = 0;
/*
* put a ptr to each struct devfsadm_create on "create_head"
* list sorted in interpose_lvl.
*/
if (create_reg != NULL) {
for (i = 0; i < create_reg->count; i++) {
int flags = create_reg->tblp[i].flags;
create_list_element = (create_list_t *)
s_malloc(sizeof (create_list_t));
create_list_element->create = &(create_reg->tblp[i]);
create_list_element->modptr = module;
if (((flags & CREATE_MASK) != 0) &&
((flags & CREATE_MASK) != CREATE_DEFER)) {
free(create_list_element);
err_print("illegal flag combination in "
"module create\n");
err_print(IGNORING_ENTRY, i, epath);
continue;
}
if (((flags & TYPE_MASK) == 0) ^
(create_reg->tblp[i].node_type == NULL)) {
free(create_list_element);
err_print("flags value incompatible with "
"node_type value in module create\n");
err_print(IGNORING_ENTRY, i, epath);
continue;
}
if (((flags & TYPE_MASK) != 0) &&
((flags & TYPE_MASK) != TYPE_EXACT) &&
((flags & TYPE_MASK) != TYPE_RE) &&
((flags & TYPE_MASK) != TYPE_PARTIAL)) {
free(create_list_element);
err_print("illegal TYPE_* flag combination in "
"module create\n");
err_print(IGNORING_ENTRY, i, epath);
continue;
}
/* precompile regular expression for efficiency */
if ((flags & TYPE_RE) == TYPE_RE) {
if ((n = regcomp(&(create_list_element->
node_type_comp),
create_reg->tblp[i].node_type,
REG_EXTENDED)) != 0) {
free(create_list_element);
err_print(REGCOMP_FAILED,
create_reg->tblp[i].node_type, n);
err_print(IGNORING_ENTRY, i, epath);
continue;
}
}
if (((flags & DRV_MASK) == 0) ^
(create_reg->tblp[i].drv_name == NULL)) {
if ((flags & TYPE_RE) == TYPE_RE) {
regfree(&(create_list_element->
node_type_comp));
}
free(create_list_element);
err_print("flags value incompatible with "
"drv_name value in module create\n");
err_print(IGNORING_ENTRY, i, epath);
continue;
}
if (((flags & DRV_MASK) != 0) &&
((flags & DRV_MASK) != DRV_EXACT) &&
((flags & DRV_MASK) != DRV_RE)) {
if ((flags & TYPE_RE) == TYPE_RE) {
regfree(&(create_list_element->
node_type_comp));
}
free(create_list_element);
err_print("illegal DRV_* flag combination in "
"module create\n");
err_print(IGNORING_ENTRY, i, epath);
continue;
}
/* precompile regular expression for efficiency */
if ((create_reg->tblp[i].flags & DRV_RE) == DRV_RE) {
if ((n = regcomp(&(create_list_element->
drv_name_comp),
create_reg->tblp[i].drv_name,
REG_EXTENDED)) != 0) {
if ((flags & TYPE_RE) == TYPE_RE) {
regfree(&(create_list_element->
node_type_comp));
}
free(create_list_element);
err_print(REGCOMP_FAILED,
create_reg->tblp[i].drv_name, n);
err_print(IGNORING_ENTRY, i, epath);
continue;
}
}
/* add to list sorted by interpose level */
for (create_list_next = &(create_head);
(*create_list_next != NULL) &&
(*create_list_next)->create->interpose_lvl >=
create_list_element->create->interpose_lvl;
create_list_next = &((*create_list_next)->next))
;
create_list_element->next = *create_list_next;
*create_list_next = create_list_element;
}
}
/*
* put a ptr to each struct devfsadm_remove on "remove_head"
* list sorted by interpose_lvl.
*/
flags = 0;
if (remove_reg != NULL) {
if (remove_reg->version < DEVFSADM_V1)
flags |= RM_NOINTERPOSE;
for (i = 0; i < remove_reg->count; i++) {
remove_list_element = (remove_list_t *)
s_malloc(sizeof (remove_list_t));
remove_list_element->remove = &(remove_reg->tblp[i]);
remove_list_element->remove->flags |= flags;
remove_list_element->modptr = module;
for (remove_list_next = &(remove_head);
(*remove_list_next != NULL) &&
(*remove_list_next)->remove->interpose_lvl >=
remove_list_element->remove->interpose_lvl;
remove_list_next = &((*remove_list_next)->next))
;
remove_list_element->next = *remove_list_next;
*remove_list_next = remove_list_element;
}
}
module->next = module_head;
module_head = module;
}
/*
* After we have completed a CACHE_STATE, if a SYNC_STATE does not occur
* within 'timeout' secs the minor_fini_thread needs to do a SYNC_STATE
* so that we still call the minor_fini routines.
*/
/*ARGSUSED*/
static void
minor_fini_thread(void *arg)
{
timestruc_t abstime;
vprint(INITFINI_MID, "minor_fini_thread starting\n");
(void) mutex_lock(&minor_fini_mutex);
for (;;) {
/* wait the gather period, or until signaled */
abstime.tv_sec = time(NULL) + minor_fini_timeout;
abstime.tv_nsec = 0;
(void) cond_timedwait(&minor_fini_cv,
&minor_fini_mutex, &abstime);
/* if minor_fini was canceled, go wait again */
if (minor_fini_canceled == TRUE)
continue;
/* if minor_fini was delayed, go wait again */
if (minor_fini_delayed == TRUE) {
minor_fini_delayed = FALSE;
continue;
}
/* done with cancellations and delays, do the SYNC_STATE */
(void) mutex_unlock(&minor_fini_mutex);
lock_dev();
unlock_dev(SYNC_STATE);
vprint(INITFINI_MID, "minor_fini sync done\n");
(void) mutex_lock(&minor_fini_mutex);
}
}
/*
* Attempt to initialize module, if a minor_init routine exists. Set
* the active flag if the routine exists and succeeds. If it doesn't
* exist, just set the active flag.
*/
static int
call_minor_init(module_t *module)
{
char *fcn = "call_minor_init: ";
if ((module->flags & MODULE_ACTIVE) == MODULE_ACTIVE) {
return (DEVFSADM_SUCCESS);
}
vprint(INITFINI_MID, "%smodule %s. current state: inactive\n",
fcn, module->name);
if (module->minor_init == NULL) {
module->flags |= MODULE_ACTIVE;
vprint(INITFINI_MID, "minor_init not defined\n");
return (DEVFSADM_SUCCESS);
}
if ((*(module->minor_init))() == DEVFSADM_FAILURE) {
err_print(FAILED_FOR_MODULE, MINOR_INIT, module->name);
return (DEVFSADM_FAILURE);
}
vprint(INITFINI_MID, "minor_init() returns DEVFSADM_SUCCESS. "
"new state: active\n");
module->flags |= MODULE_ACTIVE;
return (DEVFSADM_SUCCESS);
}
/*
* Creates a symlink 'link' to the physical path of node:minor.
* Construct link contents, then call create_link_common().
*/
/*ARGSUSED*/
int
devfsadm_mklink(char *link, di_node_t node, di_minor_t minor, int flags)
{
char rcontents[PATH_MAX];
char devlink[PATH_MAX];
char phy_path[PATH_MAX];
char *acontents;
char *dev_path;
int numslashes;
int rv;
int i, link_exists;
int last_was_slash = FALSE;
/*
* try to use devices path
*/
if ((node == lnode) && (minor == lminor)) {
acontents = lphy_path;
} else if (di_minor_type(minor) == DDM_ALIAS) {
/* use /pseudo/clone@0:<driver> as the phys path */
(void) snprintf(phy_path, sizeof (phy_path),
"/pseudo/clone@0:%s",
di_driver_name(di_minor_devinfo(minor)));
acontents = phy_path;
} else {
if ((dev_path = di_devfs_path(node)) == NULL) {
err_print(DI_DEVFS_PATH_FAILED, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) snprintf(phy_path, sizeof (phy_path), "%s:%s",
dev_path, di_minor_name(minor));
di_devfs_path_free(dev_path);
acontents = phy_path;
}
/* prepend link with dev_dir contents */
(void) strlcpy(devlink, dev_dir, sizeof (devlink));
(void) strlcat(devlink, "/", sizeof (devlink));
(void) strlcat(devlink, link, sizeof (devlink));
/*
* Calculate # of ../ to add. Account for double '//' in path.
* Ignore all leading slashes.
*/
for (i = 0; link[i] == '/'; i++)
;
for (numslashes = 0; link[i] != '\0'; i++) {
if (link[i] == '/') {
if (last_was_slash == FALSE) {
numslashes++;
last_was_slash = TRUE;
}
} else {
last_was_slash = FALSE;
}
}
/* Don't count any trailing '/' */
if (link[i-1] == '/') {
numslashes--;
}
rcontents[0] = '\0';
do {
(void) strlcat(rcontents, "../", sizeof (rcontents));
} while (numslashes-- != 0);
(void) strlcat(rcontents, "devices", sizeof (rcontents));
(void) strlcat(rcontents, acontents, sizeof (rcontents));
if (devlinks_debug == TRUE) {
vprint(INFO_MID, "adding link %s ==> %s\n", devlink, rcontents);
}
if ((rv = create_link_common(devlink, rcontents, &link_exists))
== DEVFSADM_SUCCESS) {
linknew = TRUE;
add_link_to_cache(link, acontents);
} else {
linknew = FALSE;
}
if (link_exists == TRUE) {
/* Link exists or was just created */
(void) di_devlink_add_link(devlink_cache, link, rcontents,
DI_PRIMARY_LINK);
if (system_labeled && (flags & DA_ADD)) {
/*
* Add this to the list of allocatable devices. If this
* is a hotplugged, removable disk, add it as rmdisk.
*/
int instance = di_instance(node);
if ((flags & DA_CD) &&
(_da_check_for_usb(devlink, root_dir) == 1)) {
(void) da_add_list(&devlist, devlink, instance,
DA_ADD|DA_RMDISK);
update_devdb = DA_RMDISK;
} else if (linknew == TRUE) {
(void) da_add_list(&devlist, devlink, instance,
flags);
update_devdb = flags;
}
}
}
return (rv);
}
/*
* Creates a symlink link to primary_link. Calculates relative
* directory offsets, then calls link_common().
*/
/*ARGSUSED*/
int
devfsadm_secondary_link(char *link, char *primary_link, int flags)
{
char contents[PATH_MAX + 1];
char devlink[PATH_MAX + 1];
int rv, link_exists;
char *fpath;
char *tpath;
char *op;
/* prepend link with dev_dir contents */
(void) strcpy(devlink, dev_dir);
(void) strcat(devlink, "/");
(void) strcat(devlink, link);
/*
* building extra link, so use first link as link contents, but first
* make it relative.
*/
fpath = link;
tpath = primary_link;
op = contents;
while (*fpath == *tpath && *fpath != '\0') {
fpath++, tpath++;
}
/* Count directories to go up, if any, and add "../" */
while (*fpath != '\0') {
if (*fpath == '/') {
(void) strcpy(op, "../");
op += 3;
}
fpath++;
}
/*
* Back up to the start of the current path component, in
* case in the middle
*/
while (tpath != primary_link && *(tpath-1) != '/') {
tpath--;
}
(void) strcpy(op, tpath);
if (devlinks_debug == TRUE) {
vprint(INFO_MID, "adding extra link %s ==> %s\n",
devlink, contents);
}
if ((rv = create_link_common(devlink, contents, &link_exists))
== DEVFSADM_SUCCESS) {
/*
* we need to save the ultimate /devices contents, and not the
* secondary link, since hotcleanup only looks at /devices path.
* Since we don't have devices path here, we can try to get it
* by readlink'ing the secondary link. This assumes the primary
* link was created first.
*/
add_link_to_cache(link, lphy_path);
linknew = TRUE;
if (system_labeled &&
((flags & DA_AUDIO) && (flags & DA_ADD))) {
/*
* Add this device to the list of allocatable devices.
*/
int instance = 0;
op = strrchr(contents, '/');
op++;
(void) sscanf(op, "%d", &instance);
(void) da_add_list(&devlist, devlink, instance, flags);
update_devdb = flags;
}
} else {
linknew = FALSE;
}
/*
* If link exists or was just created, add it to the database
*/
if (link_exists == TRUE) {
(void) di_devlink_add_link(devlink_cache, link, contents,
DI_SECONDARY_LINK);
}
return (rv);
}
/* returns pointer to the devices directory */
char *
devfsadm_get_devices_dir()
{
return (devices_dir);
}
/*
* Does the actual link creation. VERBOSE_MID only used if there is
* a change. CHATTY_MID used otherwise.
*/
static int
create_link_common(char *devlink, char *contents, int *exists)
{
int try;
int linksize;
int max_tries = 0;
static int prev_link_existed = TRUE;
char checkcontents[PATH_MAX + 1];
char *hide;
*exists = FALSE;
/* Database is not updated when file_mods == FALSE */
if (file_mods == FALSE) {
/* we want *actual* link contents so no alias redirection */
linksize = readlink(devlink, checkcontents, PATH_MAX);
if (linksize > 0) {
checkcontents[linksize] = '\0';
if (strcmp(checkcontents, contents) != 0) {
vprint(CHATTY_MID, REMOVING_LINK,
devlink, checkcontents);
return (DEVFSADM_SUCCESS);
} else {
vprint(CHATTY_MID, "link exists and is correct:"
" %s -> %s\n", devlink, contents);
/* failure only in that the link existed */
return (DEVFSADM_FAILURE);
}
} else {
vprint(VERBOSE_MID, CREATING_LINK, devlink, contents);
return (DEVFSADM_SUCCESS);
}
}
/*
* systems calls are expensive, so predict whether to readlink
* or symlink first, based on previous attempt
*/
if (prev_link_existed == FALSE) {
try = CREATE_LINK;
} else {
try = READ_LINK;
}
while (++max_tries <= 3) {
switch (try) {
case CREATE_LINK:
if (symlink(contents, devlink) == 0) {
vprint(VERBOSE_MID, CREATING_LINK, devlink,
contents);
prev_link_existed = FALSE;
/* link successfully created */
*exists = TRUE;
set_logindev_perms(devlink);
return (DEVFSADM_SUCCESS);
} else {
switch (errno) {
case ENOENT:
/* dirpath to node doesn't exist */
hide = strrchr(devlink, '/');
*hide = '\0';
s_mkdirp(devlink, S_IRWXU|S_IRGRP|
S_IXGRP|S_IROTH|S_IXOTH);
*hide = '/';
break;
case EEXIST:
try = READ_LINK;
break;
default:
err_print(SYMLINK_FAILED, devlink,
contents, strerror(errno));
return (DEVFSADM_FAILURE);
}
}
break;
case READ_LINK:
/*
* If there is redirection, new phys path
* and old phys path will not match and the
* link will be created with new phys path
* which is what we want. So we want real
* contents.
*/
linksize = readlink(devlink, checkcontents, PATH_MAX);
if (linksize >= 0) {
checkcontents[linksize] = '\0';
if (strcmp(checkcontents, contents) != 0) {
s_unlink(devlink);
vprint(VERBOSE_MID, REMOVING_LINK,
devlink, checkcontents);
try = CREATE_LINK;
} else {
prev_link_existed = TRUE;
vprint(CHATTY_MID,
"link exists and is correct:"
" %s -> %s\n", devlink, contents);
*exists = TRUE;
/* failure in that the link existed */
return (DEVFSADM_FAILURE);
}
} else {
switch (errno) {
case EINVAL:
/* not a symlink, remove and create */
s_unlink(devlink);
default:
/* maybe it didn't exist at all */
try = CREATE_LINK;
break;
}
}
break;
}
}
err_print(MAX_ATTEMPTS, devlink, contents);
return (DEVFSADM_FAILURE);
}
static void
set_logindev_perms(char *devlink)
{
struct login_dev *newdev;
struct passwd pwd, *resp;
char pwd_buf[PATH_MAX];
int rv;
struct stat sb;
char *devfs_path = NULL;
/*
* We only want logindev perms to be set when a device is
* hotplugged or an application requests synchronous creates.
* So we enable this only in daemon mode. In addition,
* login(1) only fixes the std. /dev dir. So we don't
* change perms if alternate root is set.
* login_dev_enable is TRUE only in these cases.
*/
if (login_dev_enable != TRUE)
return;
/*
* Normally, /etc/logindevperm has few (8 - 10 entries) which
* may be regular expressions (globs were converted to RE).
* So just do a linear search through the list.
*/
for (newdev = login_dev_cache; newdev; newdev = newdev->ldev_next) {
vprint(FILES_MID, "matching %s with %s\n", devlink,
newdev->ldev_device);
if (regexec(&newdev->ldev_device_regex, devlink, 0,
NULL, 0) == 0) {
vprint(FILES_MID, "matched %s with %s\n", devlink,
newdev->ldev_device);
break;
}
}
if (newdev == NULL)
return;
/*
* we have a match, now find the driver associated with this
* minor node using a snapshot on the physical path
*/
(void) resolve_link(devlink, NULL, NULL, &devfs_path, 0);
/*
* We dont need redirection here - the actual link contents
* whether "alias" or "current" are fine
*/
if (devfs_path) {
di_node_t node;
char *drv;
struct driver_list *list;
char *p;
/* truncate on : so we can take a snapshot */
(void) strcpy(pwd_buf, devfs_path);
p = strrchr(pwd_buf, ':');
if (p == NULL) {
free(devfs_path);
return;
}
*p = '\0';
vprint(FILES_MID, "link=%s->physpath=%s\n",
devlink, pwd_buf);
node = di_init(pwd_buf, DINFOMINOR);
drv = NULL;
if (node) {
drv = di_driver_name(node);
if (drv) {
vprint(FILES_MID, "%s: driver is %s\n",
devlink, drv);
}
}
/* search thru the driver list specified in logindevperm */
list = newdev->ldev_driver_list;
if ((drv != NULL) && (list != NULL)) {
while (list) {
if (strcmp(list->driver_name,
drv) == 0) {
vprint(FILES_MID,
"driver %s match!\n", drv);
break;
}
list = list->next;
}
if (list == NULL) {
vprint(FILES_MID, "no driver match!\n");
free(devfs_path);
return;
}
}
free(devfs_path);
di_fini(node);
} else {
return;
}
vprint(FILES_MID, "changing permissions of %s\n", devlink);
/*
* We have a match. We now attempt to determine the
* owner and group of the console user.
*
* stat() the console device newdev->ldev_console
* which will always exist - it will have the right owner but
* not the right group. Use getpwuid_r() to determine group for this
* uid.
* Note, it is safe to use name service here since if name services
* are not available (during boot or in single-user mode), then
* console owner will be root and its gid can be found in
* local files.
*/
if (stat(newdev->ldev_console, &sb) == -1) {
vprint(VERBOSE_MID, STAT_FAILED, newdev->ldev_console,
strerror(errno));
return;
}
resp = NULL;
rv = getpwuid_r(sb.st_uid, &pwd, pwd_buf, sizeof (pwd_buf), &resp);
if (rv || resp == NULL) {
rv = rv ? rv : EINVAL;
vprint(VERBOSE_MID, GID_FAILED, sb.st_uid,
strerror(rv));
return;
}
assert(&pwd == resp);
sb.st_gid = resp->pw_gid;
if (chmod(devlink, newdev->ldev_perms) == -1) {
vprint(VERBOSE_MID, CHMOD_FAILED, devlink,
strerror(errno));
return;
}
if (chown(devlink, sb.st_uid, sb.st_gid) == -1) {
vprint(VERBOSE_MID, CHOWN_FAILED, devlink,
strerror(errno));
}
}
/*
* Reset /devices node with appropriate permissions and
* ownership as specified in /etc/minor_perm.
*/
static void
reset_node_permissions(di_node_t node, di_minor_t minor)
{
int spectype;
char phy_path[PATH_MAX + 1];
mode_t mode;
dev_t dev;
uid_t uid;
gid_t gid;
struct stat sb;
char *dev_path, *aminor = NULL;
/* lphy_path starts with / */
if ((dev_path = di_devfs_path(node)) == NULL) {
err_print(DI_DEVFS_PATH_FAILED, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) strcpy(lphy_path, dev_path);
di_devfs_path_free(dev_path);
(void) strcat(lphy_path, ":");
if (di_minor_type(minor) == DDM_ALIAS) {
char *driver;
aminor = di_minor_name(minor);
driver = di_driver_name(di_minor_devinfo(minor));
(void) strcat(lphy_path, driver);
} else
(void) strcat(lphy_path, di_minor_name(minor));
(void) strcpy(phy_path, devices_dir);
(void) strcat(phy_path, lphy_path);
lnode = node;
lminor = minor;
vprint(CHATTY_MID, "reset_node_permissions: phy_path=%s lphy_path=%s\n",
phy_path, lphy_path);
dev = di_minor_devt(minor);
spectype = di_minor_spectype(minor); /* block or char */
getattr(phy_path, aminor, spectype, dev, &mode, &uid, &gid);
/*
* compare and set permissions and ownership
*
* Under devfs, a quick insertion and removal of USB devices
* would cause stat of physical path to fail. In this case,
* we emit a verbose message, but don't print errors.
*/
if ((stat(phy_path, &sb) == -1) || (sb.st_rdev != dev)) {
vprint(VERBOSE_MID, NO_DEVFS_NODE, phy_path);
return;
}
/*
* If we are here for a new device
* If device allocation is on
* then
* set ownership to root:other and permissions to 0000
* else
* set ownership and permissions as specified in minor_perm
* If we are here for an existing device
* If device allocation is to be turned on
* then
* reset ownership to root:other and permissions to 0000
* else if device allocation is to be turned off
* reset ownership and permissions to those specified in
* minor_perm
* else
* preserve existing/user-modified ownership and
* permissions
*
* devfs indicates a new device by faking access time to be zero.
*/
if (sb.st_atime != 0) {
int i;
char *nt;
if ((devalloc_flag == 0) && (devalloc_is_on != 1))
/*
* Leave existing devices as they are if we are not
* turning device allocation on/off.
*/
return;
nt = di_minor_nodetype(minor);
if (nt == NULL)
return;
for (i = 0; devalloc_list[i]; i++) {
if (strcmp(nt, devalloc_list[i]) == 0)
/*
* One of the types recognized by devalloc,
* reset attrs.
*/
break;
}
if (devalloc_list[i] == NULL)
return;
}
if (file_mods == FALSE) {
/* Nothing more to do if simulating */
vprint(VERBOSE_MID, PERM_MSG, phy_path, uid, gid, mode);
return;
}
if ((devalloc_flag == DA_ON) ||
((devalloc_is_on == 1) && (devalloc_flag != DA_OFF))) {
/*
* we are here either to turn device allocation on or
* to add a new device while device allocation is on
* (and we've confirmed that we're not turning it
* off).
*/
mode = DEALLOC_MODE;
uid = DA_UID;
gid = DA_GID;
}
if ((devalloc_is_on == 1) || (devalloc_flag == DA_ON) ||
(sb.st_mode != mode)) {
if (chmod(phy_path, mode) == -1)
vprint(VERBOSE_MID, CHMOD_FAILED,
phy_path, strerror(errno));
}
if ((devalloc_is_on == 1) || (devalloc_flag == DA_ON) ||
(sb.st_uid != uid || sb.st_gid != gid)) {
if (chown(phy_path, uid, gid) == -1)
vprint(VERBOSE_MID, CHOWN_FAILED,
phy_path, strerror(errno));
}
/* Report that we actually did something */
vprint(VERBOSE_MID, PERM_MSG, phy_path, uid, gid, mode);
}
/*
* Removes logical link and the minor node it refers to. If file is a
* link, we recurse and try to remove the minor node (or link if path is
* a double link) that file's link contents refer to.
*/
static void
devfsadm_rm_work(char *file, int recurse, int file_type)
{
char *fcn = "devfsadm_rm_work: ";
int linksize;
char contents[PATH_MAX + 1];
char nextfile[PATH_MAX + 1];
char newfile[PATH_MAX + 1];
char *ptr;
vprint(REMOVE_MID, "%s%s\n", fcn, file);
/*
* Note: we don't remove /devices (non-links) entries because they are
* covered by devfs.
*/
if (file_type != TYPE_LINK) {
return;
}
/* split into multiple if's due to excessive indentations */
(void) strcpy(newfile, dev_dir);
(void) strcat(newfile, "/");
(void) strcat(newfile, file);
/*
* we dont care about the content of the symlink, so
* redirection is not needed.
*/
if ((recurse == TRUE) &&
((linksize = readlink(newfile, contents, PATH_MAX)) > 0)) {
contents[linksize] = '\0';
/*
* recurse if link points to another link
*/
if (is_minor_node(contents, &ptr) != DEVFSADM_TRUE) {
if (strncmp(contents, DEV "/", strlen(DEV) + 1) == 0) {
devfsadm_rm_work(&contents[strlen(DEV) + 1],
TRUE, TYPE_LINK);
} else {
if ((ptr = strrchr(file, '/')) != NULL) {
*ptr = '\0';
(void) strcpy(nextfile, file);
*ptr = '/';
(void) strcat(nextfile, "/");
} else {
(void) strcpy(nextfile, "");
}
(void) strcat(nextfile, contents);
devfsadm_rm_work(nextfile, TRUE, TYPE_LINK);
}
}
}
vprint(VERBOSE_MID, DEVFSADM_UNLINK, newfile);
if (file_mods == TRUE) {
rm_link_from_cache(file);
s_unlink(newfile);
rm_parent_dir_if_empty(newfile);
invalidate_enumerate_cache();
(void) di_devlink_rm_link(devlink_cache, file);
}
}
void
devfsadm_rm_link(char *file)
{
devfsadm_rm_work(file, FALSE, TYPE_LINK);
}
void
devfsadm_rm_all(char *file)
{
devfsadm_rm_work(file, TRUE, TYPE_LINK);
}
static int
s_rmdir(char *path)
{
int i;
char *rpath, *dir;
const char *fcn = "s_rmdir";
/*
* Certain directories are created at install time by packages.
* Some of them (listed in sticky_dirs[]) are required by apps
* and need to be present even when empty.
*/
vprint(REMOVE_MID, "%s: checking if %s is sticky\n", fcn, path);
rpath = path + strlen(dev_dir) + 1;
for (i = 0; (dir = sticky_dirs[i]) != NULL; i++) {
if (*rpath == *dir) {
if (strcmp(rpath, dir) == 0) {
vprint(REMOVE_MID, "%s: skipping sticky dir: "
"%s\n", fcn, path);
errno = EEXIST;
return (-1);
}
}
}
return (rmdir(path));
}
/*
* Try to remove any empty directories up the tree. It is assumed that
* pathname is a file that was removed, so start with its parent, and
* work up the tree.
*/
static void
rm_parent_dir_if_empty(char *pathname)
{
char *ptr, path[PATH_MAX + 1];
char *fcn = "rm_parent_dir_if_empty: ";
vprint(REMOVE_MID, "%schecking %s if empty\n", fcn, pathname);
(void) strcpy(path, pathname);
/*
* ascend up the dir tree, deleting all empty dirs.
* Return immediately if a dir is not empty.
*/
for (;;) {
if ((ptr = strrchr(path, '/')) == NULL) {
return;
}
*ptr = '\0';
if (finddev_emptydir(path)) {
/* directory is empty */
if (s_rmdir(path) == 0) {
vprint(REMOVE_MID,
"%sremoving empty dir %s\n", fcn, path);
} else if (errno == EEXIST) {
vprint(REMOVE_MID,
"%sfailed to remove dir: %s\n", fcn, path);
return;
}
} else {
/* some other file is here, so return */
vprint(REMOVE_MID, "%sdir not empty: %s\n", fcn, path);
return;
}
}
}
/*
* This function and all the functions it calls below were added to
* handle the unique problem with world wide names (WWN). The problem is
* that if a WWN device is moved to another address on the same controller
* its logical link will change, while the physical node remains the same.
* The result is that two logical links will point to the same physical path
* in /devices, the valid link and a stale link. This function will
* find all the stale nodes, though at a significant performance cost.
*
* Caching is used to increase performance.
* A cache will be built from disk if the cache tag doesn't already exist.
* The cache tag is a regular expression "dir_re", which selects a
* subset of disks to search from typically something like
* "dev/cXt[0-9]+d[0-9]+s[0-9]+". After the cache is built, consistency must
* be maintained, so entries are added as new links are created, and removed
* as old links are deleted. The whole cache is flushed if we are a daemon,
* and another devfsadm process ran in between.
*
* Once the cache is built, this function finds the cache which matches
* dir_re, and then it searches all links in that cache looking for
* any link whose contents match "valid_link_contents" with a corresponding link
* which does not match "valid_link". Any such matches are stale and removed.
*
* This happens outside the context of a "reparenting" so we dont need
* redirection.
*/
void
devfsadm_rm_stale_links(char *dir_re, char *valid_link, di_node_t node,
di_minor_t minor)
{
link_t *link;
linkhead_t *head;
char phy_path[PATH_MAX + 1];
char *valid_link_contents;
char *dev_path;
char rmlink[PATH_MAX + 1];
/*
* try to use devices path
*/
if ((node == lnode) && (minor == lminor)) {
valid_link_contents = lphy_path;
} else {
if ((dev_path = di_devfs_path(node)) == NULL) {
err_print(DI_DEVFS_PATH_FAILED, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) strcpy(phy_path, dev_path);
di_devfs_path_free(dev_path);
(void) strcat(phy_path, ":");
(void) strcat(phy_path, di_minor_name(minor));
valid_link_contents = phy_path;
}
/*
* As an optimization, check to make sure the corresponding
* devlink was just created before continuing.
*/
if (linknew == FALSE) {
return;
}
head = get_cached_links(dir_re);
assert(head->nextlink == NULL);
for (link = head->link; link != NULL; link = head->nextlink) {
/*
* See hot_cleanup() for why we do this
*/
head->nextlink = link->next;
if ((strcmp(link->contents, valid_link_contents) == 0) &&
(strcmp(link->devlink, valid_link) != 0)) {
vprint(CHATTY_MID, "removing %s -> %s\n"
"valid link is: %s -> %s\n",
link->devlink, link->contents,
valid_link, valid_link_contents);
/*
* Use a copy of the cached link name as the
* cache entry will go away during link removal
*/
(void) snprintf(rmlink, sizeof (rmlink), "%s",
link->devlink);
devfsadm_rm_link(rmlink);
}
}
}
/*
* Return previously created cache, or create cache.
*/
static linkhead_t *
get_cached_links(char *dir_re)
{
recurse_dev_t rd;
linkhead_t *linkhead;
int n;
vprint(BUILDCACHE_MID, "get_cached_links: %s\n", dir_re);
for (linkhead = headlinkhead; linkhead != NULL;
linkhead = linkhead->nexthead) {
if (strcmp(linkhead->dir_re, dir_re) == 0) {
return (linkhead);
}
}
/*
* This tag is not in cache, so add it, along with all its
* matching /dev entries. This is the only time we go to disk.
*/
linkhead = s_malloc(sizeof (linkhead_t));
linkhead->nexthead = headlinkhead;
headlinkhead = linkhead;
linkhead->dir_re = s_strdup(dir_re);
if ((n = regcomp(&(linkhead->dir_re_compiled), dir_re,
REG_EXTENDED)) != 0) {
err_print(REGCOMP_FAILED, dir_re, n);
}
linkhead->nextlink = NULL;
linkhead->link = NULL;
rd.fcn = build_devlink_list;
rd.data = (void *)linkhead;
vprint(BUILDCACHE_MID, "get_cached_links: calling recurse_dev_re\n");
/* call build_devlink_list for each directory in the dir_re RE */
if (dir_re[0] == '/') {
recurse_dev_re("/", &dir_re[1], &rd);
} else {
recurse_dev_re(dev_dir, dir_re, &rd);
}
return (linkhead);
}
static void
build_devlink_list(char *devlink, void *data)
{
char *fcn = "build_devlink_list: ";
char *ptr;
char *r_contents;
char *r_devlink;
char contents[PATH_MAX + 1];
char newlink[PATH_MAX + 1];
char stage_link[PATH_MAX + 1];
int linksize;
linkhead_t *linkhead = (linkhead_t *)data;
link_t *link;
int i = 0;
vprint(BUILDCACHE_MID, "%scheck_link: %s\n", fcn, devlink);
(void) strcpy(newlink, devlink);
do {
/*
* None of the consumers of this function need redirection
* so this readlink gets the "current" contents
*/
linksize = readlink(newlink, contents, PATH_MAX);
if (linksize <= 0) {
/*
* The first pass through the do loop we may readlink()
* non-symlink files(EINVAL) from false regexec matches.
* Suppress error messages in those cases or if the link
* content is the empty string.
*/
if (linksize < 0 && (i || errno != EINVAL))
err_print(READLINK_FAILED, "build_devlink_list",
newlink, strerror(errno));
return;
}
contents[linksize] = '\0';
i = 1;
if (is_minor_node(contents, &r_contents) == DEVFSADM_FALSE) {
/*
* assume that link contents is really a pointer to
* another link, so recurse and read its link contents.
*
* some link contents are absolute:
* /dev/audio -> /dev/sound/0
*/
if (strncmp(contents, DEV "/",
strlen(DEV) + strlen("/")) != 0) {
if ((ptr = strrchr(newlink, '/')) == NULL) {
vprint(REMOVE_MID, "%s%s -> %s invalid "
"link. missing '/'\n", fcn,
newlink, contents);
return;
}
*ptr = '\0';
(void) strcpy(stage_link, newlink);
*ptr = '/';
(void) strcat(stage_link, "/");
(void) strcat(stage_link, contents);
(void) strcpy(newlink, stage_link);
} else {
(void) strcpy(newlink, dev_dir);
(void) strcat(newlink, "/");
(void) strcat(newlink,
&contents[strlen(DEV) + strlen("/")]);
}
} else {
newlink[0] = '\0';
}
} while (newlink[0] != '\0');
if (strncmp(devlink, dev_dir, strlen(dev_dir)) != 0) {
vprint(BUILDCACHE_MID, "%sinvalid link: %s\n", fcn, devlink);
return;
}
r_devlink = devlink + strlen(dev_dir);
if (r_devlink[0] != '/')
return;
link = s_malloc(sizeof (link_t));
/* don't store the '/' after rootdir/dev */
r_devlink += 1;
vprint(BUILDCACHE_MID, "%scaching link: %s\n", fcn, r_devlink);
link->devlink = s_strdup(r_devlink);
link->contents = s_strdup(r_contents);
link->next = linkhead->link;
linkhead->link = link;
}
/*
* to be consistent, devlink must not begin with / and must be
* relative to /dev/, whereas physpath must contain / and be
* relative to /devices.
*/
static void
add_link_to_cache(char *devlink, char *physpath)
{
linkhead_t *linkhead;
link_t *link;
int added = 0;
if (file_mods == FALSE) {
return;
}
vprint(CACHE_MID, "add_link_to_cache: %s -> %s ",
devlink, physpath);
for (linkhead = headlinkhead; linkhead != NULL;
linkhead = linkhead->nexthead) {
if (regexec(&(linkhead->dir_re_compiled), devlink, 0, NULL, 0)
== 0) {
added++;
link = s_malloc(sizeof (link_t));
link->devlink = s_strdup(devlink);
link->contents = s_strdup(physpath);
link->next = linkhead->link;
linkhead->link = link;
}
}
vprint(CACHE_MID,
" %d %s\n", added, added == 0 ? "NOT ADDED" : "ADDED");
}
/*
* Remove devlink from cache. Devlink must be relative to /dev/ and not start
* with /.
*/
static void
rm_link_from_cache(char *devlink)
{
linkhead_t *linkhead;
link_t **linkp;
link_t *save;
vprint(CACHE_MID, "rm_link_from_cache enter: %s\n", devlink);
for (linkhead = headlinkhead; linkhead != NULL;
linkhead = linkhead->nexthead) {
if (regexec(&(linkhead->dir_re_compiled), devlink, 0, NULL, 0)
== 0) {
for (linkp = &(linkhead->link); *linkp != NULL; ) {
if ((strcmp((*linkp)->devlink, devlink) == 0)) {
save = *linkp;
*linkp = (*linkp)->next;
/*
* We are removing our caller's
* "next" link. Update the nextlink
* field in the head so that our
* callers accesses the next valid
* link
*/
if (linkhead->nextlink == save)
linkhead->nextlink = *linkp;
free(save->devlink);
free(save->contents);
free(save);
vprint(CACHE_MID, " %s FREED FROM "
"CACHE\n", devlink);
} else {
linkp = &((*linkp)->next);
}
}
}
}
}
static void
rm_all_links_from_cache()
{
linkhead_t *linkhead;
linkhead_t *nextlinkhead;
link_t *link;
link_t *nextlink;
vprint(CACHE_MID, "rm_all_links_from_cache\n");
for (linkhead = headlinkhead; linkhead != NULL;
linkhead = nextlinkhead) {
nextlinkhead = linkhead->nexthead;
assert(linkhead->nextlink == NULL);
for (link = linkhead->link; link != NULL; link = nextlink) {
nextlink = link->next;
free(link->devlink);
free(link->contents);
free(link);
}
regfree(&(linkhead->dir_re_compiled));
free(linkhead->dir_re);
free(linkhead);
}
headlinkhead = NULL;
}
/*
* Called when the kernel has modified the incore path_to_inst data. This
* function will schedule a flush of the data to the filesystem.
*/
static void
devfs_instance_mod(void)
{
char *fcn = "devfs_instance_mod: ";
vprint(PATH2INST_MID, "%senter\n", fcn);
/* signal instance thread */
(void) mutex_lock(&count_lock);
inst_count++;
(void) cond_signal(&cv);
(void) mutex_unlock(&count_lock);
}
static void
instance_flush_thread(void)
{
int i;
int idle;
for (;;) {
(void) mutex_lock(&count_lock);
while (inst_count == 0) {
(void) cond_wait(&cv, &count_lock);
}
inst_count = 0;
vprint(PATH2INST_MID, "signaled to flush path_to_inst."
" Enter delay loop\n");
/*
* Wait MAX_IDLE_DELAY seconds after getting the last flush
* path_to_inst event before invoking a flush, but never wait
* more than MAX_DELAY seconds after getting the first event.
*/
for (idle = 0, i = 0; i < MAX_DELAY; i++) {
(void) mutex_unlock(&count_lock);
(void) sleep(1);
(void) mutex_lock(&count_lock);
/* shorten the delay if we are idle */
if (inst_count == 0) {
idle++;
if (idle > MAX_IDLE_DELAY) {
break;
}
} else {
inst_count = idle = 0;
}
}
(void) mutex_unlock(&count_lock);
flush_path_to_inst();
}
}
/*
* Helper function for flush_path_to_inst() below; this routine calls the
* inst_sync syscall to flush the path_to_inst database to the given file.
*/
static int
do_inst_sync(char *filename, char *instfilename)
{
void (*sigsaved)(int);
int err = 0, flags = INST_SYNC_IF_REQUIRED;
struct stat sb;
if (stat(instfilename, &sb) == -1 && errno == ENOENT)
flags = INST_SYNC_ALWAYS;
vprint(INSTSYNC_MID, "do_inst_sync: about to flush %s\n", filename);
sigsaved = sigset(SIGSYS, SIG_IGN);
if (inst_sync(filename, flags) == -1)
err = errno;
(void) sigset(SIGSYS, sigsaved);
switch (err) {
case 0:
return (DEVFSADM_SUCCESS);
case EALREADY: /* no-op, path_to_inst already up to date */
return (EALREADY);
case ENOSYS:
err_print(CANT_LOAD_SYSCALL);
break;
case EPERM:
err_print(SUPER_TO_SYNC);
break;
default:
err_print(INSTSYNC_FAILED, filename, strerror(err));
break;
}
return (DEVFSADM_FAILURE);
}
/*
* Flush the kernel's path_to_inst database to /etc/path_to_inst. To do so
* safely, the database is flushed to a temporary file, then moved into place.
*
* The following files are used during this process:
* /etc/path_to_inst: The path_to_inst file
* /etc/path_to_inst.<pid>: Contains data flushed from the kernel
* /etc/path_to_inst.old: The backup file
* /etc/path_to_inst.old.<pid>: Temp file for creating backup
*
*/
static void
flush_path_to_inst(void)
{
char *new_inst_file = NULL;
char *old_inst_file = NULL;
char *old_inst_file_npid = NULL;
FILE *inst_file_fp = NULL;
FILE *old_inst_file_fp = NULL;
struct stat sb;
int err = 0;
int c;
int inst_strlen;
vprint(PATH2INST_MID, "flush_path_to_inst: %s\n",
(flush_path_to_inst_enable == TRUE) ? "ENABLED" : "DISABLED");
if (flush_path_to_inst_enable == FALSE) {
return;
}
inst_strlen = strlen(inst_file);
new_inst_file = s_malloc(inst_strlen + PID_STR_LEN + 2);
old_inst_file = s_malloc(inst_strlen + PID_STR_LEN + 6);
old_inst_file_npid = s_malloc(inst_strlen +
sizeof (INSTANCE_FILE_SUFFIX));
(void) snprintf(new_inst_file, inst_strlen + PID_STR_LEN + 2,
"%s.%ld", inst_file, getpid());
if (stat(new_inst_file, &sb) == 0) {
s_unlink(new_inst_file);
}
err = do_inst_sync(new_inst_file, inst_file);
if (err != DEVFSADM_SUCCESS) {
goto out;
/*NOTREACHED*/
}
/*
* Now we deal with the somewhat tricky updating and renaming
* of this critical piece of kernel state.
*/
/*
* Copy the current instance file into a temporary file.
* Then rename the temporary file into the backup (.old)
* file and rename the newly flushed kernel data into
* the instance file.
* Of course if 'inst_file' doesn't exist, there's much
* less for us to do .. tee hee.
*/
if ((inst_file_fp = fopen(inst_file, "r")) == NULL) {
/*
* No such file. Rename the new onto the old
*/
if ((err = rename(new_inst_file, inst_file)) != 0)
err_print(RENAME_FAILED, inst_file, strerror(errno));
goto out;
/*NOTREACHED*/
}
(void) snprintf(old_inst_file, inst_strlen + PID_STR_LEN + 6,
"%s.old.%ld", inst_file, getpid());
if (stat(old_inst_file, &sb) == 0) {
s_unlink(old_inst_file);
}
if ((old_inst_file_fp = fopen(old_inst_file, "w")) == NULL) {
/*
* Can't open the 'old_inst_file' file for writing.
* This is somewhat strange given that the syscall
* just succeeded to write a file out.. hmm.. maybe
* the fs just filled up or something nasty.
*
* Anyway, abort what we've done so far.
*/
err_print(CANT_UPDATE, old_inst_file);
err = DEVFSADM_FAILURE;
goto out;
/*NOTREACHED*/
}
/*
* Copy current instance file into the temporary file
*/
err = 0;
while ((c = getc(inst_file_fp)) != EOF) {
if ((err = putc(c, old_inst_file_fp)) == EOF) {
break;
}
}
if (fclose(old_inst_file_fp) == EOF || err == EOF) {
vprint(INFO_MID, CANT_UPDATE, old_inst_file);
err = DEVFSADM_FAILURE;
goto out;
/* NOTREACHED */
}
/*
* Set permissions to be the same on the backup as
* /etc/path_to_inst.
*/
(void) chmod(old_inst_file, 0444);
/*
* So far, everything we've done is more or less reversible.
* But now we're going to commit ourselves.
*/
(void) snprintf(old_inst_file_npid,
inst_strlen + sizeof (INSTANCE_FILE_SUFFIX),
"%s%s", inst_file, INSTANCE_FILE_SUFFIX);
if ((err = rename(old_inst_file, old_inst_file_npid)) != 0) {
err_print(RENAME_FAILED, old_inst_file_npid,
strerror(errno));
} else if ((err = rename(new_inst_file, inst_file)) != 0) {
err_print(RENAME_FAILED, inst_file, strerror(errno));
}
out:
if (inst_file_fp != NULL) {
if (fclose(inst_file_fp) == EOF) {
err_print(FCLOSE_FAILED, inst_file, strerror(errno));
}
}
if (stat(new_inst_file, &sb) == 0) {
s_unlink(new_inst_file);
}
free(new_inst_file);
if (stat(old_inst_file, &sb) == 0) {
s_unlink(old_inst_file);
}
free(old_inst_file);
free(old_inst_file_npid);
if (err != 0 && err != EALREADY) {
err_print(FAILED_TO_UPDATE, inst_file);
}
}
/*
* detach from tty. For daemon mode.
*/
void
detachfromtty()
{
(void) setsid();
if (DEVFSADM_DEBUG_ON == TRUE) {
return;
}
(void) close(0);
(void) close(1);
(void) close(2);
(void) open("/dev/null", O_RDWR, 0);
(void) dup(0);
(void) dup(0);
openlog(DEVFSADMD, LOG_PID, LOG_DAEMON);
(void) setlogmask(LOG_UPTO(LOG_INFO));
logflag = TRUE;
}
/*
* Use an advisory lock to synchronize updates to /dev. If the lock is
* held by another process, block in the fcntl() system call until that
* process drops the lock or exits. The lock file itself is
* DEV_LOCK_FILE. The process id of the current and last process owning
* the lock is kept in the lock file. After acquiring the lock, read the
* process id and return it. It is the process ID which last owned the
* lock, and will be used to determine if caches need to be flushed.
*
* NOTE: if the devlink database is held open by the caller, it may
* be closed by this routine. This is to enforce the following lock ordering:
* 1) /dev lock 2) database open
*/
pid_t
enter_dev_lock()
{
struct flock lock;
int n;
pid_t pid;
pid_t last_owner_pid;
if (file_mods == FALSE) {
return (0);
}
(void) snprintf(dev_lockfile, sizeof (dev_lockfile),
"%s/%s", etc_dev_dir, DEV_LOCK_FILE);
vprint(LOCK_MID, "enter_dev_lock: lock file %s\n", dev_lockfile);
dev_lock_fd = open(dev_lockfile, O_CREAT|O_RDWR, 0644);
if (dev_lock_fd < 0) {
err_print(OPEN_FAILED, dev_lockfile, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
/* try for the lock, but don't wait */
if (fcntl(dev_lock_fd, F_SETLK, &lock) == -1) {
if ((errno == EACCES) || (errno == EAGAIN)) {
pid = 0;
n = read(dev_lock_fd, &pid, sizeof (pid_t));
vprint(LOCK_MID, "waiting for PID %d to complete\n",
(int)pid);
if (lseek(dev_lock_fd, 0, SEEK_SET) == (off_t)-1) {
err_print(LSEEK_FAILED, dev_lockfile,
strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
/*
* wait for the dev lock. If we have the database open,
* close it first - the order of lock acquisition should
* always be: 1) dev_lock 2) database
* This is to prevent deadlocks with any locks the
* database code may hold.
*/
(void) di_devlink_close(&devlink_cache, 0);
/* send any sysevents that were queued up. */
process_syseventq();
if (fcntl(dev_lock_fd, F_SETLKW, &lock) == -1) {
err_print(LOCK_FAILED, dev_lockfile,
strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
}
}
hold_dev_lock = TRUE;
pid = 0;
n = read(dev_lock_fd, &pid, sizeof (pid_t));
if (n == sizeof (pid_t) && pid == getpid()) {
return (pid);
}
last_owner_pid = pid;
if (lseek(dev_lock_fd, 0, SEEK_SET) == (off_t)-1) {
err_print(LSEEK_FAILED, dev_lockfile, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
pid = getpid();
n = write(dev_lock_fd, &pid, sizeof (pid_t));
if (n != sizeof (pid_t)) {
err_print(WRITE_FAILED, dev_lockfile, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
return (last_owner_pid);
}
/*
* Drop the advisory /dev lock, close lock file. Close and re-open the
* file every time so to ensure a resync if for some reason the lock file
* gets removed.
*/
void
exit_dev_lock(int exiting)
{
struct flock unlock;
if (hold_dev_lock == FALSE) {
return;
}
vprint(LOCK_MID, "exit_dev_lock: lock file %s, exiting = %d\n",
dev_lockfile, exiting);
unlock.l_type = F_UNLCK;
unlock.l_whence = SEEK_SET;
unlock.l_start = 0;
unlock.l_len = 0;
if (fcntl(dev_lock_fd, F_SETLK, &unlock) == -1) {
err_print(UNLOCK_FAILED, dev_lockfile, strerror(errno));
}
hold_dev_lock = FALSE;
if (close(dev_lock_fd) == -1) {
err_print(CLOSE_FAILED, dev_lockfile, strerror(errno));
if (!exiting)
devfsadm_exit(1);
/*NOTREACHED*/
}
}
/*
*
* Use an advisory lock to ensure that only one daemon process is active
* in the system at any point in time. If the lock is held by another
* process, do not block but return the pid owner of the lock to the
* caller immediately. The lock is cleared if the holding daemon process
* exits for any reason even if the lock file remains, so the daemon can
* be restarted if necessary. The lock file is DAEMON_LOCK_FILE.
*/
pid_t
enter_daemon_lock(void)
{
struct flock lock;
(void) snprintf(daemon_lockfile, sizeof (daemon_lockfile),
"%s/%s", etc_dev_dir, DAEMON_LOCK_FILE);
vprint(LOCK_MID, "enter_daemon_lock: lock file %s\n", daemon_lockfile);
daemon_lock_fd = open(daemon_lockfile, O_CREAT|O_RDWR, 0644);
if (daemon_lock_fd < 0) {
err_print(OPEN_FAILED, daemon_lockfile, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(daemon_lock_fd, F_SETLK, &lock) == -1) {
if (errno == EAGAIN || errno == EDEADLK) {
if (fcntl(daemon_lock_fd, F_GETLK, &lock) == -1) {
err_print(LOCK_FAILED, daemon_lockfile,
strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
return (lock.l_pid);
}
}
hold_daemon_lock = TRUE;
return (getpid());
}
/*
* Drop the advisory daemon lock, close lock file
*/
void
exit_daemon_lock(int exiting)
{
struct flock lock;
if (hold_daemon_lock == FALSE) {
return;
}
vprint(LOCK_MID, "exit_daemon_lock: lock file %s, exiting = %d\n",
daemon_lockfile, exiting);
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(daemon_lock_fd, F_SETLK, &lock) == -1) {
err_print(UNLOCK_FAILED, daemon_lockfile, strerror(errno));
}
if (close(daemon_lock_fd) == -1) {
err_print(CLOSE_FAILED, daemon_lockfile, strerror(errno));
if (!exiting)
devfsadm_exit(1);
/*NOTREACHED*/
}
}
/*
* Called to removed danging nodes in two different modes: RM_PRE, RM_POST.
* RM_PRE mode is called before processing the entire devinfo tree, and RM_POST
* is called after processing the entire devinfo tree.
*/
static void
pre_and_post_cleanup(int flags)
{
remove_list_t *rm;
recurse_dev_t rd;
cleanup_data_t cleanup_data;
char *fcn = "pre_and_post_cleanup: ";
if (build_dev == FALSE)
return;
vprint(CHATTY_MID, "attempting %s-cleanup\n",
flags == RM_PRE ? "pre" : "post");
vprint(REMOVE_MID, "%sflags = %d\n", fcn, flags);
/*
* the generic function recurse_dev_re is shared among different
* functions, so set the method and data that it should use for
* matches.
*/
rd.fcn = matching_dev;
rd.data = (void *)&cleanup_data;
cleanup_data.flags = flags;
(void) mutex_lock(&nfp_mutex);
nfphash_create();
for (rm = remove_head; rm != NULL; rm = rm->next) {
if ((flags & rm->remove->flags) == flags) {
cleanup_data.rm = rm;
/*
* If reached this point, RM_PRE or RM_POST cleanup is
* desired. clean_ok() decides whether to clean
* under the given circumstances.
*/
vprint(REMOVE_MID, "%scleanup: PRE or POST\n", fcn);
if (clean_ok(rm->remove) == DEVFSADM_SUCCESS) {
vprint(REMOVE_MID, "cleanup: cleanup OK\n");
recurse_dev_re(dev_dir,
rm->remove->dev_dirs_re, &rd);
}
}
}
nfphash_destroy();
(void) mutex_unlock(&nfp_mutex);
}
/*
* clean_ok() determines whether cleanup should be done according
* to the following matrix:
*
* command line arguments RM_PRE RM_POST RM_PRE && RM_POST &&
* RM_ALWAYS RM_ALWAYS
* ---------------------- ------ ----- --------- ----------
*
* <neither -c nor -C> - - pre-clean post-clean
*
* -C pre-clean post-clean pre-clean post-clean
*
* -C -c class pre-clean post-clean pre-clean post-clean
* if class if class if class if class
* matches matches matches matches
*
* -c class - - pre-clean post-clean
* if class if class
* matches matches
*
*/
static int
clean_ok(devfsadm_remove_V1_t *remove)
{
int i;
if (single_drv == TRUE) {
/* no cleanup at all when using -i option */
return (DEVFSADM_FAILURE);
}
/*
* no cleanup if drivers are not loaded. We make an exception
* for the "disks" program however, since disks has a public
* cleanup flag (-C) and disk drivers are usually never
* unloaded.
*/
if (load_attach_drv == FALSE && strcmp(prog, DISKS) != 0) {
return (DEVFSADM_FAILURE);
}
/* if the cleanup flag was not specified, return false */
if ((cleanup == FALSE) && ((remove->flags & RM_ALWAYS) == 0)) {
return (DEVFSADM_FAILURE);
}
if (num_classes == 0) {
return (DEVFSADM_SUCCESS);
}
/*
* if reached this point, check to see if the class in the given
* remove structure matches a class given on the command line
*/
for (i = 0; i < num_classes; i++) {
if (strcmp(remove->device_class, classes[i]) == 0) {
return (DEVFSADM_SUCCESS);
}
}
return (DEVFSADM_FAILURE);
}
/*
* Called to remove dangling nodes after receiving a hotplug event
* containing the physical node pathname to be removed.
*/
void
hot_cleanup(char *node_path, char *minor_name, char *ev_subclass,
char *driver_name, int instance)
{
link_t *link;
linkhead_t *head;
remove_list_t *rm;
char *fcn = "hot_cleanup: ";
char path[PATH_MAX + 1];
int path_len;
char rmlink[PATH_MAX + 1];
nvlist_t *nvl = NULL;
int skip;
int ret;
/*
* dev links can go away as part of hot cleanup.
* So first build event attributes in order capture dev links.
*/
if (ev_subclass != NULL)
nvl = build_event_attributes(EC_DEV_REMOVE, ev_subclass,
node_path, DI_NODE_NIL, driver_name, instance, minor_name);
(void) strcpy(path, node_path);
(void) strcat(path, ":");
(void) strcat(path, minor_name == NULL ? "" : minor_name);
path_len = strlen(path);
vprint(REMOVE_MID, "%spath=%s\n", fcn, path);
(void) mutex_lock(&nfp_mutex);
nfphash_create();
for (rm = remove_head; rm != NULL; rm = rm->next) {
if ((RM_HOT & rm->remove->flags) == RM_HOT) {
head = get_cached_links(rm->remove->dev_dirs_re);
assert(head->nextlink == NULL);
for (link = head->link;
link != NULL; link = head->nextlink) {
/*
* The remove callback below may remove
* the current and/or any or all of the
* subsequent links in the list.
* Save the next link in the head. If
* the callback removes the next link
* the saved pointer in the head will be
* updated by the callback to point at
* the next valid link.
*/
head->nextlink = link->next;
/*
* if devlink is in no-further-process hash,
* skip its remove
*/
if (nfphash_lookup(link->devlink) != NULL)
continue;
if (minor_name)
skip = strcmp(link->contents, path);
else
skip = strncmp(link->contents, path,
path_len);
if (skip ||
(call_minor_init(rm->modptr) ==
DEVFSADM_FAILURE))
continue;
vprint(REMOVE_MID,
"%sremoving %s -> %s\n", fcn,
link->devlink, link->contents);
/*
* Use a copy of the cached link name
* as the cache entry will go away
* during link removal
*/
(void) snprintf(rmlink, sizeof (rmlink),
"%s", link->devlink);
if (rm->remove->flags & RM_NOINTERPOSE) {
((void (*)(char *))
(rm->remove->callback_fcn))(rmlink);
} else {
ret = ((int (*)(char *))
(rm->remove->callback_fcn))(rmlink);
if (ret == DEVFSADM_TERMINATE)
nfphash_insert(rmlink);
}
}
}
}
nfphash_destroy();
(void) mutex_unlock(&nfp_mutex);
/* update device allocation database */
if (system_labeled) {
int devtype = 0;
if (strstr(path, DA_SOUND_NAME))
devtype = DA_AUDIO;
else if (strstr(path, "storage"))
devtype = DA_RMDISK;
else if (strstr(path, "disk"))
devtype = DA_RMDISK;
else if (strstr(path, "floppy"))
/* TODO: detect usb cds and floppies at insert time */
devtype = DA_RMDISK;
else
goto out;
(void) _update_devalloc_db(&devlist, devtype, DA_REMOVE,
node_path, root_dir);
}
out:
/* now log an event */
if (nvl) {
log_event(EC_DEV_REMOVE, ev_subclass, nvl);
free(nvl);
}
}
/*
* Open the dir current_dir. For every file which matches the first dir
* component of path_re, recurse. If there are no more *dir* path
* components left in path_re (ie no more /), then call function rd->fcn.
*/
static void
recurse_dev_re(char *current_dir, char *path_re, recurse_dev_t *rd)
{
regex_t re1;
char *slash;
char new_path[PATH_MAX + 1];
char *anchored_path_re;
size_t len;
finddevhdl_t fhandle;
const char *fp;
vprint(RECURSEDEV_MID, "recurse_dev_re: curr = %s path=%s\n",
current_dir, path_re);
if (finddev_readdir(current_dir, &fhandle) != 0)
return;
len = strlen(path_re);
if ((slash = strchr(path_re, '/')) != NULL) {
len = (slash - path_re);
}
anchored_path_re = s_malloc(len + 3);
(void) sprintf(anchored_path_re, "^%.*s$", len, path_re);
if (regcomp(&re1, anchored_path_re, REG_EXTENDED) != 0) {
free(anchored_path_re);
goto out;
}
free(anchored_path_re);
while ((fp = finddev_next(fhandle)) != NULL) {
if (regexec(&re1, fp, 0, NULL, 0) == 0) {
/* match */
(void) strcpy(new_path, current_dir);
(void) strcat(new_path, "/");
(void) strcat(new_path, fp);
vprint(RECURSEDEV_MID, "recurse_dev_re: match, new "
"path = %s\n", new_path);
if (slash != NULL) {
recurse_dev_re(new_path, slash + 1, rd);
} else {
/* reached the leaf component of path_re */
vprint(RECURSEDEV_MID,
"recurse_dev_re: calling fcn\n");
(*(rd->fcn))(new_path, rd->data);
}
}
}
regfree(&re1);
out:
finddev_close(fhandle);
}
/*
* Found a devpath which matches a RE in the remove structure.
* Now check to see if it is dangling.
*/
static void
matching_dev(char *devpath, void *data)
{
cleanup_data_t *cleanup_data = data;
int norm_len = strlen(dev_dir) + strlen("/");
int ret;
char *fcn = "matching_dev: ";
vprint(RECURSEDEV_MID, "%sexamining devpath = '%s'\n", fcn,
devpath);
/*
* If the link is in the no-further-process hash
* don't do any remove operation on it.
*/
if (nfphash_lookup(devpath + norm_len) != NULL)
return;
/*
* Dangling check will work whether "alias" or "current"
* so no need to redirect.
*/
if (resolve_link(devpath, NULL, NULL, NULL, 1) == TRUE) {
if (call_minor_init(cleanup_data->rm->modptr) ==
DEVFSADM_FAILURE) {
return;
}
devpath += norm_len;
vprint(RECURSEDEV_MID, "%scalling callback %s\n", fcn, devpath);
if (cleanup_data->rm->remove->flags & RM_NOINTERPOSE)
((void (*)(char *))
(cleanup_data->rm->remove->callback_fcn))(devpath);
else {
ret = ((int (*)(char *))
(cleanup_data->rm->remove->callback_fcn))(devpath);
if (ret == DEVFSADM_TERMINATE) {
/*
* We want no further remove processing for
* this link. Add it to the nfp_hash;
*/
nfphash_insert(devpath);
}
}
}
}
int
devfsadm_read_link(di_node_t anynode, char *link, char **devfs_path)
{
char devlink[PATH_MAX];
char *path;
*devfs_path = NULL;
/* prepend link with dev_dir contents */
(void) strcpy(devlink, dev_dir);
(void) strcat(devlink, "/");
(void) strcat(devlink, link);
/* We *don't* want a stat of the /devices node */
path = NULL;
(void) resolve_link(devlink, NULL, NULL, &path, 0);
if (path != NULL) {
/* redirect if alias to current */
*devfs_path = di_alias2curr(anynode, path);
free(path);
}
return (*devfs_path ? DEVFSADM_SUCCESS : DEVFSADM_FAILURE);
}
int
devfsadm_link_valid(di_node_t anynode, char *link)
{
struct stat sb;
char devlink[PATH_MAX + 1], *contents, *raw_contents;
int rv, type;
int instance = 0;
/* prepend link with dev_dir contents */
(void) strcpy(devlink, dev_dir);
(void) strcat(devlink, "/");
(void) strcat(devlink, link);
if (!device_exists(devlink) || lstat(devlink, &sb) != 0) {
return (DEVFSADM_FALSE);
}
raw_contents = NULL;
type = 0;
if (resolve_link(devlink, &raw_contents, &type, NULL, 1) == TRUE) {
rv = DEVFSADM_FALSE;
} else {
rv = DEVFSADM_TRUE;
}
/*
* resolve alias paths for primary links
*/
contents = raw_contents;
if (type == DI_PRIMARY_LINK) {
contents = di_alias2curr(anynode, raw_contents);
free(raw_contents);
}
/*
* The link exists. Add it to the database
*/
(void) di_devlink_add_link(devlink_cache, link, contents, type);
if (system_labeled && (rv == DEVFSADM_TRUE) &&
strstr(devlink, DA_AUDIO_NAME) && contents) {
(void) sscanf(contents, "%*[a-z]%d", &instance);
(void) da_add_list(&devlist, devlink, instance,
DA_ADD|DA_AUDIO);
_update_devalloc_db(&devlist, 0, DA_ADD, NULL, root_dir);
}
free(contents);
return (rv);
}
/*
* devpath: Absolute path to /dev link
* content_p: Returns malloced string (link content)
* type_p: Returns link type: primary or secondary
* devfs_path: Returns malloced string: /devices path w/out "/devices"
* dangle: if set, check if link is dangling
* Returns:
* TRUE if dangling
* FALSE if not or if caller doesn't care
* Caller is assumed to have initialized pointer contents to NULL
*
*/
static int
resolve_link(char *devpath, char **content_p, int *type_p, char **devfs_path,
int dangle)
{
char contents[PATH_MAX + 1];
char stage_link[PATH_MAX + 1];
char *fcn = "resolve_link: ";
char *ptr;
int linksize;
int rv = TRUE;
struct stat sb;
/*
* This routine will return the "raw" contents. It is upto the
* the caller to redirect "alias" to "current" (or vice versa)
*/
linksize = readlink(devpath, contents, PATH_MAX);
if (linksize <= 0) {
return (FALSE);
} else {
contents[linksize] = '\0';
}
vprint(REMOVE_MID, "%s %s -> %s\n", fcn, devpath, contents);
if (content_p) {
*content_p = s_strdup(contents);
}
/*
* Check to see if this is a link pointing to another link in /dev. The
* cheap way to do this is to look for a lack of ../devices/.
*/
if (is_minor_node(contents, &ptr) == DEVFSADM_FALSE) {
if (type_p) {
*type_p = DI_SECONDARY_LINK;
}
/*
* assume that linkcontents is really a pointer to another
* link, and if so recurse and read its link contents.
*/
if (strncmp(contents, DEV "/", strlen(DEV) + 1) == 0) {
(void) strcpy(stage_link, dev_dir);
(void) strcat(stage_link, "/");
(void) strcpy(stage_link,
&contents[strlen(DEV) + strlen("/")]);
} else {
if ((ptr = strrchr(devpath, '/')) == NULL) {
vprint(REMOVE_MID, "%s%s -> %s invalid link. "
"missing '/'\n", fcn, devpath, contents);
return (TRUE);
}
*ptr = '\0';
(void) strcpy(stage_link, devpath);
*ptr = '/';
(void) strcat(stage_link, "/");
(void) strcat(stage_link, contents);
}
return (resolve_link(stage_link, NULL, NULL, devfs_path,
dangle));
}
/* Current link points at a /devices minor node */
if (type_p) {
*type_p = DI_PRIMARY_LINK;
}
if (devfs_path)
*devfs_path = s_strdup(ptr);
rv = FALSE;
if (dangle)
rv = (stat(ptr - strlen(DEVICES), &sb) == -1);
vprint(REMOVE_MID, "%slink=%s, returning %s\n", fcn,
devpath, ((rv == TRUE) ? "TRUE" : "FALSE"));
return (rv);
}
/*
* Returns the substring of interest, given a path.
*/
static char *
alloc_cmp_str(const char *path, devfsadm_enumerate_t *dep)
{
uint_t match;
char *np, *ap, *mp;
char *cmp_str = NULL;
char at[] = "@";
char *fcn = "alloc_cmp_str";
np = ap = mp = NULL;
/*
* extract match flags from the flags argument.
*/
match = (dep->flags & MATCH_MASK);
vprint(ENUM_MID, "%s: enumeration match type: 0x%x"
" path: %s\n", fcn, match, path);
/*
* MATCH_CALLBACK and MATCH_ALL are the only flags
* which may be used if "path" is a /dev path
*/
if (match == MATCH_CALLBACK) {
if (dep->sel_fcn == NULL) {
vprint(ENUM_MID, "%s: invalid enumerate"
" callback: path: %s\n", fcn, path);
return (NULL);
}
cmp_str = dep->sel_fcn(path, dep->cb_arg);
return (cmp_str);
}
cmp_str = s_strdup(path);
if (match == MATCH_ALL) {
return (cmp_str);
}
/*
* The remaining flags make sense only for /devices
* paths
*/
if ((mp = strrchr(cmp_str, ':')) == NULL) {
vprint(ENUM_MID, "%s: invalid path: %s\n",
fcn, path);
goto err;
}
if (match == MATCH_MINOR) {
/* A NULL "match_arg" values implies entire minor */
if (get_component(mp + 1, dep->match_arg) == NULL) {
vprint(ENUM_MID, "%s: invalid minor component:"
" path: %s\n", fcn, path);
goto err;
}
return (cmp_str);
}
if ((np = strrchr(cmp_str, '/')) == NULL) {
vprint(ENUM_MID, "%s: invalid path: %s\n", fcn, path);
goto err;
}
if (match == MATCH_PARENT) {
if (strcmp(cmp_str, "/") == 0) {
vprint(ENUM_MID, "%s: invalid path: %s\n",
fcn, path);
goto err;
}
if (np == cmp_str) {
*(np + 1) = '\0';
} else {
*np = '\0';
}
return (cmp_str);
}
/* ap can be NULL - Leaf address may not exist or be empty string */
ap = strchr(np+1, '@');
/* minor is no longer of interest */
*mp = '\0';
if (match == MATCH_NODE) {
if (ap)
*ap = '\0';
return (cmp_str);
} else if (match == MATCH_ADDR) {
/*
* The empty string is a valid address. The only MATCH_ADDR
* allowed in this case is against the whole address or
* the first component of the address (match_arg=NULL/"0"/"1")
* Note that in this case, the path won't have an "@"
* As a result ap will be NULL. We fake up an ap = @'\0'
* so that get_component() will work correctly.
*/
if (ap == NULL) {
ap = at;
}
if (get_component(ap + 1, dep->match_arg) == NULL) {
vprint(ENUM_MID, "%s: invalid leaf addr. component:"
" path: %s\n", fcn, path);
goto err;
}
return (cmp_str);
}
vprint(ENUM_MID, "%s: invalid enumeration flags: 0x%x"
" path: %s\n", fcn, dep->flags, path);
/*FALLTHRU*/
err:
free(cmp_str);
return (NULL);
}
/*
* "str" is expected to be a string with components separated by ','
* The terminating null char is considered a separator.
* get_component() will remove the portion of the string beyond
* the component indicated.
* If comp_str is NULL, the entire "str" is returned.
*/
static char *
get_component(char *str, const char *comp_str)
{
long comp;
char *cp;
if (str == NULL) {
return (NULL);
}
if (comp_str == NULL) {
return (str);
}
errno = 0;
comp = strtol(comp_str, &cp, 10);
if (errno != 0 || *cp != '\0' || comp < 0) {
return (NULL);
}
if (comp == 0)
return (str);
for (cp = str; ; cp++) {
if (*cp == ',' || *cp == '\0')
comp--;
if (*cp == '\0' || comp <= 0) {
break;
}
}
if (comp == 0) {
*cp = '\0';
} else {
str = NULL;
}
return (str);
}
/*
* Enumerate serves as a generic counter as well as a means to determine
* logical unit/controller numbers for such items as disk and tape
* drives.
*
* rules[] is an array of devfsadm_enumerate_t structures which defines
* the enumeration rules to be used for a specified set of links in /dev.
* The set of links is specified through regular expressions (of the flavor
* described in regex(5)). These regular expressions are used to determine
* the set of links in /dev to examine. The last path component in these
* regular expressions MUST contain a parenthesized subexpression surrounding
* the RE which is to be considered the enumerating component. The subexp
* member in a rule is the subexpression number of the enumerating
* component. Subexpressions in the last path component are numbered starting
* from 1.
*
* A cache of current id assignments is built up from existing symlinks and
* new assignments use the lowest unused id. Assignments are based on a
* match of a specified substring of a symlink's contents. If the specified
* component for the devfs_path argument matches the corresponding substring
* for a existing symlink's contents, the cached id is returned. Else, a new
* id is created and returned in *buf. *buf must be freed by the caller.
*
* An id assignment may be governed by a combination of rules, each rule
* applicable to a different subset of links in /dev. For example, controller
* numbers may be determined by a combination of disk symlinks in /dev/[r]dsk
* and controller symlinks in /dev/cfg, with the two sets requiring different
* rules to derive the "substring of interest". In such cases, the rules
* array will have more than one element.
*/
int
devfsadm_enumerate_int(char *devfs_path, int index, char **buf,
devfsadm_enumerate_t rules[], int nrules)
{
return (find_enum_id(rules, nrules,
devfs_path, index, "0", INTEGER, buf, 0));
}
int
disk_enumerate_int(char *devfs_path, int index, char **buf,
devfsadm_enumerate_t rules[], int nrules)
{
return (find_enum_id(rules, nrules,
devfs_path, index, "0", INTEGER, buf, 1));
}
/*
* Same as above, but allows a starting value to be specified.
* Private to devfsadm.... used by devlinks.
*/
static int
devfsadm_enumerate_int_start(char *devfs_path, int index, char **buf,
devfsadm_enumerate_t rules[], int nrules, char *start)
{
return (find_enum_id(rules, nrules,
devfs_path, index, start, INTEGER, buf, 0));
}
/*
* devfsadm_enumerate_char serves as a generic counter returning
* a single letter.
*/
int
devfsadm_enumerate_char(char *devfs_path, int index, char **buf,
devfsadm_enumerate_t rules[], int nrules)
{
return (find_enum_id(rules, nrules,
devfs_path, index, "a", LETTER, buf, 0));
}
/*
* Same as above, but allows a starting char to be specified.
* Private to devfsadm - used by ports module (port_link.c)
*/
int
devfsadm_enumerate_char_start(char *devfs_path, int index, char **buf,
devfsadm_enumerate_t rules[], int nrules, char *start)
{
return (find_enum_id(rules, nrules,
devfs_path, index, start, LETTER, buf, 0));
}
/*
* For a given numeral_set (see get_cached_set for desc of numeral_set),
* search all cached entries looking for matches on a specified substring
* of devfs_path. The substring is derived from devfs_path based on the
* rule specified by "index". If a match is found on a cached entry,
* return the enumerated id in buf. Otherwise, create a new id by calling
* new_id, then cache and return that entry.
*/
static int
find_enum_id(devfsadm_enumerate_t rules[], int nrules,
char *devfs_path, int index, char *min, int type, char **buf,
int multiple)
{
numeral_t *matchnp;
numeral_t *numeral;
int matchcount = 0;
char *cmp_str;
char *fcn = "find_enum_id";
numeral_set_t *set;
if (rules == NULL) {
vprint(ENUM_MID, "%s: no rules. path: %s\n",
fcn, devfs_path ? devfs_path : "<NULL path>");
return (DEVFSADM_FAILURE);
}
if (devfs_path == NULL) {
vprint(ENUM_MID, "%s: NULL path\n", fcn);
return (DEVFSADM_FAILURE);
}
if (nrules <= 0 || index < 0 || index >= nrules || buf == NULL) {
vprint(ENUM_MID, "%s: invalid arguments. path: %s\n",
fcn, devfs_path);
return (DEVFSADM_FAILURE);
}
*buf = NULL;
cmp_str = alloc_cmp_str(devfs_path, &rules[index]);
if (cmp_str == NULL) {
return (DEVFSADM_FAILURE);
}
if ((set = get_enum_cache(rules, nrules)) == NULL) {
free(cmp_str);
return (DEVFSADM_FAILURE);
}
assert(nrules == set->re_count);
/*
* Check and see if a matching entry is already cached.
*/
matchcount = lookup_enum_cache(set, cmp_str, rules, index,
&matchnp);
if (matchcount < 0 || matchcount > 1) {
free(cmp_str);
if (multiple && matchcount > 1)
return (DEVFSADM_MULTIPLE);
else
return (DEVFSADM_FAILURE);
}
/* if matching entry already cached, return it */
if (matchcount == 1) {
/* should never create a link with a reserved ID */
vprint(ENUM_MID, "%s: 1 match w/ ID: %s\n", fcn, matchnp->id);
assert(matchnp->flags == 0);
*buf = s_strdup(matchnp->id);
free(cmp_str);
return (DEVFSADM_SUCCESS);
}
/*
* no cached entry, initialize a numeral struct
* by calling new_id() and cache onto the numeral_set
*/
numeral = s_malloc(sizeof (numeral_t));
numeral->id = new_id(set->headnumeral, type, min);
numeral->full_path = s_strdup(devfs_path);
numeral->rule_index = index;
numeral->cmp_str = cmp_str;
cmp_str = NULL;
numeral->flags = 0;
vprint(RSRV_MID, "%s: alloc new_id: %s numeral flags = %d\n",
fcn, numeral->id, numeral->flags);
/* insert to head of list for fast lookups */
numeral->next = set->headnumeral;
set->headnumeral = numeral;
*buf = s_strdup(numeral->id);
return (DEVFSADM_SUCCESS);
}
/*
* Looks up the specified cache for a match with a specified string
* Returns:
* -1 : on error.
* 0/1/2 : Number of matches.
* Returns the matching element only if there is a single match.
* If the "uncached" flag is set, derives the "cmp_str" afresh
* for the match instead of using cached values.
*/
static int
lookup_enum_cache(numeral_set_t *set, char *cmp_str,
devfsadm_enumerate_t rules[], int index, numeral_t **matchnpp)
{
int matchcount = 0, rv = -1;
int uncached;
numeral_t *np;
char *fcn = "lookup_enum_cache";
char *cp;
*matchnpp = NULL;
assert(index < set->re_count);
if (cmp_str == NULL) {
return (-1);
}
uncached = 0;
if ((rules[index].flags & MATCH_UNCACHED) == MATCH_UNCACHED) {
uncached = 1;
}
/*
* Check and see if a matching entry is already cached.
*/
for (np = set->headnumeral; np != NULL; np = np->next) {
/*
* Skip reserved IDs
*/
if (np->flags & NUMERAL_RESERVED) {
vprint(RSRV_MID, "lookup_enum_cache: "
"Cannot Match with reserved ID (%s), "
"skipping\n", np->id);
assert(np->flags == NUMERAL_RESERVED);
continue;
} else {
vprint(RSRV_MID, "lookup_enum_cache: "
"Attempting match with numeral ID: %s"
" numeral flags = %d\n", np->id, np->flags);
assert(np->flags == 0);
}
if (np->cmp_str == NULL) {
vprint(ENUM_MID, "%s: invalid entry in enumerate"
" cache. path: %s\n", fcn, np->full_path);
return (-1);
}
if (uncached) {
vprint(CHATTY_MID, "%s: bypassing enumerate cache."
" path: %s\n", fcn, cmp_str);
cp = alloc_cmp_str(np->full_path,
&rules[np->rule_index]);
if (cp == NULL)
return (-1);
rv = strcmp(cmp_str, cp);
free(cp);
} else {
rv = strcmp(cmp_str, np->cmp_str);
}
if (rv == 0) {
if (matchcount++ != 0) {
break; /* more than 1 match. */
}
*matchnpp = np;
}
}
return (matchcount);
}
#ifdef DEBUG
static void
dump_enum_cache(numeral_set_t *setp)
{
int i;
numeral_t *np;
char *fcn = "dump_enum_cache";
vprint(ENUM_MID, "%s: re_count = %d\n", fcn, setp->re_count);
for (i = 0; i < setp->re_count; i++) {
vprint(ENUM_MID, "%s: re[%d] = %s\n", fcn, i, setp->re[i]);
}
for (np = setp->headnumeral; np != NULL; np = np->next) {
vprint(ENUM_MID, "%s: id: %s\n", fcn, np->id);
vprint(ENUM_MID, "%s: full_path: %s\n", fcn, np->full_path);
vprint(ENUM_MID, "%s: rule_index: %d\n", fcn, np->rule_index);
vprint(ENUM_MID, "%s: cmp_str: %s\n", fcn, np->cmp_str);
vprint(ENUM_MID, "%s: flags: %d\n", fcn, np->flags);
}
}
#endif
/*
* For a given set of regular expressions in rules[], this function returns
* either a previously cached struct numeral_set or it will create and
* cache a new struct numeral_set. There is only one struct numeral_set
* for the combination of REs present in rules[]. Each numeral_set contains
* the regular expressions in rules[] used for cache selection AND a linked
* list of struct numerals, ONE FOR EACH *UNIQUE* numeral or character ID
* selected by the grouping parenthesized subexpression found in the last
* path component of each rules[].re. For example, the RE: "rmt/([0-9]+)"
* selects all the logical nodes of the correct form in dev/rmt/.
* Each rmt/X will store a *single* struct numeral... ie 0, 1, 2 each get a
* single struct numeral. There is no need to store more than a single logical
* node matching X since the information desired in the devfspath would be
* identical for the portion of the devfspath of interest. (the part up to,
* but not including the minor name in this example.)
*
* If the given numeral_set is not yet cached, call enumerate_recurse to
* create it.
*/
static numeral_set_t *
get_enum_cache(devfsadm_enumerate_t rules[], int nrules)
{
/* linked list of numeral sets */
numeral_set_t *setp;
int i;
int ret;
char *path_left;
enumerate_file_t *entry;
char *fcn = "get_enum_cache";
/*
* See if we've already cached this numeral set.
*/
for (setp = head_numeral_set; setp != NULL; setp = setp->next) {
/*
* check all regexp's passed in function against
* those in cached set.
*/
if (nrules != setp->re_count) {
continue;
}
for (i = 0; i < nrules; i++) {
if (strcmp(setp->re[i], rules[i].re) != 0) {
break;
}
}
if (i == nrules) {
return (setp);
}
}
/*
* If the MATCH_UNCACHED flag is set, we should not be here.
*/
for (i = 0; i < nrules; i++) {
if ((rules[i].flags & MATCH_UNCACHED) == MATCH_UNCACHED) {
vprint(ENUM_MID, "%s: invalid enumeration flags: "
"0x%x\n", fcn, rules[i].flags);
return (NULL);
}
}
/*
* Since we made it here, we have not yet cached the given set of
* logical nodes matching the passed re. Create a cached entry
* struct numeral_set and populate it with a minimal set of
* logical nodes from /dev.
*/
setp = s_malloc(sizeof (numeral_set_t));
setp->re = s_malloc(sizeof (char *) * nrules);
for (i = 0; i < nrules; i++) {
setp->re[i] = s_strdup(rules[i].re);
}
setp->re_count = nrules;
setp->headnumeral = NULL;
/* put this new cached set on the cached set list */
setp->next = head_numeral_set;
head_numeral_set = setp;
/*
* For each RE, search the "reserved" list to create numeral IDs that
* are reserved.
*/
for (entry = enumerate_reserved; entry; entry = entry->er_next) {
vprint(RSRV_MID, "parsing rstring: %s\n", entry->er_file);
for (i = 0; i < nrules; i++) {
path_left = s_strdup(setp->re[i]);
vprint(RSRV_MID, "parsing rule RE: %s\n", path_left);
ret = enumerate_parse(entry->er_file, path_left,
setp, rules, i);
free(path_left);
if (ret == 1) {
/*
* We found the reserved ID for this entry.
* We still keep the entry since it is needed
* by the new link bypass code in disks
*/
vprint(RSRV_MID, "found rsv ID: rstring: %s "
"rule RE: %s\n", entry->er_file, path_left);
break;
}
}
}
/*
* For each RE, search disk and cache any matches on the
* numeral list.
*/
for (i = 0; i < nrules; i++) {
path_left = s_strdup(setp->re[i]);
enumerate_recurse(dev_dir, path_left, setp, rules, i);
free(path_left);
}
#ifdef DEBUG
dump_enum_cache(setp);
#endif
return (setp);
}
/*
* This function stats the pathname namebuf. If this is a directory
* entry, we recurse down dname/fname until we find the first symbolic
* link, and then stat and return it. This is valid for the same reason
* that we only need to read a single pathname for multiple matching
* logical ID's... ie, all the logical nodes should contain identical
* physical paths for the parts we are interested.
*/
int
get_stat_info(char *namebuf, struct stat *sb)
{
char *cp;
finddevhdl_t fhandle;
const char *fp;
if (lstat(namebuf, sb) < 0) {
(void) err_print(LSTAT_FAILED, namebuf, strerror(errno));
return (DEVFSADM_FAILURE);
}
if ((sb->st_mode & S_IFMT) == S_IFLNK) {
return (DEVFSADM_SUCCESS);
}
/*
* If it is a dir, recurse down until we find a link and
* then use the link.
*/
if ((sb->st_mode & S_IFMT) == S_IFDIR) {
if (finddev_readdir(namebuf, &fhandle) != 0) {
return (DEVFSADM_FAILURE);
}
/*
* Search each dir entry looking for a symlink. Return
* the first symlink found in namebuf. Recurse dirs.
*/
while ((fp = finddev_next(fhandle)) != NULL) {
cp = namebuf + strlen(namebuf);
if ((strlcat(namebuf, "/", PATH_MAX) >= PATH_MAX) ||
(strlcat(namebuf, fp, PATH_MAX) >= PATH_MAX)) {
*cp = '\0';
finddev_close(fhandle);
return (DEVFSADM_FAILURE);
}
if (get_stat_info(namebuf, sb) == DEVFSADM_SUCCESS) {
finddev_close(fhandle);
return (DEVFSADM_SUCCESS);
}
*cp = '\0';
}
finddev_close(fhandle);
}
/* no symlink found, so return error */
return (DEVFSADM_FAILURE);
}
/*
* An existing matching ID was not found, so this function is called to
* create the next lowest ID. In the INTEGER case, return the next
* lowest unused integer. In the case of LETTER, return the next lowest
* unused letter. Return empty string if all 26 are used.
* Only IDs >= min will be returned.
*/
char *
new_id(numeral_t *numeral, int type, char *min)
{
int imin;
temp_t *temp;
temp_t *ptr;
temp_t **previous;
temp_t *head = NULL;
char *retval;
static char tempbuff[8];
numeral_t *np;
if (type == LETTER) {
char letter[26], i;
if (numeral == NULL) {
return (s_strdup(min));
}
for (i = 0; i < 26; i++) {
letter[i] = 0;
}
for (np = numeral; np != NULL; np = np->next) {
assert(np->flags == 0 ||
np->flags == NUMERAL_RESERVED);
letter[*np->id - 'a']++;
}
imin = *min - 'a';
for (i = imin; i < 26; i++) {
if (letter[i] == 0) {
retval = s_malloc(2);
retval[0] = 'a' + i;
retval[1] = '\0';
return (retval);
}
}
return (s_strdup(""));
}
if (type == INTEGER) {
if (numeral == NULL) {
return (s_strdup(min));
}
imin = atoi(min);
/* sort list */
for (np = numeral; np != NULL; np = np->next) {
assert(np->flags == 0 ||
np->flags == NUMERAL_RESERVED);
temp = s_malloc(sizeof (temp_t));
temp->integer = atoi(np->id);
temp->next = NULL;
previous = &head;
for (ptr = head; ptr != NULL; ptr = ptr->next) {
if (temp->integer < ptr->integer) {
temp->next = ptr;
*previous = temp;
break;
}
previous = &(ptr->next);
}
if (ptr == NULL) {
*previous = temp;
}
}
/* now search sorted list for first hole >= imin */
for (ptr = head; ptr != NULL; ptr = ptr->next) {
if (imin == ptr->integer) {
imin++;
} else {
if (imin < ptr->integer) {
break;
}
}
}
/* free temp list */
for (ptr = head; ptr != NULL; ) {
temp = ptr;
ptr = ptr->next;
free(temp);
}
(void) sprintf(tempbuff, "%d", imin);
return (s_strdup(tempbuff));
}
return (s_strdup(""));
}
static int
enumerate_parse(char *rsvstr, char *path_left, numeral_set_t *setp,
devfsadm_enumerate_t rules[], int index)
{
char *slash1 = NULL;
char *slash2 = NULL;
char *numeral_id;
char *path_left_save;
char *rsvstr_save;
int ret = 0;
static int warned = 0;
rsvstr_save = rsvstr;
path_left_save = path_left;
if (rsvstr == NULL || rsvstr[0] == '\0' || rsvstr[0] == '/') {
if (!warned) {
err_print("invalid reserved filepath: %s\n",
rsvstr ? rsvstr : "<NULL>");
warned = 1;
}
return (0);
}
vprint(RSRV_MID, "processing rule: %s, rstring: %s\n",
path_left, rsvstr);
for (;;) {
/* get rid of any extra '/' in the reserve string */
while (*rsvstr == '/') {
rsvstr++;
}
/* get rid of any extra '/' in the RE */
while (*path_left == '/') {
path_left++;
}
if (slash1 = strchr(path_left, '/')) {
*slash1 = '\0';
}
if (slash2 = strchr(rsvstr, '/')) {
*slash2 = '\0';
}
if ((slash1 != NULL) ^ (slash2 != NULL)) {
ret = 0;
vprint(RSRV_MID, "mismatch in # of path components\n");
goto out;
}
/*
* Returns true if path_left matches the list entry.
* If it is the last path component, pass subexp
* so that it will return the corresponding ID in
* numeral_id.
*/
numeral_id = NULL;
if (match_path_component(path_left, rsvstr, &numeral_id,
slash1 ? 0 : rules[index].subexp)) {
/* We have a match. */
if (slash1 == NULL) {
/* Is last path component */
vprint(RSRV_MID, "match and last component\n");
create_reserved_numeral(setp, numeral_id);
if (numeral_id != NULL) {
free(numeral_id);
}
ret = 1;
goto out;
} else {
/* Not last path component. Continue parsing */
*slash1 = '/';
*slash2 = '/';
path_left = slash1 + 1;
rsvstr = slash2 + 1;
vprint(RSRV_MID,
"match and NOT last component\n");
continue;
}
} else {
/* No match */
ret = 0;
vprint(RSRV_MID, "No match: rule RE = %s, "
"rstring = %s\n", path_left, rsvstr);
goto out;
}
}
out:
if (slash1)
*slash1 = '/';
if (slash2)
*slash2 = '/';
if (ret == 1) {
vprint(RSRV_MID, "match: rule RE: %s, rstring: %s\n",
path_left_save, rsvstr_save);
} else {
vprint(RSRV_MID, "NO match: rule RE: %s, rstring: %s\n",
path_left_save, rsvstr_save);
}
return (ret);
}
/*
* Search current_dir for all files which match the first path component
* of path_left, which is an RE. If a match is found, but there are more
* components of path_left, then recurse, otherwise, if we have reached
* the last component of path_left, call create_cached_numerals for each
* file. At some point, recurse_dev_re() should be rewritten so that this
* function can be eliminated.
*/
static void
enumerate_recurse(char *current_dir, char *path_left, numeral_set_t *setp,
devfsadm_enumerate_t rules[], int index)
{
char *slash;
char *new_path;
char *numeral_id;
finddevhdl_t fhandle;
const char *fp;
if (finddev_readdir(current_dir, &fhandle) != 0) {
return;
}
/* get rid of any extra '/' */
while (*path_left == '/') {
path_left++;
}
if (slash = strchr(path_left, '/')) {
*slash = '\0';
}
while ((fp = finddev_next(fhandle)) != NULL) {
/*
* Returns true if path_left matches the list entry.
* If it is the last path component, pass subexp
* so that it will return the corresponding ID in
* numeral_id.
*/
numeral_id = NULL;
if (match_path_component(path_left, (char *)fp, &numeral_id,
slash ? 0 : rules[index].subexp)) {
new_path = s_malloc(strlen(current_dir) +
strlen(fp) + 2);
(void) strcpy(new_path, current_dir);
(void) strcat(new_path, "/");
(void) strcat(new_path, fp);
if (slash != NULL) {
enumerate_recurse(new_path, slash + 1,
setp, rules, index);
} else {
create_cached_numeral(new_path, setp,
numeral_id, rules, index);
if (numeral_id != NULL) {
free(numeral_id);
}
}
free(new_path);
}
}
if (slash != NULL) {
*slash = '/';
}
finddev_close(fhandle);
}
/*
* Returns true if file matches file_re. If subexp is non-zero, it means
* we are searching the last path component and need to return the
* parenthesized subexpression subexp in id.
*
*/
static int
match_path_component(char *file_re, char *file, char **id, int subexp)
{
regex_t re1;
int match = 0;
int nelements;
regmatch_t *pmatch;
if (subexp != 0) {
nelements = subexp + 1;
pmatch =
(regmatch_t *)s_malloc(sizeof (regmatch_t) * nelements);
} else {
pmatch = NULL;
nelements = 0;
}
if (regcomp(&re1, file_re, REG_EXTENDED) != 0) {
if (pmatch != NULL) {
free(pmatch);
}
return (0);
}
if (regexec(&re1, file, nelements, pmatch, 0) == 0) {
match = 1;
}
if ((match != 0) && (subexp != 0)) {
int size = pmatch[subexp].rm_eo - pmatch[subexp].rm_so;
*id = s_malloc(size + 1);
(void) strncpy(*id, &file[pmatch[subexp].rm_so], size);
(*id)[size] = '\0';
}
if (pmatch != NULL) {
free(pmatch);
}
regfree(&re1);
return (match);
}
static void
create_reserved_numeral(numeral_set_t *setp, char *numeral_id)
{
numeral_t *np;
vprint(RSRV_MID, "Attempting to create reserved numeral: %s\n",
numeral_id);
/*
* We found a numeral_id from an entry in the enumerate_reserved file
* which matched the re passed in from devfsadm_enumerate. We only
* need to make sure ONE copy of numeral_id exists on the numeral list.
* We only need to store /dev/dsk/cNtod0s0 and no other entries
* hanging off of controller N.
*/
for (np = setp->headnumeral; np != NULL; np = np->next) {
if (strcmp(numeral_id, np->id) == 0) {
vprint(RSRV_MID, "ID: %s, already reserved\n", np->id);
assert(np->flags == NUMERAL_RESERVED);
return;
} else {
assert(np->flags == 0 ||
np->flags == NUMERAL_RESERVED);
}
}
/* NOT on list, so add it */
np = s_malloc(sizeof (numeral_t));
np->id = s_strdup(numeral_id);
np->full_path = NULL;
np->rule_index = 0;
np->cmp_str = NULL;
np->flags = NUMERAL_RESERVED;
np->next = setp->headnumeral;
setp->headnumeral = np;
vprint(RSRV_MID, "Reserved numeral ID: %s\n", np->id);
}
/*
* This function is called for every file which matched the leaf
* component of the RE. If the "numeral_id" is not already on the
* numeral set's numeral list, add it and its physical path.
*/
static void
create_cached_numeral(char *path, numeral_set_t *setp, char *numeral_id,
devfsadm_enumerate_t rules[], int index)
{
char linkbuf[PATH_MAX + 1];
char lpath[PATH_MAX + 1];
char *linkptr, *cmp_str;
numeral_t *np;
int linksize;
struct stat sb;
char *contents;
const char *fcn = "create_cached_numeral";
assert(index >= 0 && index < setp->re_count);
assert(strcmp(rules[index].re, setp->re[index]) == 0);
/*
* We found a numeral_id from an entry in /dev which matched
* the re passed in from devfsadm_enumerate. We only need to make sure
* ONE copy of numeral_id exists on the numeral list. We only need
* to store /dev/dsk/cNtod0s0 and no other entries hanging off
* of controller N.
*/
for (np = setp->headnumeral; np != NULL; np = np->next) {
assert(np->flags == 0 || np->flags == NUMERAL_RESERVED);
if (strcmp(numeral_id, np->id) == 0) {
/*
* Note that we can't assert that the flags field
* of the numeral is 0, since both reserved and
* unreserved links in /dev come here
*/
if (np->flags == NUMERAL_RESERVED) {
vprint(RSRV_MID, "ID derived from /dev link is"
" reserved: %s\n", np->id);
} else {
vprint(RSRV_MID, "ID derived from /dev link is"
" NOT reserved: %s\n", np->id);
}
return;
}
}
/* NOT on list, so add it */
(void) strcpy(lpath, path);
/*
* If path is a dir, it is changed to the first symbolic link it find
* if it finds one.
*/
if (get_stat_info(lpath, &sb) == DEVFSADM_FAILURE) {
return;
}
/* If we get here, we found a symlink */
linksize = readlink(lpath, linkbuf, PATH_MAX);
if (linksize <= 0) {
err_print(READLINK_FAILED, fcn, lpath, strerror(errno));
return;
}
linkbuf[linksize] = '\0';
/*
* redirect alias path to current path
* devi_root_node is protected by lock_dev()
*/
contents = di_alias2curr(devi_root_node, linkbuf);
/*
* the following just points linkptr to the root of the /devices
* node if it is a minor node, otherwise, to the first char of
* linkbuf if it is a link.
*/
(void) is_minor_node(contents, &linkptr);
cmp_str = alloc_cmp_str(linkptr, &rules[index]);
if (cmp_str == NULL) {
free(contents);
return;
}
np = s_malloc(sizeof (numeral_t));
np->id = s_strdup(numeral_id);
np->full_path = s_strdup(linkptr);
np->rule_index = index;
np->cmp_str = cmp_str;
np->flags = 0;
np->next = setp->headnumeral;
setp->headnumeral = np;
free(contents);
}
/*
* This should be called either before or after granting access to a
* command line version of devfsadm running, since it may have changed
* the state of /dev. It forces future enumerate calls to re-build
* cached information from /dev.
*/
void
invalidate_enumerate_cache(void)
{
numeral_set_t *setp;
numeral_set_t *savedsetp;
numeral_t *savednumset;
numeral_t *numset;
int i;
for (setp = head_numeral_set; setp != NULL; ) {
/*
* check all regexp's passed in function against
* those in cached set.
*/
savedsetp = setp;
setp = setp->next;
for (i = 0; i < savedsetp->re_count; i++) {
free(savedsetp->re[i]);
}
free(savedsetp->re);
for (numset = savedsetp->headnumeral; numset != NULL; ) {
savednumset = numset;
numset = numset->next;
assert(savednumset->rule_index < savedsetp->re_count);
free(savednumset->id);
free(savednumset->full_path);
free(savednumset->cmp_str);
free(savednumset);
}
free(savedsetp);
}
head_numeral_set = NULL;
}
/*
* Copies over links from /dev to <root>/dev and device special files in
* /devices to <root>/devices, preserving the existing file modes. If
* the link or special file already exists on <root>, skip the copy. (it
* would exist only if a package hard coded it there, so assume package
* knows best?). Use /etc/name_to_major and <root>/etc/name_to_major to
* make translations for major numbers on device special files. No need to
* make a translation on minor_perm since if the file was created in the
* miniroot then it would presumably have the same minor_perm entry in
* <root>/etc/minor_perm. To be used only by install.
*/
int
devfsadm_copy(void)
{
char filename[PATH_MAX + 1];
/* load the installed root's name_to_major for translations */
(void) snprintf(filename, sizeof (filename), "%s%s", root_dir,
NAME_TO_MAJOR);
if (load_n2m_table(filename) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
/* Copy /dev to target disk. No need to copy /devices with devfs */
(void) nftw(DEV, devfsadm_copy_file, 20, FTW_PHYS);
/* Let install handle copying over path_to_inst */
return (DEVFSADM_SUCCESS);
}
/*
* This function copies links, dirs, and device special files.
* Note that it always returns DEVFSADM_SUCCESS, so that nftw doesn't
* abort.
*/
/*ARGSUSED*/
static int
devfsadm_copy_file(const char *file, const struct stat *stat,
int flags, struct FTW *ftw)
{
struct stat sp;
dev_t newdev;
char newfile[PATH_MAX + 1];
char linkcontents[PATH_MAX + 1];
int bytes;
const char *fcn = "devfsadm_copy_file";
(void) strcpy(newfile, root_dir);
(void) strcat(newfile, "/");
(void) strcat(newfile, file);
if (lstat(newfile, &sp) == 0) {
/* newfile already exists, so no need to continue */
return (DEVFSADM_SUCCESS);
}
if (((stat->st_mode & S_IFMT) == S_IFBLK) ||
((stat->st_mode & S_IFMT) == S_IFCHR)) {
if (translate_major(stat->st_rdev, &newdev) ==
DEVFSADM_FAILURE) {
return (DEVFSADM_SUCCESS);
}
if (mknod(newfile, stat->st_mode, newdev) == -1) {
err_print(MKNOD_FAILED, newfile, strerror(errno));
return (DEVFSADM_SUCCESS);
}
} else if ((stat->st_mode & S_IFMT) == S_IFDIR) {
if (mknod(newfile, stat->st_mode, 0) == -1) {
err_print(MKNOD_FAILED, newfile, strerror(errno));
return (DEVFSADM_SUCCESS);
}
} else if ((stat->st_mode & S_IFMT) == S_IFLNK) {
/*
* No need to redirect alias paths. We want a
* true copy. The system on first boot after install
* will redirect paths
*/
if ((bytes = readlink(file, linkcontents, PATH_MAX)) == -1) {
err_print(READLINK_FAILED, fcn, file, strerror(errno));
return (DEVFSADM_SUCCESS);
}
linkcontents[bytes] = '\0';
if (symlink(linkcontents, newfile) == -1) {
err_print(SYMLINK_FAILED, newfile, newfile,
strerror(errno));
return (DEVFSADM_SUCCESS);
}
}
(void) lchown(newfile, stat->st_uid, stat->st_gid);
return (DEVFSADM_SUCCESS);
}
/*
* Given a dev_t from the running kernel, return the new_dev_t
* by translating to the major number found on the installed
* target's root name_to_major file.
*/
static int
translate_major(dev_t old_dev, dev_t *new_dev)
{
major_t oldmajor;
major_t newmajor;
minor_t oldminor;
minor_t newminor;
char cdriver[FILENAME_MAX + 1];
char driver[FILENAME_MAX + 1];
char *fcn = "translate_major: ";
oldmajor = major(old_dev);
if (modctl(MODGETNAME, driver, sizeof (driver), &oldmajor) != 0) {
return (DEVFSADM_FAILURE);
}
if (strcmp(driver, "clone") != 0) {
/* non-clone case */
/* look up major number is target's name2major */
if (get_major_no(driver, &newmajor) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
*new_dev = makedev(newmajor, minor(old_dev));
if (old_dev != *new_dev) {
vprint(CHATTY_MID, "%sdriver: %s old: %lu,%lu "
"new: %lu,%lu\n", fcn, driver, major(old_dev),
minor(old_dev), major(*new_dev), minor(*new_dev));
}
return (DEVFSADM_SUCCESS);
} else {
/*
* The clone is a special case. Look at its minor
* number since it is the major number of the real driver.
*/
if (get_major_no(driver, &newmajor) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
oldminor = minor(old_dev);
if (modctl(MODGETNAME, cdriver, sizeof (cdriver),
&oldminor) != 0) {
err_print(MODGETNAME_FAILED, oldminor);
return (DEVFSADM_FAILURE);
}
if (get_major_no(cdriver, &newminor) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
*new_dev = makedev(newmajor, newminor);
if (old_dev != *new_dev) {
vprint(CHATTY_MID, "%sdriver: %s old: "
"%lu,%lu new: %lu,%lu\n", fcn, driver,
major(old_dev), minor(old_dev),
major(*new_dev), minor(*new_dev));
}
return (DEVFSADM_SUCCESS);
}
}
/*
*
* Find the major number for driver, searching the n2m_list that was
* built in load_n2m_table().
*/
static int
get_major_no(char *driver, major_t *major)
{
n2m_t *ptr;
for (ptr = n2m_list; ptr != NULL; ptr = ptr->next) {
if (strcmp(ptr->driver, driver) == 0) {
*major = ptr->major;
return (DEVFSADM_SUCCESS);
}
}
err_print(FIND_MAJOR_FAILED, driver);
return (DEVFSADM_FAILURE);
}
/*
* Loads a name_to_major table into memory. Used only for suninstall's
* private -R option to devfsadm, to translate major numbers from the
* running to the installed target disk.
*/
static int
load_n2m_table(char *file)
{
FILE *fp;
char line[1024], *cp;
char driver[PATH_MAX + 1];
major_t major;
n2m_t *ptr;
int ln = 0;
if ((fp = fopen(file, "r")) == NULL) {
err_print(FOPEN_FAILED, file, strerror(errno));
return (DEVFSADM_FAILURE);
}
while (fgets(line, sizeof (line), fp) != NULL) {
ln++;
/* cut off comments starting with '#' */
if ((cp = strchr(line, '#')) != NULL)
*cp = '\0';
/* ignore comment or blank lines */
if (is_blank(line))
continue;
/* sanity-check */
if (sscanf(line, "%1024s%lu", driver, &major) != 2) {
err_print(IGNORING_LINE_IN, ln, file);
continue;
}
ptr = (n2m_t *)s_malloc(sizeof (n2m_t));
ptr->major = major;
ptr->driver = s_strdup(driver);
ptr->next = n2m_list;
n2m_list = ptr;
}
if (fclose(fp) == EOF) {
err_print(FCLOSE_FAILED, file, strerror(errno));
}
return (DEVFSADM_SUCCESS);
}
/*
* Called at devfsadm startup to read the file /etc/dev/enumerate_reserved
* Creates a linked list of devlinks from which reserved IDs can be derived
*/
static void
read_enumerate_file(void)
{
FILE *fp;
int linenum;
char line[PATH_MAX+1];
enumerate_file_t *entry;
struct stat current_sb;
static struct stat cached_sb;
static int cached = FALSE;
assert(enumerate_file);
if (stat(enumerate_file, &current_sb) == -1) {
vprint(RSRV_MID, "No reserved file: %s\n", enumerate_file);
cached = FALSE;
if (enumerate_reserved != NULL) {
vprint(RSRV_MID, "invalidating %s cache\n",
enumerate_file);
}
while (enumerate_reserved != NULL) {
entry = enumerate_reserved;
enumerate_reserved = entry->er_next;
free(entry->er_file);
free(entry->er_id);
free(entry);
}
return;
}
/* if already cached, check to see if it is still valid */
if (cached == TRUE) {
if (current_sb.st_mtime == cached_sb.st_mtime) {
vprint(RSRV_MID, "%s cache valid\n", enumerate_file);
vprint(FILES_MID, "%s cache valid\n", enumerate_file);
return;
}
vprint(RSRV_MID, "invalidating %s cache\n", enumerate_file);
vprint(FILES_MID, "invalidating %s cache\n", enumerate_file);
while (enumerate_reserved != NULL) {
entry = enumerate_reserved;
enumerate_reserved = entry->er_next;
free(entry->er_file);
free(entry->er_id);
free(entry);
}
vprint(RSRV_MID, "Recaching file: %s\n", enumerate_file);
} else {
vprint(RSRV_MID, "Caching file (first time): %s\n",
enumerate_file);
cached = TRUE;
}
(void) stat(enumerate_file, &cached_sb);
if ((fp = fopen(enumerate_file, "r")) == NULL) {
err_print(FOPEN_FAILED, enumerate_file, strerror(errno));
return;
}
vprint(RSRV_MID, "Reading reserve file: %s\n", enumerate_file);
linenum = 0;
while (fgets(line, sizeof (line), fp) != NULL) {
char *cp, *ncp;
linenum++;
/* remove newline */
cp = strchr(line, '\n');
if (cp)
*cp = '\0';
vprint(RSRV_MID, "Reserve file: line %d: %s\n", linenum, line);
/* skip over space and tab */
for (cp = line; *cp == ' ' || *cp == '\t'; cp++)
;
if (*cp == '\0' || *cp == '#') {
vprint(RSRV_MID, "Skipping line: '%s'\n", line);
continue; /* blank line or comment line */
}
ncp = cp;
/* delete trailing blanks */
for (; *cp != ' ' && *cp != '\t' && *cp != '\0'; cp++)
;
*cp = '\0';
entry = s_zalloc(sizeof (enumerate_file_t));
entry->er_file = s_strdup(ncp);
entry->er_id = NULL;
entry->er_next = enumerate_reserved;
enumerate_reserved = entry;
}
if (fclose(fp) == EOF) {
err_print(FCLOSE_FAILED, enumerate_file, strerror(errno));
}
}
/*
* Called at devfsadm startup to read in the devlink.tab file. Creates
* a linked list of devlinktab_list structures which will be
* searched for every minor node.
*/
static void
read_devlinktab_file(void)
{
devlinktab_list_t *headp = NULL;
devlinktab_list_t *entryp;
devlinktab_list_t **previous;
devlinktab_list_t *save;
char line[MAX_DEVLINK_LINE], *cp;
char *selector;
char *p_link;
char *s_link;
FILE *fp;
int i;
static struct stat cached_sb;
struct stat current_sb;
static int cached = FALSE;
if (devlinktab_file == NULL) {
return;
}
(void) stat(devlinktab_file, &current_sb);
/* if already cached, check to see if it is still valid */
if (cached == TRUE) {
if (current_sb.st_mtime == cached_sb.st_mtime) {
vprint(FILES_MID, "%s cache valid\n", devlinktab_file);
return;
}
vprint(FILES_MID, "invalidating %s cache\n", devlinktab_file);
while (devlinktab_list != NULL) {
free_link_list(devlinktab_list->p_link);
free_link_list(devlinktab_list->s_link);
free_selector_list(devlinktab_list->selector);
free(devlinktab_list->selector_pattern);
free(devlinktab_list->p_link_pattern);
if (devlinktab_list->s_link_pattern != NULL) {
free(devlinktab_list->s_link_pattern);
}
save = devlinktab_list;
devlinktab_list = devlinktab_list->next;
free(save);
}
} else {
cached = TRUE;
}
(void) stat(devlinktab_file, &cached_sb);
if ((fp = fopen(devlinktab_file, "r")) == NULL) {
err_print(FOPEN_FAILED, devlinktab_file, strerror(errno));
return;
}
previous = &headp;
while (fgets(line, sizeof (line), fp) != NULL) {
devlinktab_line++;
i = strlen(line);
if (line[i-1] == NEWLINE) {
line[i-1] = '\0';
} else if (i == sizeof (line-1)) {
err_print(LINE_TOO_LONG, devlinktab_line,
devlinktab_file, sizeof (line)-1);
while (((i = getc(fp)) != '\n') && (i != EOF))
;
continue;
}
/* cut off comments starting with '#' */
if ((cp = strchr(line, '#')) != NULL)
*cp = '\0';
/* ignore comment or blank lines */
if (is_blank(line))
continue;
vprint(DEVLINK_MID, "table: %s line %d: '%s'\n",
devlinktab_file, devlinktab_line, line);
/* break each entry into fields. s_link may be NULL */
if (split_devlinktab_entry(line, &selector, &p_link,
&s_link) == DEVFSADM_FAILURE) {
vprint(DEVLINK_MID, "split_entry returns failure\n");
continue;
} else {
vprint(DEVLINK_MID, "split_entry selector='%s' "
"p_link='%s' s_link='%s'\n\n", selector,
p_link, (s_link == NULL) ? "" : s_link);
}
entryp =
(devlinktab_list_t *)s_malloc(sizeof (devlinktab_list_t));
entryp->line_number = devlinktab_line;
if ((entryp->selector = create_selector_list(selector))
== NULL) {
free(entryp);
continue;
}
entryp->selector_pattern = s_strdup(selector);
if ((entryp->p_link = create_link_list(p_link)) == NULL) {
free_selector_list(entryp->selector);
free(entryp->selector_pattern);
free(entryp);
continue;
}
entryp->p_link_pattern = s_strdup(p_link);
if (s_link != NULL) {
if ((entryp->s_link =
create_link_list(s_link)) == NULL) {
free_selector_list(entryp->selector);
free_link_list(entryp->p_link);
free(entryp->selector_pattern);
free(entryp->p_link_pattern);
free(entryp);
continue;
}
entryp->s_link_pattern = s_strdup(s_link);
} else {
entryp->s_link = NULL;
entryp->s_link_pattern = NULL;
}
/* append to end of list */
entryp->next = NULL;
*previous = entryp;
previous = &(entryp->next);
}
if (fclose(fp) == EOF) {
err_print(FCLOSE_FAILED, devlinktab_file, strerror(errno));
}
devlinktab_list = headp;
}
/*
*
* For a single line entry in devlink.tab, split the line into fields
* selector, p_link, and an optionally s_link. If s_link field is not
* present, then return NULL in s_link (not NULL string).
*/
static int
split_devlinktab_entry(char *entry, char **selector, char **p_link,
char **s_link)
{
char *tab;
*selector = entry;
if ((tab = strchr(entry, TAB)) != NULL) {
*tab = '\0';
*p_link = ++tab;
} else {
err_print(MISSING_TAB, devlinktab_line, devlinktab_file);
return (DEVFSADM_FAILURE);
}
if (*p_link == '\0') {
err_print(MISSING_DEVNAME, devlinktab_line, devlinktab_file);
return (DEVFSADM_FAILURE);
}
if ((tab = strchr(*p_link, TAB)) != NULL) {
*tab = '\0';
*s_link = ++tab;
if (strchr(*s_link, TAB) != NULL) {
err_print(TOO_MANY_FIELDS, devlinktab_line,
devlinktab_file);
return (DEVFSADM_FAILURE);
}
} else {
*s_link = NULL;
}
return (DEVFSADM_SUCCESS);
}
/*
* For a given devfs_spec field, for each element in the field, add it to
* a linked list of devfs_spec structures. Return the linked list in
* devfs_spec_list.
*/
static selector_list_t *
create_selector_list(char *selector)
{
char *key;
char *val;
int error = FALSE;
selector_list_t *head_selector_list = NULL;
selector_list_t *selector_list;
/* parse_devfs_spec splits the next field into keyword & value */
while ((*selector != NULL) && (error == FALSE)) {
if (parse_selector(&selector, &key, &val) == DEVFSADM_FAILURE) {
error = TRUE;
break;
} else {
selector_list = (selector_list_t *)
s_malloc(sizeof (selector_list_t));
if (strcmp(NAME_S, key) == 0) {
selector_list->key = NAME;
} else if (strcmp(TYPE_S, key) == 0) {
selector_list->key = TYPE;
} else if (strncmp(ADDR_S, key, ADDR_S_LEN) == 0) {
selector_list->key = ADDR;
if (key[ADDR_S_LEN] == '\0') {
selector_list->arg = 0;
} else if (isdigit(key[ADDR_S_LEN]) != FALSE) {
selector_list->arg =
atoi(&key[ADDR_S_LEN]);
} else {
error = TRUE;
free(selector_list);
err_print(BADKEYWORD, key,
devlinktab_line, devlinktab_file);
break;
}
} else if (strncmp(MINOR_S, key, MINOR_S_LEN) == 0) {
selector_list->key = MINOR;
if (key[MINOR_S_LEN] == '\0') {
selector_list->arg = 0;
} else if (isdigit(key[MINOR_S_LEN]) != FALSE) {
selector_list->arg =
atoi(&key[MINOR_S_LEN]);
} else {
error = TRUE;
free(selector_list);
err_print(BADKEYWORD, key,
devlinktab_line, devlinktab_file);
break;
}
vprint(DEVLINK_MID, "MINOR = %s\n", val);
} else {
err_print(UNRECOGNIZED_KEY, key,
devlinktab_line, devlinktab_file);
error = TRUE;
free(selector_list);
break;
}
selector_list->val = s_strdup(val);
selector_list->next = head_selector_list;
head_selector_list = selector_list;
vprint(DEVLINK_MID, "key='%s' val='%s' arg=%d\n",
key, val, selector_list->arg);
}
}
if ((error == FALSE) && (head_selector_list != NULL)) {
return (head_selector_list);
} else {
/* parse failed. Free any allocated structs */
free_selector_list(head_selector_list);
return (NULL);
}
}
/*
* Takes a semicolon separated list of selector elements and breaks up
* into a keyword-value pair. semicolon and equal characters are
* replaced with NULL's. On success, selector is updated to point to the
* terminating NULL character terminating the keyword-value pair, and the
* function returns DEVFSADM_SUCCESS. If there is a syntax error,
* devfs_spec is not modified and function returns DEVFSADM_FAILURE.
*/
static int
parse_selector(char **selector, char **key, char **val)
{
char *equal;
char *semi_colon;
*key = *selector;
if ((equal = strchr(*key, '=')) != NULL) {
*equal = '\0';
} else {
err_print(MISSING_EQUAL, devlinktab_line, devlinktab_file);
return (DEVFSADM_FAILURE);
}
*val = ++equal;
if ((semi_colon = strchr(equal, ';')) != NULL) {
*semi_colon = '\0';
*selector = semi_colon + 1;
} else {
*selector = equal + strlen(equal);
}
return (DEVFSADM_SUCCESS);
}
/*
* link is either the second or third field of devlink.tab. Parse link
* into a linked list of devlink structures and return ptr to list. Each
* list element is either a constant string, or one of the following
* escape sequences: \M, \A, \N, or \D. The first three escape sequences
* take a numerical argument.
*/
static link_list_t *
create_link_list(char *link)
{
int x = 0;
int error = FALSE;
int counter_found = FALSE;
link_list_t *head = NULL;
link_list_t **ptr;
link_list_t *link_list;
char constant[MAX_DEVLINK_LINE];
char *error_str;
if (link == NULL) {
return (NULL);
}
while ((*link != '\0') && (error == FALSE)) {
link_list = (link_list_t *)s_malloc(sizeof (link_list_t));
link_list->next = NULL;
while ((*link != '\0') && (*link != '\\')) {
/* a non-escaped string */
constant[x++] = *(link++);
}
if (x != 0) {
constant[x] = '\0';
link_list->type = CONSTANT;
link_list->constant = s_strdup(constant);
x = 0;
vprint(DEVLINK_MID, "CONSTANT FOUND %s\n", constant);
} else {
switch (*(++link)) {
case 'M':
link_list->type = MINOR;
break;
case 'A':
link_list->type = ADDR;
break;
case 'N':
if (counter_found == TRUE) {
error = TRUE;
error_str =
"multiple counters not permitted";
free(link_list);
} else {
counter_found = TRUE;
link_list->type = COUNTER;
}
break;
case 'D':
link_list->type = NAME;
break;
default:
error = TRUE;
free(link_list);
error_str = "unrecognized escape sequence";
break;
}
if (*(link++) != 'D') {
if (isdigit(*link) == FALSE) {
error_str = "escape sequence must be "
"followed by a digit\n";
error = TRUE;
free(link_list);
} else {
link_list->arg =
(int)strtoul(link, &link, 10);
vprint(DEVLINK_MID, "link_list->arg = "
"%d\n", link_list->arg);
}
}
}
/* append link_list struct to end of list */
if (error == FALSE) {
for (ptr = &head; *ptr != NULL; ptr = &((*ptr)->next))
;
*ptr = link_list;
}
}
if (error == FALSE) {
return (head);
} else {
err_print(CONFIG_INCORRECT, devlinktab_line, devlinktab_file,
error_str);
free_link_list(head);
return (NULL);
}
}
/*
* Called for each minor node devfsadm processes; for each minor node,
* look for matches in the devlinktab_list list which was created on
* startup read_devlinktab_file(). If there is a match, call build_links()
* to build a logical devlink and a possible extra devlink.
*/
static int
process_devlink_compat(di_minor_t minor, di_node_t node)
{
int link_built = FALSE;
devlinktab_list_t *entry;
char *nodetype;
char *dev_path;
if (devlinks_debug == TRUE) {
nodetype = di_minor_nodetype(minor);
assert(nodetype != NULL);
if ((dev_path = di_devfs_path(node)) != NULL) {
vprint(INFO_MID, "'%s' entry: %s:%s\n",
nodetype, dev_path,
di_minor_name(minor) ? di_minor_name(minor) : "");
di_devfs_path_free(dev_path);
}
}
/* don't process devlink.tab if devfsadm invoked with -c <class> */
if (num_classes > 0) {
return (FALSE);
}
for (entry = devlinktab_list; entry != NULL; entry = entry->next) {
if (devlink_matches(entry, minor, node) == DEVFSADM_SUCCESS) {
link_built = TRUE;
(void) build_links(entry, minor, node);
}
}
return (link_built);
}
/*
* For a given devlink.tab devlinktab_list entry, see if the selector
* field matches this minor node. If it does, return DEVFSADM_SUCCESS,
* otherwise DEVFSADM_FAILURE.
*/
static int
devlink_matches(devlinktab_list_t *entry, di_minor_t minor, di_node_t node)
{
selector_list_t *selector = entry->selector;
char *addr;
char *minor_name;
char *node_type;
for (; selector != NULL; selector = selector->next) {
switch (selector->key) {
case NAME:
if (strcmp(di_node_name(node), selector->val) != 0) {
return (DEVFSADM_FAILURE);
}
break;
case TYPE:
node_type = di_minor_nodetype(minor);
assert(node_type != NULL);
if (strcmp(node_type, selector->val) != 0) {
return (DEVFSADM_FAILURE);
}
break;
case ADDR:
if ((addr = di_bus_addr(node)) == NULL) {
return (DEVFSADM_FAILURE);
}
if (selector->arg == 0) {
if (strcmp(addr, selector->val) != 0) {
return (DEVFSADM_FAILURE);
}
} else {
if (compare_field(addr, selector->val,
selector->arg) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
}
break;
case MINOR:
if ((minor_name = di_minor_name(minor)) == NULL) {
return (DEVFSADM_FAILURE);
}
if (selector->arg == 0) {
if (strcmp(minor_name, selector->val) != 0) {
return (DEVFSADM_FAILURE);
}
} else {
if (compare_field(minor_name, selector->val,
selector->arg) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
}
break;
default:
return (DEVFSADM_FAILURE);
}
}
return (DEVFSADM_SUCCESS);
}
/*
* For the given minor node and devlinktab_list entry from devlink.tab,
* build a logical dev link and a possible extra devlink.
* Return DEVFSADM_SUCCESS if link is created, otherwise DEVFSADM_FAILURE.
*/
static int
build_links(devlinktab_list_t *entry, di_minor_t minor, di_node_t node)
{
char secondary_link[PATH_MAX + 1];
char primary_link[PATH_MAX + 1];
char contents[PATH_MAX + 1];
char *dev_path;
if ((dev_path = di_devfs_path(node)) == NULL) {
err_print(DI_DEVFS_PATH_FAILED, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
(void) strcpy(contents, dev_path);
di_devfs_path_free(dev_path);
(void) strcat(contents, ":");
(void) strcat(contents, di_minor_name(minor));
if (construct_devlink(primary_link, entry->p_link, contents,
minor, node, entry->p_link_pattern) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
(void) devfsadm_mklink(primary_link, node, minor, 0);
if (entry->s_link == NULL) {
return (DEVFSADM_SUCCESS);
}
if (construct_devlink(secondary_link, entry->s_link, primary_link,
minor, node, entry->s_link_pattern) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
(void) devfsadm_secondary_link(secondary_link, primary_link, 0);
return (DEVFSADM_SUCCESS);
}
/*
* The counter rule for devlink.tab entries is implemented via
* devfsadm_enumerate_int_start(). One of the arguments to this function
* is a path, where each path component is treated as a regular expression.
* For devlink.tab entries, this path regular expression is derived from
* the devlink spec. get_anchored_re() accepts path regular expressions derived
* from devlink.tab entries and inserts the anchors '^' and '$' at the beginning
* and end respectively of each path component. This is done to prevent
* false matches. For example, without anchors, "a/([0-9]+)" will match "ab/c9"
* and incorrect links will be generated.
*/
static int
get_anchored_re(char *link, char *anchored_re, char *pattern)
{
if (*link == '/' || *link == '\0') {
err_print(INVALID_DEVLINK_SPEC, pattern);
return (DEVFSADM_FAILURE);
}
*anchored_re++ = '^';
for (; *link != '\0'; ) {
if (*link == '/') {
while (*link == '/')
link++;
*anchored_re++ = '$';
*anchored_re++ = '/';
if (*link != '\0') {
*anchored_re++ = '^';
}
} else {
*anchored_re++ = *link++;
if (*link == '\0') {
*anchored_re++ = '$';
}
}
}
*anchored_re = '\0';
return (DEVFSADM_SUCCESS);
}
static int
construct_devlink(char *link, link_list_t *link_build, char *contents,
di_minor_t minor, di_node_t node, char *pattern)
{
int counter_offset = -1;
devfsadm_enumerate_t rules[1] = {NULL};
char templink[PATH_MAX + 1];
char *buff;
char start[10];
char *node_path;
char anchored_re[PATH_MAX + 1];
link[0] = '\0';
for (; link_build != NULL; link_build = link_build->next) {
switch (link_build->type) {
case NAME:
(void) strcat(link, di_node_name(node));
break;
case CONSTANT:
(void) strcat(link, link_build->constant);
break;
case ADDR:
if (component_cat(link, di_bus_addr(node),
link_build->arg) == DEVFSADM_FAILURE) {
node_path = di_devfs_path(node);
err_print(CANNOT_BE_USED, pattern, node_path,
di_minor_name(minor));
di_devfs_path_free(node_path);
return (DEVFSADM_FAILURE);
}
break;
case MINOR:
if (component_cat(link, di_minor_name(minor),
link_build->arg) == DEVFSADM_FAILURE) {
node_path = di_devfs_path(node);
err_print(CANNOT_BE_USED, pattern, node_path,
di_minor_name(minor));
di_devfs_path_free(node_path);
return (DEVFSADM_FAILURE);
}
break;
case COUNTER:
counter_offset = strlen(link);
(void) strcat(link, "([0-9]+)");
(void) sprintf(start, "%d", link_build->arg);
break;
default:
return (DEVFSADM_FAILURE);
}
}
if (counter_offset != -1) {
/*
* copy anything appended after "([0-9]+)" into
* templink
*/
(void) strcpy(templink,
&link[counter_offset + strlen("([0-9]+)")]);
if (get_anchored_re(link, anchored_re, pattern)
!= DEVFSADM_SUCCESS) {
return (DEVFSADM_FAILURE);
}
rules[0].re = anchored_re;
rules[0].subexp = 1;
rules[0].flags = MATCH_ALL;
if (devfsadm_enumerate_int_start(contents, 0, &buff,
rules, 1, start) == DEVFSADM_FAILURE) {
return (DEVFSADM_FAILURE);
}
(void) strcpy(&link[counter_offset], buff);
free(buff);
(void) strcat(link, templink);
vprint(DEVLINK_MID, "COUNTER is %s\n", link);
}
return (DEVFSADM_SUCCESS);
}
/*
* Compares "field" number of the comma separated list "full_name" with
* field_item. Returns DEVFSADM_SUCCESS for match,
* DEVFSADM_FAILURE for no match.
*/
static int
compare_field(char *full_name, char *field_item, int field)
{
--field;
while ((*full_name != '\0') && (field != 0)) {
if (*(full_name++) == ',') {
field--;
}
}
if (field != 0) {
return (DEVFSADM_FAILURE);
}
while ((*full_name != '\0') && (*field_item != '\0') &&
(*full_name != ',')) {
if (*(full_name++) != *(field_item++)) {
return (DEVFSADM_FAILURE);
}
}
if (*field_item != '\0') {
return (DEVFSADM_FAILURE);
}
if ((*full_name == '\0') || (*full_name == ','))
return (DEVFSADM_SUCCESS);
return (DEVFSADM_FAILURE);
}
/*
* strcat() field # "field" of comma separated list "name" to "link".
* Field 0 is the entire name.
* Return DEVFSADM_SUCCESS or DEVFSADM_FAILURE.
*/
static int
component_cat(char *link, char *name, int field)
{
if (name == NULL) {
return (DEVFSADM_FAILURE);
}
if (field == 0) {
(void) strcat(link, name);
return (DEVFSADM_SUCCESS);
}
while (*link != '\0') {
link++;
}
--field;
while ((*name != '\0') && (field != 0)) {
if (*(name++) == ',') {
--field;
}
}
if (field != 0) {
return (DEVFSADM_FAILURE);
}
while ((*name != '\0') && (*name != ',')) {
*(link++) = *(name++);
}
*link = '\0';
return (DEVFSADM_SUCCESS);
}
static void
free_selector_list(selector_list_t *head)
{
selector_list_t *temp;
while (head != NULL) {
temp = head;
head = head->next;
free(temp->val);
free(temp);
}
}
static void
free_link_list(link_list_t *head)
{
link_list_t *temp;
while (head != NULL) {
temp = head;
head = head->next;
if (temp->type == CONSTANT) {
free(temp->constant);
}
free(temp);
}
}
/*
* Prints only if level matches one of the debug levels
* given on command line. INFO_MID is always printed.
*
* See devfsadm.h for a listing of globally defined levels and
* meanings. Modules should prefix the level with their
* module name to prevent collisions.
*/
/*PRINTFLIKE2*/
void
devfsadm_print(char *msgid, char *message, ...)
{
va_list ap;
static int newline = TRUE;
int x;
if (msgid != NULL) {
for (x = 0; x < num_verbose; x++) {
if (strcmp(verbose[x], msgid) == 0) {
break;
}
if (strcmp(verbose[x], ALL_MID) == 0) {
break;
}
}
if (x == num_verbose) {
return;
}
}
va_start(ap, message);
if (msgid == NULL) {
if (logflag == TRUE) {
(void) vsyslog(LOG_NOTICE, message, ap);
} else {
(void) vfprintf(stdout, message, ap);
}
} else {
if (logflag == TRUE) {
(void) syslog(LOG_DEBUG, "%s[%ld]: %s: ",
prog, getpid(), msgid);
(void) vsyslog(LOG_DEBUG, message, ap);
} else {
if (newline == TRUE) {
(void) fprintf(stdout, "%s[%ld]: %s: ",
prog, getpid(), msgid);
}
(void) vfprintf(stdout, message, ap);
}
}
if (message[strlen(message) - 1] == '\n') {
newline = TRUE;
} else {
newline = FALSE;
}
va_end(ap);
}
/*
* print error messages to the terminal or to syslog
*/
/*PRINTFLIKE1*/
void
devfsadm_errprint(char *message, ...)
{
va_list ap;
va_start(ap, message);
if (logflag == TRUE) {
(void) vsyslog(LOG_ERR, message, ap);
} else {
(void) fprintf(stderr, "%s: ", prog);
(void) vfprintf(stderr, message, ap);
}
va_end(ap);
}
/*
* return noupdate state (-s)
*/
int
devfsadm_noupdate(void)
{
return (file_mods == TRUE ? DEVFSADM_TRUE : DEVFSADM_FALSE);
}
/*
* return current root update path (-r)
*/
const char *
devfsadm_root_path(void)
{
if (root_dir[0] == '\0') {
return ("/");
} else {
return ((const char *)root_dir);
}
}
void
devfsadm_free_dev_names(char **dev_names, int len)
{
int i;
for (i = 0; i < len; i++)
free(dev_names[i]);
free(dev_names);
}
/*
* Return all devlinks corresponding to phys_path as an array of strings.
* The number of entries in the array is returned through lenp.
* devfsadm_free_dev_names() is used to free the returned array.
* NULL is returned on failure or when there are no matching devlinks.
*
* re is an extended regular expression in regex(5) format used to further
* match devlinks pointing to phys_path; it may be NULL to match all
*/
char **
devfsadm_lookup_dev_names(char *phys_path, char *re, int *lenp)
{
struct devlink_cb_arg cb_arg;
char **dev_names = NULL;
int i;
*lenp = 0;
cb_arg.count = 0;
cb_arg.rv = 0;
(void) di_devlink_cache_walk(devlink_cache, re, phys_path,
DI_PRIMARY_LINK, &cb_arg, devlink_cb);
if (cb_arg.rv == -1 || cb_arg.count <= 0)
return (NULL);
dev_names = s_malloc(cb_arg.count * sizeof (char *));
if (dev_names == NULL)
goto out;
for (i = 0; i < cb_arg.count; i++) {
dev_names[i] = s_strdup(cb_arg.dev_names[i]);
if (dev_names[i] == NULL) {
devfsadm_free_dev_names(dev_names, i);
dev_names = NULL;
goto out;
}
}
*lenp = cb_arg.count;
out:
free_dev_names(&cb_arg);
return (dev_names);
}
/* common exit function which ensures releasing locks */
static void
devfsadm_exit(int status)
{
if (DEVFSADM_DEBUG_ON) {
vprint(INFO_MID, "exit status = %d\n", status);
}
exit_dev_lock(1);
exit_daemon_lock(1);
if (logflag == TRUE) {
closelog();
}
exit(status);
/*NOTREACHED*/
}
/*
* set root_dir, devices_dir, dev_dir using optarg.
*/
static void
set_root_devices_dev_dir(char *dir)
{
size_t len;
root_dir = s_strdup(dir);
len = strlen(dir) + strlen(DEVICES) + 1;
devices_dir = s_malloc(len);
(void) snprintf(devices_dir, len, "%s%s", root_dir, DEVICES);
len = strlen(root_dir) + strlen(DEV) + 1;
dev_dir = s_malloc(len);
(void) snprintf(dev_dir, len, "%s%s", root_dir, DEV);
}
/*
* Removes quotes.
*/
static char *
dequote(char *src)
{
char *dst;
int len;
len = strlen(src);
dst = s_malloc(len + 1);
if (src[0] == '\"' && src[len - 1] == '\"') {
len -= 2;
(void) strncpy(dst, &src[1], len);
dst[len] = '\0';
} else {
(void) strcpy(dst, src);
}
return (dst);
}
/*
* For a given physical device pathname and spectype, return the
* ownership and permissions attributes by looking in data from
* /etc/minor_perm. If currently in installation mode, check for
* possible major number translations from the miniroot to the installed
* root's name_to_major table. Note that there can be multiple matches,
* but the last match takes effect. pts seems to rely on this
* implementation behavior.
*/
static void
getattr(char *phy_path, char *aminor, int spectype, dev_t dev, mode_t *mode,
uid_t *uid, gid_t *gid)
{
char devname[PATH_MAX + 1];
char *node_name;
char *minor_name;
int match = FALSE;
int is_clone;
int mp_drvname_matches_node_name;
int mp_drvname_matches_minor_name;
int mp_drvname_is_clone;
int mp_drvname_matches_drvname;
struct mperm *mp;
major_t major_no;
char driver[PATH_MAX + 1];
/*
* Get the driver name based on the major number since the name
* in /devices may be generic. Could be running with more major
* numbers than are in /etc/name_to_major, so get it from the kernel
*/
major_no = major(dev);
if (modctl(MODGETNAME, driver, sizeof (driver), &major_no) != 0) {
/* return default values */
goto use_defaults;
}
(void) strcpy(devname, phy_path);
node_name = strrchr(devname, '/'); /* node name is the last */
/* component */
if (node_name == NULL) {
err_print(NO_NODE, devname);
goto use_defaults;
}
minor_name = strchr(++node_name, '@'); /* see if it has address part */
if (minor_name != NULL) {
*minor_name++ = '\0';
} else {
minor_name = node_name;
}
minor_name = strchr(minor_name, ':'); /* look for minor name */
if (minor_name == NULL) {
err_print(NO_MINOR, devname);
goto use_defaults;
}
*minor_name++ = '\0';
/*
* mp->mp_drvname = device name from minor_perm
* mp->mp_minorname = minor part of device name from
* minor_perm
* drvname = name of driver for this device
*/
is_clone = (strcmp(node_name, "clone") == 0 ? TRUE : FALSE);
for (mp = minor_perms; mp != NULL; mp = mp->mp_next) {
mp_drvname_matches_node_name =
(strcmp(mp->mp_drvname, node_name) == 0 ? TRUE : FALSE);
mp_drvname_matches_minor_name =
(strcmp(mp->mp_drvname, minor_name) == 0 ? TRUE:FALSE);
mp_drvname_is_clone =
(strcmp(mp->mp_drvname, "clone") == 0 ? TRUE : FALSE);
mp_drvname_matches_drvname =
(strcmp(mp->mp_drvname, driver) == 0 ? TRUE : FALSE);
/*
* If one of the following cases is true, then we try to change
* the permissions if a "shell global pattern match" of
* mp_>mp_minorname matches minor_name.
*
* 1. mp->mp_drvname matches driver.
*
* OR
*
* 2. mp->mp_drvname matches node_name and this
* name is an alias of the driver name
*
* OR
*
* 3. /devices entry is the clone device and either
* minor_perm entry is the clone device or matches
* the minor part of the clone device.
*/
if ((mp_drvname_matches_drvname == TRUE)||
((mp_drvname_matches_node_name == TRUE) &&
(alias(driver, node_name) == TRUE)) ||
((is_clone == TRUE) &&
((mp_drvname_is_clone == TRUE) ||
(mp_drvname_matches_minor_name == TRUE)))) {
/*
* Check that the minor part of the
* device name from the minor_perm
* entry matches and if so, set the
* permissions.
*
* Under real devfs, clone minor name is changed
* to match the driver name, but minor_perm may
* not match. We reconcile it here.
*/
if (aminor != NULL)
minor_name = aminor;
if (gmatch(minor_name, mp->mp_minorname) != 0) {
*uid = mp->mp_uid;
*gid = mp->mp_gid;
*mode = spectype | mp->mp_mode;
match = TRUE;
}
}
}
if (match == TRUE) {
return;
}
use_defaults:
/* not found in minor_perm, so just use default values */
*uid = root_uid;
*gid = sys_gid;
*mode = (spectype | 0600);
}
/*
* Called by devfs_read_minor_perm() to report errors
* key is:
* line number: ignoring line number error
* errno: open/close errors
* size: alloc errors
*/
static void
minorperm_err_cb(minorperm_err_t mp_err, int key)
{
switch (mp_err) {
case MP_FOPEN_ERR:
err_print(FOPEN_FAILED, MINOR_PERM_FILE, strerror(key));
break;
case MP_FCLOSE_ERR:
err_print(FCLOSE_FAILED, MINOR_PERM_FILE, strerror(key));
break;
case MP_IGNORING_LINE_ERR:
err_print(IGNORING_LINE_IN, key, MINOR_PERM_FILE);
break;
case MP_ALLOC_ERR:
err_print(MALLOC_FAILED, key);
break;
case MP_NVLIST_ERR:
err_print(NVLIST_ERROR, MINOR_PERM_FILE, strerror(key));
break;
case MP_CANT_FIND_USER_ERR:
err_print(CANT_FIND_USER, DEFAULT_DEV_USER);
break;
case MP_CANT_FIND_GROUP_ERR:
err_print(CANT_FIND_GROUP, DEFAULT_DEV_GROUP);
break;
}
}
static void
read_minor_perm_file(void)
{
static int cached = FALSE;
static struct stat cached_sb;
struct stat current_sb;
(void) stat(MINOR_PERM_FILE, &current_sb);
/* If already cached, check to see if it is still valid */
if (cached == TRUE) {
if (current_sb.st_mtime == cached_sb.st_mtime) {
vprint(FILES_MID, "%s cache valid\n", MINOR_PERM_FILE);
return;
}
devfs_free_minor_perm(minor_perms);
minor_perms = NULL;
} else {
cached = TRUE;
}
(void) stat(MINOR_PERM_FILE, &cached_sb);
vprint(FILES_MID, "loading binding file: %s\n", MINOR_PERM_FILE);
minor_perms = devfs_read_minor_perm(minorperm_err_cb);
}
static void
load_minor_perm_file(void)
{
read_minor_perm_file();
if (devfs_load_minor_perm(minor_perms, minorperm_err_cb) != 0)
err_print(gettext("minor_perm load failed\n"));
}
static char *
convert_to_re(char *dev)
{
char *p, *l, *out;
int i;
out = s_malloc(PATH_MAX);
for (l = p = dev, i = 0; (*p != '\0') && (i < (PATH_MAX - 1));
++p, i++) {
if ((*p == '*') && ((l != p) && (*l == '/'))) {
out[i++] = '.';
out[i] = '+';
} else {
out[i] = *p;
}
l = p;
}
out[i] = '\0';
p = (char *)s_malloc(strlen(out) + 1);
(void) strlcpy(p, out, strlen(out) + 1);
free(out);
vprint(FILES_MID, "converted %s -> %s\n", dev, p);
return (p);
}
static void
read_logindevperm_file(void)
{
static int cached = FALSE;
static struct stat cached_sb;
struct stat current_sb;
struct login_dev *ldev;
FILE *fp;
char line[MAX_LDEV_LINE];
int ln, perm, rv;
char *cp, *console, *dlist, *dev;
char *lasts, *devlasts, *permstr, *drv;
struct driver_list *list, *next;
/* Read logindevperm only when enabled */
if (login_dev_enable != TRUE)
return;
if (cached == TRUE) {
if (stat(LDEV_FILE, &current_sb) == 0 &&
current_sb.st_mtime == cached_sb.st_mtime) {
vprint(FILES_MID, "%s cache valid\n", LDEV_FILE);
return;
}
vprint(FILES_MID, "invalidating %s cache\n", LDEV_FILE);
while (login_dev_cache != NULL) {
ldev = login_dev_cache;
login_dev_cache = ldev->ldev_next;
free(ldev->ldev_console);
free(ldev->ldev_device);
regfree(&ldev->ldev_device_regex);
list = ldev->ldev_driver_list;
while (list) {
next = list->next;
free(list);
list = next;
}
free(ldev);
}
} else {
cached = TRUE;
}
assert(login_dev_cache == NULL);
if (stat(LDEV_FILE, &cached_sb) != 0) {
cached = FALSE;
return;
}
vprint(FILES_MID, "loading file: %s\n", LDEV_FILE);
if ((fp = fopen(LDEV_FILE, "r")) == NULL) {
/* Not fatal to devfsadm */
cached = FALSE;
err_print(FOPEN_FAILED, LDEV_FILE, strerror(errno));
return;
}
ln = 0;
while (fgets(line, MAX_LDEV_LINE, fp) != NULL) {
ln++;
/* Remove comments */
if ((cp = strchr(line, '#')) != NULL)
*cp = '\0';
if ((console = strtok_r(line, LDEV_DELIMS, &lasts)) == NULL)
continue; /* Blank line */
if ((permstr = strtok_r(NULL, LDEV_DELIMS, &lasts)) == NULL) {
err_print(IGNORING_LINE_IN, ln, LDEV_FILE);
continue; /* Malformed line */
}
/*
* permstr is string in octal format. Convert to int
*/
cp = NULL;
errno = 0;
perm = strtol(permstr, &cp, 8);
if (errno || perm < 0 || perm > 0777 || *cp != '\0') {
err_print(IGNORING_LINE_IN, ln, LDEV_FILE);
continue;
}
if ((dlist = strtok_r(NULL, LDEV_DELIMS, &lasts)) == NULL) {
err_print(IGNORING_LINE_IN, ln, LDEV_FILE);
continue;
}
dev = strtok_r(dlist, LDEV_DEV_DELIM, &devlasts);
while (dev) {
ldev = (struct login_dev *)s_zalloc(
sizeof (struct login_dev));
ldev->ldev_console = s_strdup(console);
ldev->ldev_perms = perm;
/*
* the logical device name may contain '*' which
* we convert to a regular expression
*/
ldev->ldev_device = convert_to_re(dev);
if (ldev->ldev_device &&
(rv = regcomp(&ldev->ldev_device_regex,
ldev->ldev_device, REG_EXTENDED))) {
bzero(&ldev->ldev_device_regex,
sizeof (ldev->ldev_device_regex));
err_print(REGCOMP_FAILED,
ldev->ldev_device, rv);
}
ldev->ldev_next = login_dev_cache;
login_dev_cache = ldev;
dev = strtok_r(NULL, LDEV_DEV_DELIM, &devlasts);
}
drv = strtok_r(NULL, LDEV_DRVLIST_DELIMS, &lasts);
if (drv) {
if (strcmp(drv, LDEV_DRVLIST_NAME) == 0) {
drv = strtok_r(NULL, LDEV_DRV_DELIMS, &lasts);
while (drv) {
vprint(FILES_MID,
"logindevperm driver=%s\n", drv);
/*
* create a linked list of driver
* names
*/
list = (struct driver_list *)
s_zalloc(
sizeof (struct driver_list));
(void) strlcpy(list->driver_name, drv,
sizeof (list->driver_name));
list->next = ldev->ldev_driver_list;
ldev->ldev_driver_list = list;
drv = strtok_r(NULL, LDEV_DRV_DELIMS,
&lasts);
}
}
}
}
(void) fclose(fp);
}
/*
* Tokens are separated by ' ', '\t', ':', '=', '&', '|', ';', '\n', or '\0'
*
* Returns DEVFSADM_SUCCESS if token found, DEVFSADM_FAILURE otherwise.
*/
static int
getnexttoken(char *next, char **nextp, char **tokenpp, char *tchar)
{
char *cp;
char *cp1;
char *tokenp;
cp = next;
while (*cp == ' ' || *cp == '\t') {
cp++; /* skip leading spaces */
}
tokenp = cp; /* start of token */
while (*cp != '\0' && *cp != '\n' && *cp != ' ' && *cp != '\t' &&
*cp != ':' && *cp != '=' && *cp != '&' &&
*cp != '|' && *cp != ';') {
cp++; /* point to next character */
}
/*
* If terminating character is a space or tab, look ahead to see if
* there's another terminator that's not a space or a tab.
* (This code handles trailing spaces.)
*/
if (*cp == ' ' || *cp == '\t') {
cp1 = cp;
while (*++cp1 == ' ' || *cp1 == '\t')
;
if (*cp1 == '=' || *cp1 == ':' || *cp1 == '&' || *cp1 == '|' ||
*cp1 == ';' || *cp1 == '\n' || *cp1 == '\0') {
*cp = NULL; /* terminate token */
cp = cp1;
}
}
if (tchar != NULL) {
*tchar = *cp; /* save terminating character */
if (*tchar == '\0') {
*tchar = '\n';
}
}
*cp++ = '\0'; /* terminate token, point to next */
*nextp = cp; /* set pointer to next character */
if (cp - tokenp - 1 == 0) {
return (DEVFSADM_FAILURE);
}
*tokenpp = tokenp;
return (DEVFSADM_SUCCESS);
}
/*
* read or reread the driver aliases file
*/
static void
read_driver_aliases_file(void)
{
driver_alias_t *save;
driver_alias_t *lst_tail;
driver_alias_t *ap;
static int cached = FALSE;
FILE *afd;
char line[256];
char *cp;
char *p;
char t;
int ln = 0;
static struct stat cached_sb;
struct stat current_sb;
(void) stat(ALIASFILE, &current_sb);
/* If already cached, check to see if it is still valid */
if (cached == TRUE) {
if (current_sb.st_mtime == cached_sb.st_mtime) {
vprint(FILES_MID, "%s cache valid\n", ALIASFILE);
return;
}
vprint(FILES_MID, "invalidating %s cache\n", ALIASFILE);
while (driver_aliases != NULL) {
free(driver_aliases->alias_name);
free(driver_aliases->driver_name);
save = driver_aliases;
driver_aliases = driver_aliases->next;
free(save);
}
} else {
cached = TRUE;
}
(void) stat(ALIASFILE, &cached_sb);
vprint(FILES_MID, "loading binding file: %s\n", ALIASFILE);
if ((afd = fopen(ALIASFILE, "r")) == NULL) {
err_print(FOPEN_FAILED, ALIASFILE, strerror(errno));
devfsadm_exit(1);
/*NOTREACHED*/
}
while (fgets(line, sizeof (line), afd) != NULL) {
ln++;
/* cut off comments starting with '#' */
if ((cp = strchr(line, '#')) != NULL)
*cp = '\0';
/* ignore comment or blank lines */
if (is_blank(line))
continue;
cp = line;
if (getnexttoken(cp, &cp, &p, &t) == DEVFSADM_FAILURE) {
err_print(IGNORING_LINE_IN, ln, ALIASFILE);
continue;
}
if (t == '\n' || t == '\0') {
err_print(DRV_BUT_NO_ALIAS, ln, ALIASFILE);
continue;
}
ap = (struct driver_alias *)
s_zalloc(sizeof (struct driver_alias));
ap->driver_name = s_strdup(p);
if (getnexttoken(cp, &cp, &p, &t) == DEVFSADM_FAILURE) {
err_print(DRV_BUT_NO_ALIAS, ln, ALIASFILE);
free(ap->driver_name);
free(ap);
continue;
}
if (*p == '"') {
if (p[strlen(p) - 1] == '"') {
p[strlen(p) - 1] = '\0';
p++;
}
}
ap->alias_name = s_strdup(p);
if (driver_aliases == NULL) {
driver_aliases = ap;
lst_tail = ap;
} else {
lst_tail->next = ap;
lst_tail = ap;
}
}
if (fclose(afd) == EOF) {
err_print(FCLOSE_FAILED, ALIASFILE, strerror(errno));
}
}
/*
* return TRUE if alias_name is an alias for driver_name, otherwise
* return FALSE.
*/
static int
alias(char *driver_name, char *alias_name)
{
driver_alias_t *alias;
/*
* check for a match
*/
for (alias = driver_aliases; alias != NULL; alias = alias->next) {
if ((strcmp(alias->driver_name, driver_name) == 0) &&
(strcmp(alias->alias_name, alias_name) == 0)) {
return (TRUE);
}
}
return (FALSE);
}
/*
* convenience functions
*/
static int
s_stat(const char *path, struct stat *sbufp)
{
int rv;
retry:
if ((rv = stat(path, sbufp)) == -1) {
if (errno == EINTR)
goto retry;
}
return (rv);
}
static void *
s_malloc(const size_t size)
{
void *rp;
rp = malloc(size);
if (rp == NULL) {
err_print(MALLOC_FAILED, size);
devfsadm_exit(1);
/*NOTREACHED*/
}
return (rp);
}
/*
* convenience functions
*/
static void *
s_realloc(void *ptr, const size_t size)
{
ptr = realloc(ptr, size);
if (ptr == NULL) {
err_print(REALLOC_FAILED, size);
devfsadm_exit(1);
/*NOTREACHED*/
}
return (ptr);
}
static void *
s_zalloc(const size_t size)
{
void *rp;
rp = calloc(1, size);
if (rp == NULL) {
err_print(CALLOC_FAILED, size);
devfsadm_exit(1);
/*NOTREACHED*/
}
return (rp);
}
char *
s_strdup(const char *ptr)
{
void *rp;
rp = strdup(ptr);
if (rp == NULL) {
err_print(STRDUP_FAILED, ptr);
devfsadm_exit(1);
/*NOTREACHED*/
}
return (rp);
}
static void
s_closedir(DIR *dirp)
{
retry:
if (closedir(dirp) != 0) {
if (errno == EINTR)
goto retry;
err_print(CLOSEDIR_FAILED, strerror(errno));
}
}
static void
s_mkdirp(const char *path, const mode_t mode)
{
vprint(CHATTY_MID, "mkdirp(%s, 0x%lx)\n", path, mode);
if (mkdirp(path, mode) == -1) {
if (errno != EEXIST) {
err_print(MKDIR_FAILED, path, mode, strerror(errno));
}
}
}
static void
s_unlink(const char *file)
{
retry:
if (unlink(file) == -1) {
if (errno == EINTR || errno == EAGAIN)
goto retry;
if (errno != ENOENT) {
err_print(UNLINK_FAILED, file, strerror(errno));
}
}
}
static void
add_verbose_id(char *mid)
{
num_verbose++;
verbose = s_realloc(verbose, num_verbose * sizeof (char *));
verbose[num_verbose - 1] = mid;
}
/*
* returns DEVFSADM_TRUE if contents is a minor node in /devices.
* If mn_root is not NULL, mn_root is set to:
* if contents is a /dev node, mn_root = contents
* OR
* if contents is a /devices node, mn_root set to the '/'
* following /devices.
*/
static int
is_minor_node(char *contents, char **mn_root)
{
char *ptr;
char device_prefix[100];
(void) snprintf(device_prefix, sizeof (device_prefix), "../devices/");
if ((ptr = strstr(contents, device_prefix)) != NULL) {
if (mn_root != NULL) {
/* mn_root should point to the / following /devices */
*mn_root = ptr += strlen(device_prefix) - 1;
}
return (DEVFSADM_TRUE);
}
(void) snprintf(device_prefix, sizeof (device_prefix), "/devices/");
if (strncmp(contents, device_prefix, strlen(device_prefix)) == 0) {
if (mn_root != NULL) {
/* mn_root should point to the / following /devices */
*mn_root = contents + strlen(device_prefix) - 1;
}
return (DEVFSADM_TRUE);
}
if (mn_root != NULL) {
*mn_root = contents;
}
return (DEVFSADM_FALSE);
}
/*
* Add the specified property to nvl.
* Returns:
* 0 successfully added
* -1 an error occurred
* 1 could not add the property for reasons not due to errors.
*/
static int
add_property(nvlist_t *nvl, di_prop_t prop)
{
char *name;
char *attr_name;
int n, len;
int32_t *int32p;
int64_t *int64p;
char *str;
char **strarray;
uchar_t *bytep;
int rv = 0;
int i;
if ((name = di_prop_name(prop)) == NULL)
return (-1);
len = sizeof (DEV_PROP_PREFIX) + strlen(name);
if ((attr_name = malloc(len)) == NULL)
return (-1);
(void) strlcpy(attr_name, DEV_PROP_PREFIX, len);
(void) strlcat(attr_name, name, len);
switch (di_prop_type(prop)) {
case DI_PROP_TYPE_BOOLEAN:
if (nvlist_add_boolean(nvl, attr_name) != 0)
goto out;
break;
case DI_PROP_TYPE_INT:
if ((n = di_prop_ints(prop, &int32p)) < 1)
goto out;
if (n <= (PROP_LEN_LIMIT / sizeof (int32_t))) {
if (nvlist_add_int32_array(nvl, attr_name, int32p,
n) != 0)
goto out;
} else
rv = 1;
break;
case DI_PROP_TYPE_INT64:
if ((n = di_prop_int64(prop, &int64p)) < 1)
goto out;
if (n <= (PROP_LEN_LIMIT / sizeof (int64_t))) {
if (nvlist_add_int64_array(nvl, attr_name, int64p,
n) != 0)
goto out;
} else
rv = 1;
break;
case DI_PROP_TYPE_BYTE:
case DI_PROP_TYPE_UNKNOWN:
if ((n = di_prop_bytes(prop, &bytep)) < 1)
goto out;
if (n <= PROP_LEN_LIMIT) {
if (nvlist_add_byte_array(nvl, attr_name, bytep, n)
!= 0)
goto out;
} else
rv = 1;
break;
case DI_PROP_TYPE_STRING:
if ((n = di_prop_strings(prop, &str)) < 1)
goto out;
if ((strarray = malloc(n * sizeof (char *))) == NULL)
goto out;
len = 0;
for (i = 0; i < n; i++) {
strarray[i] = str + len;
len += strlen(strarray[i]) + 1;
}
if (len <= PROP_LEN_LIMIT) {
if (nvlist_add_string_array(nvl, attr_name, strarray,
n) != 0) {
free(strarray);
goto out;
}
} else
rv = 1;
free(strarray);
break;
default:
rv = 1;
break;
}
free(attr_name);
return (rv);
out:
free(attr_name);
return (-1);
}
static void
free_dev_names(struct devlink_cb_arg *x)
{
int i;
for (i = 0; i < x->count; i++) {
free(x->dev_names[i]);
free(x->link_contents[i]);
}
}
/* callback function for di_devlink_cache_walk */
static int
devlink_cb(di_devlink_t dl, void *arg)
{
struct devlink_cb_arg *x = (struct devlink_cb_arg *)arg;
const char *path;
const char *content;
if ((path = di_devlink_path(dl)) == NULL ||
(content = di_devlink_content(dl)) == NULL ||
(x->dev_names[x->count] = s_strdup(path)) == NULL)
goto out;
if ((x->link_contents[x->count] = s_strdup(content)) == NULL) {
free(x->dev_names[x->count]);
goto out;
}
x->count++;
if (x->count >= MAX_DEV_NAME_COUNT)
return (DI_WALK_TERMINATE);
return (DI_WALK_CONTINUE);
out:
x->rv = -1;
free_dev_names(x);
return (DI_WALK_TERMINATE);
}
/*
* Lookup dev name corresponding to the phys_path.
* phys_path is path to a node or minor node.
* Returns:
* 0 with *dev_name set to the dev name
* Lookup succeeded and dev_name found
* 0 with *dev_name set to NULL
* Lookup encountered no errors but dev name not found
* -1
* Lookup failed
*/
static int
lookup_dev_name(char *phys_path, char **dev_name)
{
struct devlink_cb_arg cb_arg;
*dev_name = NULL;
cb_arg.count = 0;
cb_arg.rv = 0;
(void) di_devlink_cache_walk(devlink_cache, NULL, phys_path,
DI_PRIMARY_LINK, &cb_arg, devlink_cb);
if (cb_arg.rv == -1)
return (-1);
if (cb_arg.count > 0) {
*dev_name = s_strdup(cb_arg.dev_names[0]);
free_dev_names(&cb_arg);
if (*dev_name == NULL)
return (-1);
}
return (0);
}
static char *
lookup_disk_dev_name(char *node_path)
{
struct devlink_cb_arg cb_arg;
char *dev_name = NULL;
int i;
char *p;
int len1, len2;
#define DEV_RDSK "/dev/rdsk/"
#define DISK_RAW_MINOR ",raw"
cb_arg.count = 0;
cb_arg.rv = 0;
(void) di_devlink_cache_walk(devlink_cache, NULL, node_path,
DI_PRIMARY_LINK, &cb_arg, devlink_cb);
if (cb_arg.rv == -1 || cb_arg.count == 0)
return (NULL);
/* first try lookup based on /dev/rdsk name */
for (i = 0; i < cb_arg.count; i++) {
if (strncmp(cb_arg.dev_names[i], DEV_RDSK,
sizeof (DEV_RDSK) - 1) == 0) {
dev_name = s_strdup(cb_arg.dev_names[i]);
break;
}
}
if (dev_name == NULL) {
/* now try lookup based on a minor name ending with ",raw" */
len1 = sizeof (DISK_RAW_MINOR) - 1;
for (i = 0; i < cb_arg.count; i++) {
len2 = strlen(cb_arg.link_contents[i]);
if (len2 >= len1 &&
strcmp(cb_arg.link_contents[i] + len2 - len1,
DISK_RAW_MINOR) == 0) {
dev_name = s_strdup(cb_arg.dev_names[i]);
break;
}
}
}
free_dev_names(&cb_arg);
if (dev_name == NULL)
return (NULL);
if (strlen(dev_name) == 0) {
free(dev_name);
return (NULL);
}
/* if the name contains slice or partition number strip it */
p = dev_name + strlen(dev_name) - 1;
if (isdigit(*p)) {
while (p != dev_name && isdigit(*p))
p--;
if (*p == 's' || *p == 'p')
*p = '\0';
}
return (dev_name);
}
static char *
lookup_lofi_dev_name(char *node_path, char *minor)
{
struct devlink_cb_arg cb_arg;
char *dev_name = NULL;
int i;
int len1, len2;
cb_arg.count = 0;
cb_arg.rv = 0;
(void) di_devlink_cache_walk(devlink_cache, NULL, node_path,
DI_PRIMARY_LINK, &cb_arg, devlink_cb);
if (cb_arg.rv == -1 || cb_arg.count == 0)
return (NULL);
/* lookup based on a minor name ending with ",raw" */
len1 = strlen(minor);
for (i = 0; i < cb_arg.count; i++) {
len2 = strlen(cb_arg.link_contents[i]);
if (len2 >= len1 &&
strcmp(cb_arg.link_contents[i] + len2 - len1,
minor) == 0) {
dev_name = s_strdup(cb_arg.dev_names[i]);
break;
}
}
free_dev_names(&cb_arg);
if (dev_name == NULL)
return (NULL);
if (strlen(dev_name) == 0) {
free(dev_name);
return (NULL);
}
return (dev_name);
}
static char *
lookup_network_dev_name(char *node_path, char *driver_name)
{
char *dev_name = NULL;
char phys_path[MAXPATHLEN];
if (lookup_dev_name(node_path, &dev_name) == -1)
return (NULL);
if (dev_name == NULL) {
/* dlpi style-2 only interface */
(void) snprintf(phys_path, sizeof (phys_path),
"/pseudo/clone@0:%s", driver_name);
if (lookup_dev_name(phys_path, &dev_name) == -1 ||
dev_name == NULL)
return (NULL);
}
return (dev_name);
}
static char *
lookup_printer_dev_name(char *node_path)
{
struct devlink_cb_arg cb_arg;
char *dev_name = NULL;
int i;
#define DEV_PRINTERS "/dev/printers/"
cb_arg.count = 0;
cb_arg.rv = 0;
(void) di_devlink_cache_walk(devlink_cache, NULL, node_path,
DI_PRIMARY_LINK, &cb_arg, devlink_cb);
if (cb_arg.rv == -1 || cb_arg.count == 0)
return (NULL);
/* first try lookup based on /dev/printers name */
for (i = 0; i < cb_arg.count; i++) {
if (strncmp(cb_arg.dev_names[i], DEV_PRINTERS,
sizeof (DEV_PRINTERS) - 1) == 0) {
dev_name = s_strdup(cb_arg.dev_names[i]);
break;
}
}
/* fallback to the first name */
if ((dev_name == NULL) && (cb_arg.count > 0))
dev_name = s_strdup(cb_arg.dev_names[0]);
free_dev_names(&cb_arg);
return (dev_name);
}
/*
* Build an nvlist containing all attributes for devfs events.
* Returns nvlist pointer on success, NULL on failure.
*/
static nvlist_t *
build_event_attributes(char *class, char *subclass, char *node_path,
di_node_t node, char *driver_name, int instance, char *minor)
{
nvlist_t *nvl;
int err = 0;
di_prop_t prop;
int count;
char *prop_name;
int x;
char *dev_name = NULL;
int dev_name_lookup_err = 0;
if ((err = nvlist_alloc(&nvl, NV_UNIQUE_NAME_TYPE, 0)) != 0) {
nvl = NULL;
goto out;
}
if ((err = nvlist_add_int32(nvl, EV_VERSION, EV_V1)) != 0)
goto out;
if ((err = nvlist_add_string(nvl, DEV_PHYS_PATH, node_path)) != 0)
goto out;
if (strcmp(class, EC_DEV_ADD) != 0 &&
strcmp(class, EC_DEV_REMOVE) != 0)
return (nvl);
if (driver_name == NULL || instance == -1)
goto out;
if (strcmp(subclass, ESC_DISK) == 0) {
/*
* While we're removing labeled lofi device, we will receive
* event for every registered minor device and lastly,
* an event with minor set to NULL, as in following example:
* class: EC_dev_remove subclass: disk
* node_path: /pseudo/lofi@1 driver: lofi minor: u,raw
* class: EC_dev_remove subclass: disk
* node_path: /pseudo/lofi@1 driver: lofi minor: NULL
*
* When we receive this last event with minor set to NULL,
* all lofi minor devices are already removed and the call to
* lookup_disk_dev_name() would result in error.
* To prevent name lookup error messages for this case, we
* need to filter out that last event.
*/
if (strcmp(class, EC_DEV_REMOVE) == 0 &&
strcmp(driver_name, "lofi") == 0 && minor == NULL) {
nvlist_free(nvl);
return (NULL);
}
if ((dev_name = lookup_disk_dev_name(node_path)) == NULL) {
dev_name_lookup_err = 1;
goto out;
}
} else if (strcmp(subclass, ESC_NETWORK) == 0) {
if ((dev_name = lookup_network_dev_name(node_path, driver_name))
== NULL) {
dev_name_lookup_err = 1;
goto out;
}
} else if (strcmp(subclass, ESC_PRINTER) == 0) {
if ((dev_name = lookup_printer_dev_name(node_path)) == NULL) {
dev_name_lookup_err = 1;
goto out;
}
} else if (strcmp(subclass, ESC_LOFI) == 0) {
/*
* The raw minor node is created or removed after the block
* node. Lofi devfs events are dependent on this behavior.
* Generate the sysevent only for the raw minor node.
*
* If the lofi mapping is created, we will receive the following
* event: class: EC_dev_add subclass: lofi minor: NULL
*
* As in case of EC_dev_add, the minor is NULL pointer,
* to get device links created, we will need to provide the
* type of minor node for lookup_lofi_dev_name()
*
* If the lofi device is unmapped, we will receive following
* events:
* class: EC_dev_remove subclass: lofi minor: disk
* class: EC_dev_remove subclass: lofi minor: disk,raw
* class: EC_dev_remove subclass: lofi minor: NULL
*/
if (strcmp(class, EC_DEV_ADD) == 0 && minor == NULL)
minor = "disk,raw";
if (minor == NULL || strstr(minor, "raw") == NULL) {
nvlist_free(nvl);
return (NULL);
}
if ((dev_name = lookup_lofi_dev_name(node_path, minor)) ==
NULL) {
dev_name_lookup_err = 1;
goto out;
}
}
if (dev_name) {
if ((err = nvlist_add_string(nvl, DEV_NAME, dev_name)) != 0)
goto out;
free(dev_name);
dev_name = NULL;
}
if ((err = nvlist_add_string(nvl, DEV_DRIVER_NAME, driver_name)) != 0)
goto out;
if ((err = nvlist_add_int32(nvl, DEV_INSTANCE, instance)) != 0)
goto out;
if (strcmp(class, EC_DEV_ADD) == 0) {
/* add properties */
count = 0;
for (prop = di_prop_next(node, DI_PROP_NIL);
prop != DI_PROP_NIL && count < MAX_PROP_COUNT;
prop = di_prop_next(node, prop)) {
if (di_prop_devt(prop) != DDI_DEV_T_NONE)
continue;
if ((x = add_property(nvl, prop)) == 0)
count++;
else if (x == -1) {
if ((prop_name = di_prop_name(prop)) == NULL)
prop_name = "";
err_print(PROP_ADD_FAILED, prop_name);
goto out;
}
}
}
return (nvl);
out:
nvlist_free(nvl);
if (dev_name)
free(dev_name);
if (dev_name_lookup_err) {
/*
* If a lofi mount fails, the /devices node may well have
* disappeared by the time we run, so let's not complain.
*/
if (strcmp(subclass, ESC_LOFI) != 0)
err_print(DEV_NAME_LOOKUP_FAILED, node_path);
} else {
err_print(BUILD_EVENT_ATTR_FAILED, (err) ? strerror(err) : "");
}
return (NULL);
}
static void
log_event(char *class, char *subclass, nvlist_t *nvl)
{
sysevent_id_t eid;
if (sysevent_post_event(class, subclass, "SUNW", DEVFSADMD,
nvl, &eid) != 0) {
err_print(LOG_EVENT_FAILED, strerror(errno));
}
}
/*
* When devfsadmd needs to generate sysevents, they are queued for later
* delivery this allows them to be delivered after the devlinks db cache has
* been flushed guaranteeing that applications consuming these events have
* access to an accurate devlinks db. The queue is a FIFO, sysevents to be
* inserted in the front of the queue and consumed off the back.
*/
static void
enqueue_sysevent(char *class, char *subclass, nvlist_t *nvl)
{
syseventq_t *tmp;
if ((tmp = s_zalloc(sizeof (*tmp))) == NULL)
return;
tmp->class = s_strdup(class);
tmp->subclass = s_strdup(subclass);
tmp->nvl = nvl;
(void) mutex_lock(&syseventq_mutex);
if (syseventq_front != NULL)
syseventq_front->next = tmp;
else
syseventq_back = tmp;
syseventq_front = tmp;
(void) mutex_unlock(&syseventq_mutex);
}
static void
process_syseventq()
{
(void) mutex_lock(&syseventq_mutex);
while (syseventq_back != NULL) {
syseventq_t *tmp = syseventq_back;
vprint(CHATTY_MID, "sending queued event: %s, %s\n",
tmp->class, tmp->subclass);
log_event(tmp->class, tmp->subclass, tmp->nvl);
if (tmp->class != NULL)
free(tmp->class);
if (tmp->subclass != NULL)
free(tmp->subclass);
nvlist_free(tmp->nvl);
syseventq_back = syseventq_back->next;
if (syseventq_back == NULL)
syseventq_front = NULL;
free(tmp);
}
(void) mutex_unlock(&syseventq_mutex);
}
static void
build_and_enq_event(char *class, char *subclass, char *node_path,
di_node_t node, char *minor)
{
nvlist_t *nvl;
vprint(CHATTY_MID, "build_and_enq_event(%s, %s, %s, 0x%8.8x)\n",
class, subclass, node_path, (int)node);
if (node != DI_NODE_NIL)
nvl = build_event_attributes(class, subclass, node_path, node,
di_driver_name(node), di_instance(node), minor);
else
nvl = build_event_attributes(class, subclass, node_path, node,
NULL, -1, minor);
if (nvl) {
enqueue_sysevent(class, subclass, nvl);
}
}
/*
* is_blank() returns 1 (true) if a line specified is composed of
* whitespace characters only. otherwise, it returns 0 (false).
*
* Note. the argument (line) must be null-terminated.
*/
static int
is_blank(char *line)
{
for (/* nothing */; *line != '\0'; line++)
if (!isspace(*line))
return (0);
return (1);
}
/*
* Functions to deal with the no-further-processing hash
*/
static void
nfphash_create(void)
{
assert(nfp_hash == NULL);
nfp_hash = s_zalloc(NFP_HASH_SZ * sizeof (item_t *));
}
static int
nfphash_fcn(char *key)
{
int i;
uint64_t sum = 0;
for (i = 0; key[i] != '\0'; i++) {
sum += (uchar_t)key[i];
}
return (sum % NFP_HASH_SZ);
}
static item_t *
nfphash_lookup(char *key)
{
int index;
item_t *ip;
index = nfphash_fcn(key);
assert(index >= 0);
for (ip = nfp_hash[index]; ip; ip = ip->i_next) {
if (strcmp(ip->i_key, key) == 0)
return (ip);
}
return (NULL);
}
static void
nfphash_insert(char *key)
{
item_t *ip;
int index;
index = nfphash_fcn(key);
assert(index >= 0);
ip = s_zalloc(sizeof (item_t));
ip->i_key = s_strdup(key);
ip->i_next = nfp_hash[index];
nfp_hash[index] = ip;
}
static void
nfphash_destroy(void)
{
int i;
item_t *ip;
for (i = 0; i < NFP_HASH_SZ; i++) {
/*LINTED*/
while (ip = nfp_hash[i]) {
nfp_hash[i] = ip->i_next;
free(ip->i_key);
free(ip);
}
}
free(nfp_hash);
nfp_hash = NULL;
}
static int
devname_kcall(int subcmd, void *args)
{
int error = 0;
switch (subcmd) {
case MODDEVNAME_LOOKUPDOOR:
error = modctl(MODDEVNAME, subcmd, (uintptr_t)args);
if (error) {
vprint(INFO_MID, "modctl(MODDEVNAME, "
"MODDEVNAME_LOOKUPDOOR) failed - %s\n",
strerror(errno));
}
break;
default:
error = EINVAL;
break;
}
return (error);
}
/* ARGSUSED */
static void
devname_lookup_handler(void *cookie, char *argp, size_t arg_size,
door_desc_t *dp, uint_t n_desc)
{
int32_t error = 0;
door_cred_t dcred;
struct dca_impl dci;
uint8_t cmd;
sdev_door_res_t res;
sdev_door_arg_t *args;
if (argp == NULL || arg_size == 0) {
vprint(DEVNAME_MID, "devname_lookup_handler: argp wrong\n");
error = DEVFSADM_RUN_INVALID;
goto done;
}
vprint(DEVNAME_MID, "devname_lookup_handler\n");
if (door_cred(&dcred) != 0 || dcred.dc_euid != 0) {
vprint(DEVNAME_MID, "devname_lookup_handler: cred wrong\n");
error = DEVFSADM_RUN_EPERM;
goto done;
}
args = (sdev_door_arg_t *)argp;
cmd = args->devfsadm_cmd;
vprint(DEVNAME_MID, "devname_lookup_handler: cmd %d\n", cmd);
switch (cmd) {
case DEVFSADMD_RUN_ALL:
/*
* run "devfsadm"
*/
dci.dci_root = "/";
dci.dci_minor = NULL;
dci.dci_driver = NULL;
dci.dci_error = 0;
dci.dci_flags = 0;
dci.dci_arg = NULL;
lock_dev();
update_drvconf((major_t)-1, 0);
dci.dci_flags |= DCA_FLUSH_PATHINST;
pre_and_post_cleanup(RM_PRE);
devi_tree_walk(&dci, DI_CACHE_SNAPSHOT_FLAGS, NULL);
error = (int32_t)dci.dci_error;
if (!error) {
pre_and_post_cleanup(RM_POST);
update_database = TRUE;
unlock_dev(SYNC_STATE);
update_database = FALSE;
} else {
if (DEVFSADM_DEBUG_ON) {
vprint(INFO_MID, "devname_lookup_handler: "
"DEVFSADMD_RUN_ALL failed\n");
}
unlock_dev(SYNC_STATE);
}
break;
default:
/* log an error here? */
error = DEVFSADM_RUN_NOTSUP;
break;
}
done:
vprint(DEVNAME_MID, "devname_lookup_handler: error %d\n", error);
res.devfsadm_error = error;
(void) door_return((char *)&res, sizeof (struct sdev_door_res),
NULL, 0);
}
di_devlink_handle_t
devfsadm_devlink_cache(void)
{
return (devlink_cache);
}
int
devfsadm_reserve_id_cache(devlink_re_t re_array[], enumerate_file_t *head)
{
enumerate_file_t *entry;
int nelem;
int i;
int subex;
char *re;
size_t size;
regmatch_t *pmch;
/*
* Check the <RE, subexp> array passed in and compile it.
*/
for (i = 0; re_array[i].d_re; i++) {
if (re_array[i].d_subexp == 0) {
err_print("bad subexp value in RE: %s\n",
re_array[i].d_re);
goto bad_re;
}
re = re_array[i].d_re;
if (regcomp(&re_array[i].d_rcomp, re, REG_EXTENDED) != 0) {
err_print("reg. exp. failed to compile: %s\n", re);
goto bad_re;
}
subex = re_array[i].d_subexp;
nelem = subex + 1;
re_array[i].d_pmatch = s_malloc(sizeof (regmatch_t) * nelem);
}
entry = head ? head : enumerate_reserved;
for (; entry; entry = entry->er_next) {
if (entry->er_id) {
vprint(RSBY_MID, "entry %s already has ID %s\n",
entry->er_file, entry->er_id);
continue;
}
for (i = 0; re_array[i].d_re; i++) {
subex = re_array[i].d_subexp;
pmch = re_array[i].d_pmatch;
if (regexec(&re_array[i].d_rcomp, entry->er_file,
subex + 1, pmch, 0) != 0) {
/* No match */
continue;
}
size = pmch[subex].rm_eo - pmch[subex].rm_so;
entry->er_id = s_malloc(size + 1);
(void) strncpy(entry->er_id,
&entry->er_file[pmch[subex].rm_so], size);
entry->er_id[size] = '\0';
if (head) {
vprint(RSBY_MID, "devlink(%s) matches RE(%s). "
"ID is %s\n", entry->er_file,
re_array[i].d_re, entry->er_id);
} else {
vprint(RSBY_MID, "rsrv entry(%s) matches "
"RE(%s) ID is %s\n", entry->er_file,
re_array[i].d_re, entry->er_id);
}
break;
}
}
for (i = 0; re_array[i].d_re; i++) {
regfree(&re_array[i].d_rcomp);
assert(re_array[i].d_pmatch);
free(re_array[i].d_pmatch);
}
entry = head ? head : enumerate_reserved;
for (; entry; entry = entry->er_next) {
if (entry->er_id == NULL)
continue;
if (head) {
vprint(RSBY_MID, "devlink: %s\n", entry->er_file);
vprint(RSBY_MID, "ID: %s\n", entry->er_id);
} else {
vprint(RSBY_MID, "reserve file entry: %s\n",
entry->er_file);
vprint(RSBY_MID, "reserve file id: %s\n",
entry->er_id);
}
}
return (DEVFSADM_SUCCESS);
bad_re:
for (i = i-1; i >= 0; i--) {
regfree(&re_array[i].d_rcomp);
assert(re_array[i].d_pmatch);
free(re_array[i].d_pmatch);
}
return (DEVFSADM_FAILURE);
}
/*
* Return 1 if we have reserved links.
*/
int
devfsadm_have_reserved()
{
return (enumerate_reserved ? 1 : 0);
}
/*
* This functions errs on the side of caution. If there is any error
* we assume that the devlink is *not* reserved
*/
int
devfsadm_is_reserved(devlink_re_t re_array[], char *devlink)
{
int match;
enumerate_file_t estruct = {NULL};
enumerate_file_t *entry;
match = 0;
estruct.er_file = devlink;
estruct.er_id = NULL;
estruct.er_next = NULL;
if (devfsadm_reserve_id_cache(re_array, &estruct) != DEVFSADM_SUCCESS) {
err_print("devfsadm_is_reserved: devlink (%s) does not "
"match RE\n", devlink);
return (0);
}
if (estruct.er_id == NULL) {
err_print("devfsadm_is_reserved: ID derived from devlink %s "
"is NULL\n", devlink);
return (0);
}
entry = enumerate_reserved;
for (; entry; entry = entry->er_next) {
if (entry->er_id == NULL)
continue;
if (strcmp(entry->er_id, estruct.er_id) != 0)
continue;
match = 1;
vprint(RSBY_MID, "reserve file entry (%s) and devlink (%s) "
"match\n", entry->er_file, devlink);
break;
}
free(estruct.er_id);
return (match);
}