/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Implementation of ri_init routine for obtaining mapping
* of system board attachment points to physical devices and to
* the Reconfiguration Coordination Manager (RCM) client usage
* of these devices.
*/
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <kstat.h>
#include <sys/param.h>
#include <sys/sbd_ioctl.h>
#include "rsrc_info_impl.h"
/*
* Occupant types exported by cfgadm sbd plugin via
* config_admin(3CFGADM).
*/
#define SBD_CM_CPU "cpu"
#define SBD_CM_MEM "memory"
#define SBD_CM_IO "io"
/*
* RCM abstract resource names.
*/
#define RCM_MEM_ALL "SUNW_memory"
#define RCM_CPU_ALL "SUNW_cpu"
#define RCM_CPU RCM_CPU_ALL"/cpu"
#define KBYTE 1024
#define MBYTE 1048576
#define USAGE_ALLOC_SIZE 128
/*
* define to allow io_cm_info to return NODE is NULL to ri_init,
* in order to skip over nodes w/unattached drivers
*/
#define RI_NODE_NIL 1
/*
* This code is CMP aware as it parses the
* cfgadm info field for individual cpuids.
*/
#define CPUID_SEP ","
#define CPU_INFO_FMT "cpuid=%s speed=%d ecache=%d"
typedef struct {
cfga_list_data_t *cfga_list_data;
int nlist;
} apd_t;
typedef struct {
long pagesize;
long syspages;
long sysmb;
} mem_stat_t;
#define ms_syspages m_stat.syspages
#define ms_pagesize m_stat.pagesize
#define ms_sysmb m_stat.sysmb
typedef int32_t cpuid_t;
typedef struct {
int cpuid_max; /* maximum cpuid value */
int ecache_curr; /* cached during tree walk */
int *ecache_sizes; /* indexed by cpuid */
} ecache_info_t;
typedef struct {
rcm_handle_t *hdl;
rcm_info_t *offline_query_info;
char **rlist;
int nrlist;
cpuid_t *cpus;
int ncpus;
int ndevs;
uint_t query_pages;
mem_stat_t m_stat;
ecache_info_t ecache_info;
} rcmd_t;
typedef struct {
const char *rsrc;
const char *info;
} usage_t;
/* Lookup table entry for matching IO devices to RCM resource usage */
typedef struct {
int index; /* index into the table array */
di_node_t node; /* associated devinfo node */
char *name; /* device full path name */
int n_usage;
usage_t *usage;
} lookup_entry_t;
typedef struct {
int n_entries;
int n_slots;
lookup_entry_t *table;
} lookup_table_t;
typedef struct {
int err;
di_node_t node;
char *pathbuf;
lookup_table_t *table;
di_devlink_handle_t linkhd;
} devinfo_arg_t;
static int dyn_ap_ids(char *, cfga_list_data_t **, int *);
static int rcm_init(rcmd_t *, apd_t [], int, int);
static void rcm_fini(rcmd_t *);
static int rcm_query_init(rcmd_t *, apd_t [], int);
static int cap_request(ri_hdl_t *, rcmd_t *);
static int syscpus(cpuid_t **, int *);
static int cpu_cap_request(ri_hdl_t *, rcmd_t *);
static int mem_cap_request(ri_hdl_t *, rcmd_t *);
static int (*cm_rcm_qpass_func(cfga_type_t))(cfga_list_data_t *, rcmd_t *);
static int cpu_rcm_qpass(cfga_list_data_t *, rcmd_t *);
static int mem_rcm_qpass(cfga_list_data_t *, rcmd_t *);
static int io_rcm_qpass(cfga_list_data_t *, rcmd_t *);
static int (*cm_info_func(cfga_type_t))(ri_ap_t *, cfga_list_data_t *, int,
rcmd_t *);
static int cpu_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
static int i_cpu_cm_info(processorid_t, int, int, ri_ap_t *, rcmd_t *);
static int mem_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
static int io_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
static int ident_leaf(di_node_t);
static int mk_drv_inst(di_node_t, char [], char *);
static int devinfo_node_walk(di_node_t, void *);
static int devinfo_minor_walk(di_node_t, di_minor_t, void *);
static int devinfo_devlink_walk(di_devlink_t, void *);
static int add_rcm_clients(ri_client_t **, rcmd_t *, rcm_info_t *, int, int *);
static int rcm_ignore(char *, char *);
static int add_query_state(rcmd_t *, ri_client_t *, const char *, const char *);
static int state2query(int);
static void dev_list_append(ri_dev_t **, ri_dev_t *);
static void dev_list_cpu_insert(ri_dev_t **, ri_dev_t *, processorid_t);
static rcm_info_tuple_t *tuple_lookup(rcmd_t *, const char *, const char *);
static ri_ap_t *ri_ap_alloc(char *, ri_hdl_t *);
static ri_dev_t *ri_dev_alloc(void);
static ri_dev_t *io_dev_alloc(char *);
static ri_client_t *ri_client_alloc(char *, char *);
static void apd_tbl_free(apd_t [], int);
static char *pstate2str(int);
static int ecache_info_init(ecache_info_t *);
static int find_cpu_nodes(di_node_t, void *);
static int prop_lookup_int(di_node_t, di_prom_handle_t, char *, int **);
static int add_lookup_entry(lookup_table_t *, const char *, di_node_t);
static int table_compare_names(const void *, const void *);
static int table_compare_indices(const void *, const void *);
static lookup_entry_t *lookup(lookup_table_t *table, const char *);
static int add_usage(lookup_entry_t *, const char *, rcm_info_tuple_t *);
static void empty_table(lookup_table_t *);
#ifdef DEBUG
static void dump_apd_tbl(FILE *, apd_t *, int);
#endif /* DEBUG */
static struct {
char *type;
int (*cm_info)(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
int (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
} cm_ctl[] = {
{SBD_CM_CPU, cpu_cm_info, cpu_rcm_qpass},
{SBD_CM_MEM, mem_cm_info, mem_rcm_qpass},
{SBD_CM_IO, io_cm_info, io_rcm_qpass}
};
/*
* Table of known info string prefixes for RCM modules that do not
* represent actual resource usage, but instead provide name translations
* or sequencing within the RCM namespace. Since RCM provides no way to
* filter these out, we must maintain this hack.
*/
static char *rcm_info_filter[] = {
"Network interface", /* Network naming module */
NULL
};
/*
* Allocate snapshot handle.
*/
int
ri_init(int n_apids, char **ap_ids, int flags, ri_hdl_t **hdlp)
{
int i, j;
ri_hdl_t *ri_hdl;
ri_ap_t *ap_hdl;
rcmd_t *rcm = NULL;
cfga_list_data_t *cfga_ldata;
apd_t *apd, *apd_tbl = NULL;
int (*cm_info)(ri_ap_t *, cfga_list_data_t *,
int, rcmd_t *);
int rv = RI_SUCCESS;
int cm_info_rv;
if (n_apids <= 0 || ap_ids == NULL || hdlp == NULL)
return (RI_INVAL);
if (flags & ~RI_REQ_MASK)
return (RI_NOTSUP);
*hdlp = NULL;
if ((ri_hdl = calloc(1, sizeof (*ri_hdl))) == NULL ||
(rcm = calloc(1, sizeof (*rcm))) == NULL ||
(apd_tbl = calloc(n_apids, sizeof (*apd_tbl))) == NULL) {
dprintf((stderr, "calloc: %s\n", strerror(errno)));
rv = RI_FAILURE;
goto out;
}
/*
* Create mapping of boards to components.
*/
for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
if (dyn_ap_ids(ap_ids[i], &apd->cfga_list_data,
&apd->nlist) == -1) {
rv = RI_INVAL;
goto out;
}
}
#ifdef DEBUG
dump_apd_tbl(stderr, apd_tbl, n_apids);
#endif /* DEBUG */
if (rcm_init(rcm, apd_tbl, n_apids, flags) != 0) {
rv = RI_FAILURE;
goto out;
}
/*
* Best effort attempt to read cpu ecache sizes from
* OBP/Solaris device trees. These are later looked up
* in i_cpu_cm_info().
*/
(void) ecache_info_init(&rcm->ecache_info);
for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
if ((ap_hdl = ri_ap_alloc(ap_ids[i], ri_hdl)) == NULL) {
rv = RI_FAILURE;
goto out;
}
/*
* Add component info based on occupant type. Note all
* passes through the apd table skip over the first
* cfgadm_list_data entry, which is the static system board
* attachment point.
*/
for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
j < apd->nlist; j++, cfga_ldata++) {
if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
continue;
}
if ((cm_info =
cm_info_func(cfga_ldata->ap_type)) != NULL) {
cm_info_rv =
(*cm_info)(ap_hdl, cfga_ldata, flags, rcm);
if (cm_info_rv != 0) {
/*
* If we cannot obtain info for the ap,
* skip it and do not fail the entire
* operation. This case occurs when the
* driver for a device is not attached:
* di_init() returns failed back to
* io_cm_info().
*/
if (cm_info_rv == RI_NODE_NIL)
continue;
else {
rv = RI_FAILURE;
goto out;
}
}
}
}
}
if ((flags & RI_INCLUDE_QUERY) && cap_request(ri_hdl, rcm) != 0)
rv = RI_FAILURE;
out:
if (apd_tbl != NULL)
apd_tbl_free(apd_tbl, n_apids);
if (rcm != NULL)
rcm_fini(rcm);
if (rv == RI_SUCCESS)
*hdlp = ri_hdl;
else
ri_fini(ri_hdl);
return (rv);
}
/*
* Map static board attachment point to dynamic attachment points (components).
*/
static int
dyn_ap_ids(char *ap_id, cfga_list_data_t **ap_id_list, int *nlist)
{
cfga_err_t cfga_err;
char *errstr;
char *opts = "parsable";
char *listops = "class=sbd";
cfga_err = config_list_ext(1, &ap_id, ap_id_list, nlist,
opts, listops, &errstr, CFGA_FLAG_LIST_ALL);
if (cfga_err != CFGA_OK) {
dprintf((stderr, "config_list_ext: %s\n",
config_strerror(cfga_err)));
return (-1);
}
return (0);
}
/*
* Initialize rcm handle, memory stats. Cache query result if necessary.
*/
static int
rcm_init(rcmd_t *rcm, apd_t apd_tbl[], int napds, int flags)
{
longlong_t ii;
int rv = 0;
rcm->offline_query_info = NULL;
rcm->rlist = NULL;
rcm->cpus = NULL;
if (rcm_alloc_handle(NULL, RCM_NOPID, NULL, &rcm->hdl) != RCM_SUCCESS) {
dprintf((stderr, "rcm_alloc_handle (errno=%d)\n", errno));
return (-1);
}
if ((rcm->ms_pagesize = sysconf(_SC_PAGE_SIZE)) == -1 ||
(rcm->ms_syspages = sysconf(_SC_PHYS_PAGES)) == -1) {
dprintf((stderr, "sysconf: %s\n", strerror(errno)));
return (-1);
}
ii = (longlong_t)rcm->ms_pagesize * rcm->ms_syspages;
rcm->ms_sysmb = (int)((ii+MBYTE-1) / MBYTE);
if (flags & RI_INCLUDE_QUERY)
rv = rcm_query_init(rcm, apd_tbl, napds);
return (rv);
}
static void
rcm_fini(rcmd_t *rcm)
{
char **cpp;
assert(rcm != NULL);
if (rcm->offline_query_info != NULL)
rcm_free_info(rcm->offline_query_info);
if (rcm->hdl != NULL)
rcm_free_handle(rcm->hdl);
if (rcm->rlist != NULL) {
for (cpp = rcm->rlist; *cpp != NULL; cpp++)
s_free(*cpp);
free(rcm->rlist);
}
s_free(rcm->cpus);
free(rcm);
}
#define NODENAME_CMP "cmp"
#define NODENAME_SSM "ssm"
#define PROP_CPUID "cpuid"
#define PROP_DEVICE_TYPE "device-type"
#define PROP_ECACHE_SIZE "ecache-size"
#define PROP_L2_CACHE_SIZE "l2-cache-size"
#define PROP_L3_CACHE_SIZE "l3-cache-size"
typedef struct {
di_node_t root;
di_prom_handle_t ph;
ecache_info_t *ecache_info;
} di_arg_t;
/*
* The ecache sizes for individual cpus are read from the
* OBP/Solaris device trees. This info cannot be derived
* from the cfgadm_sbd cpu attachment point ecache info,
* which may be a sum of multiple cores for CMP.
*/
static int
ecache_info_init(ecache_info_t *ec)
{
di_arg_t di_arg;
di_prom_handle_t ph = DI_PROM_HANDLE_NIL;
di_node_t root = DI_NODE_NIL;
int cpuid_max, rv = 0;
assert(ec != NULL && ec->cpuid_max == 0 && ec->ecache_sizes == NULL);
if ((cpuid_max = sysconf(_SC_CPUID_MAX)) == -1) {
dprintf((stderr, "sysconf fail: %s\n", strerror(errno)));
rv = -1;
goto done;
}
if ((root = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
dprintf((stderr, "di_init fail: %s\n", strerror(errno)));
rv = -1;
goto done;
}
if ((ph = di_prom_init()) == DI_PROM_HANDLE_NIL) {
dprintf((stderr, "di_prom_init fail: %s\n", strerror(errno)));
rv = -1;
goto done;
}
if ((ec->ecache_sizes = calloc(cpuid_max + 1, sizeof (int))) == NULL) {
dprintf((stderr, "calloc fail: %s\n", strerror(errno)));
rv = -1;
goto done;
}
ec->cpuid_max = cpuid_max;
dprintf((stderr, "cpuid_max is set to %d\n", ec->cpuid_max));
di_arg.ph = ph;
di_arg.root = root;
di_arg.ecache_info = ec;
if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
find_cpu_nodes) != 0) {
dprintf((stderr, "di_walk_node fail: %s\n", strerror(errno)));
rv = -1;
}
done:
if (root != DI_NODE_NIL)
di_fini(root);
if (ph != DI_PROM_HANDLE_NIL)
di_prom_fini(ph);
return (rv);
}
/*
* Libdevinfo node walk callback for reading ecache size
* properties for cpu device nodes. Subtrees not containing
* cpu nodes are filtered out.
*/
static int
find_cpu_nodes(di_node_t node, void *arg)
{
char *name;
int *cpuid, *ecache;
di_arg_t *di_arg = (di_arg_t *)arg;
ecache_info_t *ec = di_arg->ecache_info;
di_prom_handle_t ph = di_arg->ph;
int walk_child = 0;
if (node == DI_NODE_NIL) {
return (DI_WALK_TERMINATE);
}
if (node == di_arg->root) {
return (DI_WALK_CONTINUE);
}
if (di_nodeid(node) == DI_PSEUDO_NODEID) {
return (DI_WALK_PRUNECHILD);
}
name = di_node_name(node);
if (name != NULL) {
/*
* CMP nodes will be the parent of cpu nodes. On some platforms,
* cpu nodes will be under the ssm node. In either case,
* continue searching this subtree.
*/
if (strncmp(name, NODENAME_SSM, strlen(NODENAME_SSM)) == 0 ||
strncmp(name, NODENAME_CMP, strlen(NODENAME_CMP)) == 0) {
return (DI_WALK_CONTINUE);
}
}
dprintf((stderr, "find_cpu_nodes: node=%p, name=%s, binding_name=%s\n",
node, di_node_name(node), di_binding_name(node)));
/*
* Ecache size property name differs with processor implementation.
* Panther has both L2 and L3, so check for L3 first to differentiate
* from Jaguar, which has only L2.
*/
if (prop_lookup_int(node, ph, PROP_ECACHE_SIZE, &ecache) == 0 ||
prop_lookup_int(node, ph, PROP_L3_CACHE_SIZE, &ecache) == 0 ||
prop_lookup_int(node, ph, PROP_L2_CACHE_SIZE, &ecache) == 0) {
/*
* On some platforms the cache property is in the core
* node while the cpuid is in the child cpu node. It may
* be needed while processing this node or a child node.
*/
ec->ecache_curr = *ecache;
walk_child = 1;
}
if (prop_lookup_int(node, ph, PROP_CPUID, &cpuid) == 0) {
assert(ec != NULL && ec->ecache_sizes != NULL &&
*cpuid <= ec->cpuid_max);
if (ec->ecache_curr != 0) {
ec->ecache_sizes[*cpuid] = ec->ecache_curr;
}
}
return (walk_child ? DI_WALK_CONTINUE : DI_WALK_PRUNECHILD);
}
/*
* Given a di_node_t, call the appropriate int property lookup routine.
* Note: This lookup fails if the int property has multiple value entries.
*/
static int
prop_lookup_int(di_node_t node, di_prom_handle_t ph, char *propname, int **ival)
{
int rv;
rv = (di_nodeid(node) == DI_PROM_NODEID) ?
di_prom_prop_lookup_ints(ph, node, propname, ival) :
di_prop_lookup_ints(DDI_DEV_T_ANY, node, propname, ival);
return (rv == 1 ? 0 : -1);
}
/*
* For offline queries, RCM must be given a list of all resources
* so modules can have access to the full scope of the operation.
* The rcm_get_info calls are made individually in order to map the
* returned rcm_info_t's to physical devices. The rcm_request_offline
* result is cached so the query state can be looked up as we process
* the rcm_get_info calls. This routine also tallies up the amount of
* memory going away and creates a list of cpu ids to be used
* later for rcm_request_capacity_change.
*/
static int
rcm_query_init(rcmd_t *rcm, apd_t apd_tbl[], int napds)
{
apd_t *apd;
int i, j;
cfga_list_data_t *cfga_ldata;
int (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
#ifdef DEBUG
char **cpp;
#endif /* DEBUG */
/*
* Initial pass to size cpu and resource name arrays needed to
* interface with RCM. Attachment point ids for CMP can represent
* multiple cpus (and resource names). Instead of parsing the
* cfgadm info field here, use the worse case that all component
* attachment points are CMP.
*/
rcm->ndevs = 0;
for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
j < apd->nlist; j++, cfga_ldata++) {
if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
continue;
}
rcm->ndevs += SBD_MAX_CORES_PER_CMP;
}
}
/* account for trailing NULL in rlist */
if (rcm->ndevs > 0 &&
((rcm->cpus = calloc(rcm->ndevs, sizeof (cpuid_t))) == NULL ||
(rcm->rlist = calloc(rcm->ndevs + 1, sizeof (char *))) == NULL)) {
dprintf((stderr, "calloc: %s\n", strerror(errno)));
return (-1);
}
/*
* Second pass to fill in the RCM resource and cpu lists.
*/
for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
j < apd->nlist; j++, cfga_ldata++) {
if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
continue;
}
if ((cm_rcm_qpass =
cm_rcm_qpass_func(cfga_ldata->ap_type)) != NULL &&
(*cm_rcm_qpass)(cfga_ldata, rcm) != 0) {
return (-1);
}
}
}
if (rcm->nrlist == 0)
return (0);
/*
* Cache query result. Since we are only interested in the
* set of RCM clients processed and not their request status,
* the return value is irrelevant.
*/
(void) rcm_request_offline_list(rcm->hdl, rcm->rlist,
RCM_QUERY|RCM_SCOPE, &rcm->offline_query_info);
#ifdef DEBUG
dprintf((stderr, "RCM rlist: nrlist=%d\n", rcm->nrlist));
for (cpp = rcm->rlist, i = 0; *cpp != NULL; cpp++, i++) {
dprintf((stderr, "rlist[%d]=%s\n", i, *cpp));
}
#endif /* DEBUG */
return (0);
}
static int
cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
{
return (((rcm->ncpus > 0 && cpu_cap_request(ri_hdl, rcm) != 0) ||
(rcm->query_pages > 0 && mem_cap_request(ri_hdl, rcm) != 0)) ?
-1 : 0);
}
/*
* RCM capacity change request for cpus.
*/
static int
cpu_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
{
cpuid_t *syscpuids, *newcpuids;
int sysncpus, newncpus;
rcm_info_t *rcm_info = NULL;
int i, j, k;
nvlist_t *nvl;
int rv = 0;
/* get all cpus in the system */
if (syscpus(&syscpuids, &sysncpus) == -1)
return (-1);
newncpus = sysncpus - rcm->ncpus;
if ((newcpuids = calloc(newncpus, sizeof (cpuid_t))) == NULL) {
dprintf((stderr, "calloc: %s", strerror(errno)));
rv = -1;
goto out;
}
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
dprintf((stderr, "nvlist_alloc fail\n"));
rv = -1;
goto out;
}
/*
* Construct the new cpu list.
*/
for (i = 0, j = 0; i < sysncpus; i++) {
for (k = 0; k < rcm->ncpus; k++) {
if (rcm->cpus[k] == syscpuids[i]) {
break;
}
}
if (k == rcm->ncpus) {
newcpuids[j++] = syscpuids[i];
}
}
if (nvlist_add_int32(nvl, "old_total", sysncpus) != 0 ||
nvlist_add_int32(nvl, "new_total", newncpus) != 0 ||
nvlist_add_int32_array(nvl, "old_cpu_list", syscpuids,
sysncpus) != 0 ||
nvlist_add_int32_array(nvl, "new_cpu_list", newcpuids,
newncpus) != 0) {
dprintf((stderr, "nvlist_add fail\n"));
rv = -1;
goto out;
}
#ifdef DEBUG
dprintf((stderr, "old_total=%d\n", sysncpus));
for (i = 0; i < sysncpus; i++) {
dprintf((stderr, "old_cpu_list[%d]=%d\n", i, syscpuids[i]));
}
dprintf((stderr, "new_total=%d\n", newncpus));
for (i = 0; i < newncpus; i++) {
dprintf((stderr, "new_cpu_list[%d]=%d\n", i, newcpuids[i]));
}
#endif /* DEBUG */
(void) rcm_request_capacity_change(rcm->hdl, RCM_CPU_ALL,
RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
rv = add_rcm_clients(&ri_hdl->cpu_cap_clients, rcm, rcm_info, 0, NULL);
out:
s_free(syscpuids);
s_free(newcpuids);
nvlist_free(nvl);
if (rcm_info != NULL)
rcm_free_info(rcm_info);
return (rv);
}
static int
syscpus(cpuid_t **cpuids, int *ncpus)
{
kstat_t *ksp;
kstat_ctl_t *kc;
cpuid_t *cp;
int i;
if ((*ncpus = sysconf(_SC_NPROCESSORS_CONF)) == -1) {
dprintf((stderr, "sysconf: %s\n", errno));
return (-1);
}
if ((kc = kstat_open()) == NULL) {
dprintf((stderr, "kstat_open fail\n"));
return (-1);
}
if ((cp = calloc(*ncpus, sizeof (cpuid_t))) == NULL) {
dprintf((stderr, "calloc: %s\n", errno));
(void) kstat_close(kc);
return (-1);
}
for (i = 0, ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
if (strcmp(ksp->ks_module, "cpu_info") == 0) {
cp[i++] = ksp->ks_instance;
}
}
(void) kstat_close(kc);
*cpuids = cp;
return (0);
}
/*
* RCM capacity change request for memory.
*/
static int
mem_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
{
nvlist_t *nvl;
rcm_info_t *rcm_info = NULL;
long newpages;
int rv = 0;
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
dprintf((stderr, "nvlist_alloc fail\n"));
return (-1);
}
newpages = rcm->ms_syspages - rcm->query_pages;
if (nvlist_add_int32(nvl, "page_size", rcm->ms_pagesize) != 0 ||
nvlist_add_int32(nvl, "old_pages", rcm->ms_syspages) != 0 ||
nvlist_add_int32(nvl, "new_pages", newpages) != 0) {
dprintf((stderr, "nvlist_add fail\n"));
nvlist_free(nvl);
return (-1);
}
dprintf((stderr, "memory capacity change req: "
"page_size=%d, old_pages=%d, new_pages=%d\n",
rcm->ms_pagesize, rcm->ms_syspages, newpages));
(void) rcm_request_capacity_change(rcm->hdl, RCM_MEM_ALL,
RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
rv = add_rcm_clients(&ri_hdl->mem_cap_clients, rcm, rcm_info, 0, NULL);
nvlist_free(nvl);
if (rcm_info != NULL)
rcm_free_info(rcm_info);
return (rv);
}
static int
(*cm_rcm_qpass_func(cfga_type_t ap_type))(cfga_list_data_t *, rcmd_t *)
{
int i;
for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
if (strcmp(cm_ctl[i].type, ap_type) == 0) {
return (cm_ctl[i].cm_rcm_qpass);
}
}
return (NULL);
}
/*
* Save cpu ids and RCM abstract resource names.
* Cpu ids will be used for the capacity change request.
* Resource names will be used for the offline query.
*/
static int
cpu_rcm_qpass(cfga_list_data_t *cfga_ldata, rcmd_t *rcm)
{
processorid_t cpuid;
char *cpustr, *lasts, *rsrcname, rbuf[32];
char cbuf[CFGA_INFO_LEN];
int speed, ecache;
assert(sscanf(cfga_ldata->ap_info, CPU_INFO_FMT, &cbuf, &speed,
&ecache) == 3);
for (cpustr = (char *)strtok_r(cbuf, CPUID_SEP, &lasts);
cpustr != NULL;
cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
cpuid = atoi(cpustr);
(void) snprintf(rbuf, sizeof (rbuf), "%s%d", RCM_CPU, cpuid);
if ((rsrcname = strdup(rbuf)) == NULL) {
dprintf((stderr, "strdup fail\n"));
return (-1);
}
assert(rcm->nrlist < rcm->ndevs && rcm->ncpus < rcm->ndevs);
rcm->rlist[rcm->nrlist++] = rsrcname;
rcm->cpus[rcm->ncpus++] = (cpuid_t)cpuid;
dprintf((stderr, "cpu_cm_info: cpuid=%d, rsrcname=%s",
cpuid, rsrcname));
}
return (0);
}
/*
* No RCM resource names for individual memory units, so
* just add to offline query page count.
*/
static int
mem_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
{
char *cp;
uint_t kbytes;
longlong_t ii;
if ((cp = strstr(cfga->ap_info, "size")) == NULL ||
sscanf(cp, "size=%u", &kbytes) != 1) {
dprintf((stderr, "unknown sbd info format: %s\n", cp));
return (-1);
}
ii = (longlong_t)kbytes * KBYTE;
rcm->query_pages += (uint_t)(ii / rcm->ms_pagesize);
dprintf((stderr, "%s: npages=%u\n", cfga->ap_log_id,
(uint_t)(ii / rcm->ms_pagesize)));
return (0);
}
/*
* Add physical I/O bus name to RCM resource list.
*/
static int
io_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
{
char path[MAXPATHLEN];
char buf[MAXPATHLEN];
char *rsrcname;
if (sscanf(cfga->ap_info, "device=%s", path) != 1) {
dprintf((stderr, "unknown sbd info format: %s\n",
cfga->ap_info));
return (-1);
}
(void) snprintf(buf, sizeof (buf), "/devices%s", path);
if ((rsrcname = strdup(buf)) == NULL) {
dprintf((stderr, "strdup fail\n"));
return (-1);
}
assert(rcm->nrlist < rcm->ndevs);
rcm->rlist[rcm->nrlist++] = rsrcname;
return (0);
}
static int
(*cm_info_func(cfga_type_t ap_type))(ri_ap_t *, cfga_list_data_t *,
int, rcmd_t *)
{
int i;
for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
if (strcmp(cm_ctl[i].type, ap_type) == 0) {
return (cm_ctl[i].cm_info);
}
}
return (NULL);
}
/*
* Create cpu handle, adding properties exported by sbd plugin and
* RCM client usage.
*/
/* ARGSUSED */
static int
cpu_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
{
processorid_t cpuid;
int speed, ecache, rv = 0;
char buf[CFGA_INFO_LEN], *cpustr, *lasts;
if (sscanf(cfga->ap_info, CPU_INFO_FMT, &buf, &speed, &ecache) != 3) {
dprintf((stderr, "unknown sbd info format: %s\n",
cfga->ap_info));
return (-1);
}
/* parse cpuids */
for (cpustr = (char *)strtok_r(buf, CPUID_SEP, &lasts);
cpustr != NULL;
cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
cpuid = atoi(cpustr);
if ((rv = i_cpu_cm_info(cpuid, speed, ecache, ap, rcm)) != 0) {
break;
}
}
return (rv);
}
static int
i_cpu_cm_info(processorid_t cpuid, int speed, int ecache_cfga, ri_ap_t *ap,
rcmd_t *rcm)
{
int ecache_mb = 0;
int ecache_kb = 0;
char *state, buf[32];
processor_info_t cpu_info;
ri_dev_t *cpu = NULL;
rcm_info_t *rcm_info = NULL;
/*
* Could have been unconfigured in the interim, so cannot
* count on processor_info recognizing it.
*/
state = (processor_info(cpuid, &cpu_info) == 0) ?
pstate2str(cpu_info.pi_state) : "unknown";
if ((cpu = ri_dev_alloc()) == NULL) {
dprintf((stderr, "ri_dev_alloc failed\n"));
return (-1);
}
/*
* Assume the ecache_info table has the right e-cache size for
* this CPU. Use the value found in cfgadm (ecache_cfga) if not.
*/
if (rcm->ecache_info.ecache_sizes != NULL) {
assert(rcm->ecache_info.cpuid_max != 0 &&
cpuid <= rcm->ecache_info.cpuid_max);
ecache_mb = rcm->ecache_info.ecache_sizes[cpuid] / MBYTE;
ecache_kb = rcm->ecache_info.ecache_sizes[cpuid] / KBYTE;
}
if (ecache_mb == 0) {
ecache_mb = ecache_cfga;
}
dprintf((stderr, "i_cpu_cm_info: cpu(%d) ecache=%d MB\n",
cpuid, ecache));
if (nvlist_add_int32(cpu->conf_props, RI_CPU_ID, cpuid) != 0 ||
nvlist_add_int32(cpu->conf_props, RI_CPU_SPEED, speed) != 0 ||
nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE, ecache_mb) != 0 ||
nvlist_add_string(cpu->conf_props, RI_CPU_STATE, state) != 0) {
dprintf((stderr, "nvlist_add fail\n"));
ri_dev_free(cpu);
return (-1);
}
/*
* Report cache size in kilobyte units if available. This info is
* added to support processors with cache sizes that are non-integer
* megabyte multiples.
*/
if (ecache_kb != 0) {
if (nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE_KBYTE,
ecache_kb) != 0) {
dprintf((stderr, "nvlist_add fail: %s\n",
RI_CPU_ECACHE_KBYTE));
ri_dev_free(cpu);
return (-1);
}
}
(void) snprintf(buf, sizeof (buf), "%s%d", RCM_CPU, cpuid);
dprintf((stderr, "rcm_get_info(%s)\n", buf));
if (rcm_get_info(rcm->hdl, buf, RCM_INCLUDE_DEPENDENT,
&rcm_info) != RCM_SUCCESS) {
dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
ri_dev_free(cpu);
if (rcm_info != NULL)
rcm_free_info(rcm_info);
return (-1);
}
dev_list_cpu_insert(&ap->cpus, cpu, cpuid);
return (0);
}
/*
* Create memory handle, adding properties exported by sbd plugin.
* No RCM tuples to be saved unless RCM is modified to export names
* for individual memory units.
*/
/* ARGSUSED */
static int
mem_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
{
ri_dev_t *mem;
char *cp;
char *cpval;
int len;
uint64_t base_addr; /* required */
int32_t size_kb; /* required */
int32_t perm_kb = 0; /* optional */
char target[CFGA_AP_LOG_ID_LEN] = ""; /* optional */
int32_t del_kb = 0; /* optional */
int32_t rem_kb = 0; /* optional */
char source[CFGA_AP_LOG_ID_LEN] = ""; /* optional */
if (sscanf(cfga->ap_info, "address=0x%llx size=%u", &base_addr,
&size_kb) != 2) {
goto err_fmt;
}
if ((cp = strstr(cfga->ap_info, "permanent")) != NULL &&
sscanf(cp, "permanent=%u", &perm_kb) != 1) {
goto err_fmt;
}
if ((cp = strstr(cfga->ap_info, "target")) != NULL) {
if ((cpval = strstr(cp, "=")) == NULL) {
goto err_fmt;
}
for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
if (len >= CFGA_AP_LOG_ID_LEN) {
goto err_fmt;
}
}
if (sscanf(cp, "target=%s deleted=%u remaining=%u", &target,
&del_kb, &rem_kb) != 3) {
goto err_fmt;
}
}
if ((cp = strstr(cfga->ap_info, "source")) != NULL) {
if ((cpval = strstr(cp, "=")) == NULL) {
goto err_fmt;
}
for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
if (len >= CFGA_AP_LOG_ID_LEN) {
goto err_fmt;
}
}
if (sscanf(cp, "source=%s", &source) != 1) {
goto err_fmt;
}
}
dprintf((stderr, "%s: base=0x%llx, size=%u, permanent=%u\n",
cfga->ap_log_id, base_addr, size_kb, perm_kb));
if ((mem = ri_dev_alloc()) == NULL)
return (-1);
/*
* Convert memory sizes to MB (truncate).
*/
if (nvlist_add_uint64(mem->conf_props, RI_MEM_ADDR, base_addr) != 0 ||
nvlist_add_int32(mem->conf_props, RI_MEM_BRD, size_kb/KBYTE) != 0 ||
nvlist_add_int32(mem->conf_props, RI_MEM_PERM,
perm_kb/KBYTE) != 0) {
dprintf((stderr, "nvlist_add failure\n"));
ri_dev_free(mem);
return (-1);
}
if (target[0] != '\0' &&
(nvlist_add_string(mem->conf_props, RI_MEM_TARG, target) != 0 ||
nvlist_add_int32(mem->conf_props, RI_MEM_DEL, del_kb/KBYTE) != 0 ||
nvlist_add_int32(mem->conf_props, RI_MEM_REMAIN,
rem_kb/KBYTE) != 0)) {
dprintf((stderr, "nvlist_add failure\n"));
ri_dev_free(mem);
return (-1);
}
if (source[0] != '\0' &&
nvlist_add_string(mem->conf_props, RI_MEM_SRC, source) != 0) {
dprintf((stderr, "nvlist_add failure\n"));
ri_dev_free(mem);
return (-1);
}
/*
* XXX - move this property to attachment point hdl?
*/
if (nvlist_add_int32(mem->conf_props, RI_MEM_DOMAIN,
rcm->ms_sysmb) != 0) {
dprintf((stderr, "nvlist_add failure\n"));
ri_dev_free(mem);
return (-1);
}
dev_list_append(&ap->mems, mem);
return (0);
err_fmt:
dprintf((stderr, "unknown sbd info format: %s\n", cfga->ap_info));
return (-1);
}
/*
* Initiate a libdevinfo walk on the IO bus path.
* XXX - investigate performance using two threads here: one thread to do the
* libdevinfo snapshot and treewalk; and one thread to get RCM usage info
*/
static int
io_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
{
int i;
int j;
int k;
int set_size;
int retval = 0;
int n_usage;
devinfo_arg_t di_arg;
lookup_table_t devicetable;
lookup_entry_t *deventry;
lookup_entry_t *lastdeventry;
ri_dev_t *io = NULL;
ri_client_t *client;
ri_client_t *tmp;
di_devlink_handle_t linkhd = NULL;
di_node_t root = DI_NODE_NIL;
di_node_t node = DI_NODE_NIL;
rcm_info_tuple_t *rcm_tuple;
rcm_info_t *rcm_info = NULL;
const char *rcm_rsrc = NULL;
char drv_inst[MAXPATHLEN];
char path[MAXPATHLEN];
char pathbuf[MAXPATHLEN];
dprintf((stderr, "io_cm_info(%s)\n", cfga->ap_log_id));
/* Extract devfs path from cfgadm information */
if (sscanf(cfga->ap_info, "device=%s\n", path) != 1) {
dprintf((stderr, "unknown sbd info format: %s\n",
cfga->ap_info));
return (-1);
}
/* Initialize empty device lookup table */
devicetable.n_entries = 0;
devicetable.n_slots = 0;
devicetable.table = NULL;
/* Get libdevinfo snapshot */
dprintf((stderr, "di_init(%s)\n", path));
if ((root = di_init(path, DINFOCPYALL)) == DI_NODE_NIL) {
dprintf((stderr, "di_init: %s\n", strerror(errno)));
retval = RI_NODE_NIL; /* tell ri_init to skip this node */
goto end;
}
/*
* Map in devlinks database.
* XXX - This could be moved to ri_init() for better performance.
*/
dprintf((stderr, "di_devlink_init()\n"));
if ((linkhd = di_devlink_init(NULL, 0)) == NULL) {
dprintf((stderr, "di_devlink_init: %s\n", strerror(errno)));
retval = -1;
goto end;
}
/* Initialize argument for devinfo treewalk */
di_arg.err = 0;
di_arg.node = DI_NODE_NIL;
di_arg.pathbuf = pathbuf;
di_arg.table = &devicetable;
di_arg.linkhd = linkhd;
/* Use libdevinfo treewalk to build device lookup table */
if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
devinfo_node_walk) != 0) {
dprintf((stderr, "di_walk_node: %s\n", strerror(errno)));
retval = -1;
goto end;
}
if (di_arg.err != 0) {
dprintf((stderr, "di_walk_node: device tree walk failed\n"));
retval = -1;
goto end;
}
/* Call RCM to gather usage information */
(void) snprintf(pathbuf, MAXPATHLEN, "/devices%s", path);
dprintf((stderr, "rcm_get_info(%s)\n", pathbuf));
if (rcm_get_info(rcm->hdl, pathbuf,
RCM_INCLUDE_SUBTREE|RCM_INCLUDE_DEPENDENT, &rcm_info) !=
RCM_SUCCESS) {
dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
retval = -1;
goto end;
}
/* Sort the device table by name (proper order for lookups) */
qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
table_compare_names);
/* Perform mappings of RCM usage segments to device table entries */
lastdeventry = NULL;
rcm_tuple = NULL;
while ((rcm_tuple = rcm_info_next(rcm_info, rcm_tuple)) != NULL) {
if ((rcm_rsrc = rcm_info_rsrc(rcm_tuple)) == NULL)
continue;
if (deventry = lookup(&devicetable, rcm_rsrc)) {
if (add_usage(deventry, rcm_rsrc, rcm_tuple)) {
retval = -1;
goto end;
}
lastdeventry = deventry;
} else {
if (add_usage(lastdeventry, rcm_rsrc, rcm_tuple)) {
retval = -1;
goto end;
}
}
}
/* Re-sort the device table by index number (original treewalk order) */
qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
table_compare_indices);
/*
* Use the mapped usage and the device table to construct ri_dev_t's.
* Construct one for each set of entries in the device table with
* matching di_node_t's, if: 1) it has mapped RCM usage, or 2) it is
* a leaf node and the caller has requested that unmanaged nodes be
* included in the output.
*/
i = 0;
while (i < devicetable.n_entries) {
node = devicetable.table[i].node;
/* Count how many usage records are mapped to this node's set */
n_usage = 0;
set_size = 0;
while (((i + set_size) < devicetable.n_entries) &&
(devicetable.table[i + set_size].node == node)) {
n_usage += devicetable.table[i + set_size].n_usage;
set_size += 1;
}
/*
* If there's no usage, then the node is unmanaged. Skip this
* set of devicetable entries unless the node is a leaf node
* and the caller has requested information on unmanaged leaves.
*/
if ((n_usage == 0) &&
!((flags & RI_INCLUDE_UNMANAGED) && (ident_leaf(node)))) {
i += set_size;
continue;
}
/*
* The checks above determined that this node is going in.
* So determine its driver/instance name and allocate an
* ri_dev_t for this node.
*/
if (mk_drv_inst(node, drv_inst, devicetable.table[i].name)) {
dprintf((stderr, "mk_drv_inst failed\n"));
retval = -1;
break;
}
if ((io = io_dev_alloc(drv_inst)) == NULL) {
dprintf((stderr, "io_dev_alloc failed\n"));
retval = -1;
break;
}
/* Now add all the RCM usage records (if any) to the ri_dev_t */
for (j = i; j < (i + set_size); j++) {
for (k = 0; k < devicetable.table[j].n_usage; k++) {
/* Create new ri_client_t for basic usage */
client = ri_client_alloc(
(char *)devicetable.table[j].usage[k].rsrc,
(char *)devicetable.table[j].usage[k].info);
if (client == NULL) {
dprintf((stderr,
"ri_client_alloc failed\n"));
ri_dev_free(io);
retval = -1;
goto end;
}
/* Add extra query usage to the ri_client_t */
if ((flags & RI_INCLUDE_QUERY) &&
(add_query_state(rcm, client,
devicetable.table[j].usage[k].rsrc,
devicetable.table[j].usage[k].info) != 0)) {
dprintf((stderr,
"add_query_state failed\n"));
ri_dev_free(io);
ri_client_free(client);
retval = -1;
goto end;
}
/* Link new ri_client_t to ri_dev_t */
if (io->rcm_clients) {
tmp = io->rcm_clients;
while (tmp->next)
tmp = tmp->next;
tmp->next = client;
} else {
io->rcm_clients = client;
}
}
}
/* Link the ri_dev_t into the return value */
dev_list_append(&ap->ios, io);
/* Advance to the next node set */
i += set_size;
}
end:
if (rcm_info != NULL)
rcm_free_info(rcm_info);
if (linkhd != NULL)
di_devlink_fini(&linkhd);
if (root != DI_NODE_NIL)
di_fini(root);
empty_table(&devicetable);
dprintf((stderr, "io_cm_info: returning %d\n", retval));
return (retval);
}
static int
ident_leaf(di_node_t node)
{
di_minor_t minor = DI_MINOR_NIL;
return ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL &&
di_child_node(node) == DI_NODE_NIL);
}
/* ARGSUSED */
static int
mk_drv_inst(di_node_t node, char drv_inst[], char *devfs_path)
{
char *drv;
int inst;
if ((drv = di_driver_name(node)) == NULL) {
dprintf((stderr, "no driver bound to %s\n",
devfs_path));
return (-1);
}
if ((inst = di_instance(node)) == -1) {
dprintf((stderr, "no instance assigned to %s\n",
devfs_path));
return (-1);
}
(void) snprintf(drv_inst, MAXPATHLEN, "%s%d", drv, inst);
return (0);
}
/*
* Libdevinfo walker.
*
* During the tree walk of the attached IO devices, for each node
* and all of its associated minors, the following actions are performed:
* - The /devices path of the physical device node or minor
* is stored in a lookup table along with a reference to the
* libdevinfo node it represents via add_lookup_entry().
* - The device links associated with each device are also
* stored in the same lookup table along with a reference to
* the libdevinfo node it represents via the minor walk callback.
*
*/
static int
devinfo_node_walk(di_node_t node, void *arg)
{
char *devfs_path;
#ifdef DEBUG
char *drv;
#endif /* DEBUG */
devinfo_arg_t *di_arg = (devinfo_arg_t *)arg;
if (node == DI_NODE_NIL) {
return (DI_WALK_TERMINATE);
}
if (((di_state(node) & DI_DRIVER_DETACHED) == 0) &&
((devfs_path = di_devfs_path(node)) != NULL)) {
/* Use the provided path buffer to create full /devices path */
(void) snprintf(di_arg->pathbuf, MAXPATHLEN, "/devices%s",
devfs_path);
#ifdef DEBUG
dprintf((stderr, "devinfo_node_walk(%s)\n", di_arg->pathbuf));
if ((drv = di_driver_name(node)) != NULL)
dprintf((stderr, " driver name %s instance %d\n", drv,
di_instance(node)));
#endif
/* Free the devfs_path */
di_devfs_path_free(devfs_path);
/* Add an entry to the lookup table for this physical device */
if (add_lookup_entry(di_arg->table, di_arg->pathbuf, node)) {
dprintf((stderr, "add_lookup_entry: %s\n",
strerror(errno)));
di_arg->err = 1;
return (DI_WALK_TERMINATE);
}
/* Check if this node has minors */
if ((di_minor_next(node, DI_MINOR_NIL)) != DI_MINOR_NIL) {
/* Walk this node's minors */
di_arg->node = node;
if (di_walk_minor(node, NULL, DI_CHECK_ALIAS, arg,
devinfo_minor_walk) != 0) {
dprintf((stderr, "di_walk_minor: %s\n",
strerror(errno)));
di_arg->err = 1;
return (DI_WALK_TERMINATE);
}
}
}
return (DI_WALK_CONTINUE);
}
/*
* Use di_devlink_walk to find the /dev link from /devices path for this minor
*/
static int
devinfo_minor_walk(di_node_t node, di_minor_t minor, void *arg)
{
char *name;
char *devfs_path;
devinfo_arg_t *di_arg = (devinfo_arg_t *)arg;
char pathbuf[MAXPATHLEN];
#ifdef DEBUG
dprintf((stderr, "devinfo_minor_walk(%d) %s\n", minor,
di_arg->pathbuf));
if ((name = di_minor_name(minor)) != NULL) {
dprintf((stderr, " minor name %s\n", name));
}
#endif /* DEBUG */
/* Terminate the walk when the device node changes */
if (node != di_arg->node) {
return (DI_WALK_TERMINATE);
}
/* Construct full /devices path for this minor */
if ((name = di_minor_name(minor)) == NULL) {
return (DI_WALK_CONTINUE);
}
(void) snprintf(pathbuf, MAXPATHLEN, "%s:%s", di_arg->pathbuf, name);
/* Add lookup entry for this minor node */
if (add_lookup_entry(di_arg->table, pathbuf, node)) {
dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
di_arg->err = 1;
return (DI_WALK_TERMINATE);
}
/*
* Walk the associated device links.
* Note that di_devlink_walk() doesn't want "/devices" in its paths.
* Also note that di_devlink_walk() will fail if there are no device
* links, which is fine; so ignore if it fails. Only check for
* internal failures during such a walk.
*/
devfs_path = &pathbuf[strlen("/devices")];
(void) di_devlink_walk(di_arg->linkhd, NULL, devfs_path, 0, arg,
devinfo_devlink_walk);
if (di_arg->err != 0) {
return (DI_WALK_TERMINATE);
}
return (DI_WALK_CONTINUE);
}
static int
devinfo_devlink_walk(di_devlink_t devlink, void *arg)
{
const char *linkpath;
devinfo_arg_t *di_arg = (devinfo_arg_t *)arg;
/* Get the devlink's path */
if ((linkpath = di_devlink_path(devlink)) == NULL) {
dprintf((stderr, "di_devlink_path: %s\n", strerror(errno)));
di_arg->err = 1;
return (DI_WALK_TERMINATE);
}
dprintf((stderr, "devinfo_devlink_walk: %s\n", linkpath));
/* Add lookup entry for this devlink */
if (add_lookup_entry(di_arg->table, linkpath, di_arg->node)) {
dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
di_arg->err = 1;
return (DI_WALK_TERMINATE);
}
return (DI_WALK_CONTINUE);
}
/*
* Map rcm_info_t's to ri_client_t's, filtering out "uninteresting" (hack)
* RCM clients. The number of "interesting" ri_client_t's is returned
* in cnt if passed non-NULL.
*/
static int
add_rcm_clients(ri_client_t **client_list, rcmd_t *rcm, rcm_info_t *info,
int flags, int *cnt)
{
rcm_info_tuple_t *tuple;
char *rsrc, *usage;
ri_client_t *client, *tmp;
assert(client_list != NULL && rcm != NULL);
if (info == NULL)
return (0);
if (cnt != NULL)
*cnt = 0;
tuple = NULL;
while ((tuple = rcm_info_next(info, tuple)) != NULL) {
if ((rsrc = (char *)rcm_info_rsrc(tuple)) == NULL ||
(usage = (char *)rcm_info_info(tuple)) == NULL) {
continue;
}
if (rcm_ignore(rsrc, usage) == 0)
continue;
if ((client = ri_client_alloc(rsrc, usage)) == NULL)
return (-1);
if ((flags & RI_INCLUDE_QUERY) && add_query_state(rcm, client,
rsrc, usage) != 0) {
ri_client_free(client);
return (-1);
}
if (cnt != NULL)
++*cnt;
/*
* Link in
*/
if ((tmp = *client_list) == NULL) {
*client_list = client;
continue;
}
while (tmp->next != NULL) {
tmp = tmp->next;
}
tmp->next = client;
}
return (0);
}
/*
* Currently only filtering out based on known info string prefixes.
*/
/* ARGSUSED */
static int
rcm_ignore(char *rsrc, char *infostr)
{
char **cpp;
for (cpp = rcm_info_filter; *cpp != NULL; cpp++) {
if (strncmp(infostr, *cpp, strlen(*cpp)) == 0) {
return (0);
}
}
return (-1);
}
/*
* If this tuple was cached in the offline query pass, add the
* query state and error string to the ri_client_t.
*/
static int
add_query_state(rcmd_t *rcm, ri_client_t *client, const char *rsrc,
const char *info)
{
int qstate = RI_QUERY_UNKNOWN;
char *errstr = NULL;
rcm_info_tuple_t *cached_tuple;
if ((cached_tuple = tuple_lookup(rcm, rsrc, info)) != NULL) {
qstate = state2query(rcm_info_state(cached_tuple));
errstr = (char *)rcm_info_error(cached_tuple);
}
if (nvlist_add_int32(client->usg_props, RI_QUERY_STATE, qstate) != 0 ||
(errstr != NULL && nvlist_add_string(client->usg_props,
RI_QUERY_ERR, errstr) != 0)) {
dprintf((stderr, "nvlist_add fail\n"));
return (-1);
}
return (0);
}
static int
state2query(int rcm_state)
{
int query;
switch (rcm_state) {
case RCM_STATE_OFFLINE_QUERY:
case RCM_STATE_SUSPEND_QUERY:
query = RI_QUERY_OK;
break;
case RCM_STATE_OFFLINE_QUERY_FAIL:
case RCM_STATE_SUSPEND_QUERY_FAIL:
query = RI_QUERY_FAIL;
break;
default:
query = RI_QUERY_UNKNOWN;
break;
}
return (query);
}
static void
dev_list_append(ri_dev_t **head, ri_dev_t *dev)
{
ri_dev_t *tmp;
if ((tmp = *head) == NULL) {
*head = dev;
return;
}
while (tmp->next != NULL) {
tmp = tmp->next;
}
tmp->next = dev;
}
/*
* The cpu list is ordered on cpuid since CMP cpuids will not necessarily
* be discovered in sequence.
*/
static void
dev_list_cpu_insert(ri_dev_t **listp, ri_dev_t *dev, processorid_t newid)
{
ri_dev_t *tmp;
int32_t cpuid;
while ((tmp = *listp) != NULL &&
nvlist_lookup_int32(tmp->conf_props, RI_CPU_ID, &cpuid) == 0 &&
cpuid < newid) {
listp = &tmp->next;
}
dev->next = tmp;
*listp = dev;
}
/*
* Linear lookup. Should convert to hash tab.
*/
static rcm_info_tuple_t *
tuple_lookup(rcmd_t *rcm, const char *krsrc, const char *kinfo)
{
rcm_info_tuple_t *tuple = NULL;
const char *rsrc, *info;
if ((rcm == NULL) || (krsrc == NULL) || (kinfo == NULL)) {
return (NULL);
}
while ((tuple = rcm_info_next(rcm->offline_query_info,
tuple)) != NULL) {
if ((rsrc = rcm_info_rsrc(tuple)) == NULL ||
(info = rcm_info_info(tuple)) == NULL) {
continue;
}
if (strcmp(rsrc, krsrc) == 0 && strcmp(info, kinfo) == 0) {
return (tuple);
}
}
return (NULL);
}
/*
* Create and link attachment point handle.
*/
static ri_ap_t *
ri_ap_alloc(char *ap_id, ri_hdl_t *hdl)
{
ri_ap_t *ap, *tmp;
if ((ap = calloc(1, sizeof (*ap))) == NULL) {
dprintf((stderr, "calloc: %s\n", strerror(errno)));
return (NULL);
}
if (nvlist_alloc(&ap->conf_props, NV_UNIQUE_NAME, 0) != 0 ||
nvlist_add_string(ap->conf_props, RI_AP_REQ_ID, ap_id) != 0) {
nvlist_free(ap->conf_props);
free(ap);
return (NULL);
}
if ((tmp = hdl->aps) == NULL) {
hdl->aps = ap;
} else {
while (tmp->next != NULL) {
tmp = tmp->next;
}
tmp->next = ap;
}
return (ap);
}
static ri_dev_t *
ri_dev_alloc(void)
{
ri_dev_t *dev;
if ((dev = calloc(1, sizeof (*dev))) == NULL ||
nvlist_alloc(&dev->conf_props, NV_UNIQUE_NAME, 0) != 0) {
s_free(dev);
}
return (dev);
}
static ri_dev_t *
io_dev_alloc(char *drv_inst)
{
ri_dev_t *io;
assert(drv_inst != NULL);
if ((io = ri_dev_alloc()) == NULL)
return (NULL);
if (nvlist_add_string(io->conf_props, RI_IO_DRV_INST,
drv_inst) != 0) {
dprintf((stderr, "nvlist_add_string fail\n"));
ri_dev_free(io);
return (NULL);
}
return (io);
}
static ri_client_t *
ri_client_alloc(char *rsrc, char *usage)
{
ri_client_t *client;
assert(rsrc != NULL && usage != NULL);
if ((client = calloc(1, sizeof (*client))) == NULL) {
dprintf((stderr, "calloc: %s\n", strerror(errno)));
return (NULL);
}
if (nvlist_alloc(&client->usg_props, NV_UNIQUE_NAME, 0) != 0) {
dprintf((stderr, "nvlist_alloc fail\n"));
free(client);
return (NULL);
}
if (nvlist_add_string(client->usg_props, RI_CLIENT_RSRC, rsrc) != 0 ||
nvlist_add_string(client->usg_props, RI_CLIENT_USAGE, usage) != 0) {
dprintf((stderr, "nvlist_add_string fail\n"));
ri_client_free(client);
return (NULL);
}
return (client);
}
static void
apd_tbl_free(apd_t apd_tbl[], int napds)
{
int i;
apd_t *apd;
for (i = 0, apd = apd_tbl; i < napds; i++, apd++)
s_free(apd->cfga_list_data);
free(apd_tbl);
}
static char *
pstate2str(int pi_state)
{
char *state;
switch (pi_state) {
case P_OFFLINE:
state = PS_OFFLINE;
break;
case P_ONLINE:
state = PS_ONLINE;
break;
case P_FAULTED:
state = PS_FAULTED;
break;
case P_POWEROFF:
state = PS_POWEROFF;
break;
case P_NOINTR:
state = PS_NOINTR;
break;
case P_SPARE:
state = PS_SPARE;
break;
default:
state = "unknown";
break;
}
return (state);
}
#ifdef DEBUG
static void
dump_apd_tbl(FILE *fp, apd_t *apds, int n_apds)
{
int i, j;
cfga_list_data_t *cfga_ldata;
for (i = 0; i < n_apds; i++, apds++) {
dprintf((stderr, "apd_tbl[%d].nlist=%d\n", i, apds->nlist));
for (j = 0, cfga_ldata = apds->cfga_list_data; j < apds->nlist;
j++, cfga_ldata++) {
dprintf((fp,
"apd_tbl[%d].cfga_list_data[%d].ap_log_id=%s\n",
i, j, cfga_ldata->ap_log_id));
}
}
}
#endif /* DEBUG */
/*
* The lookup table is a simple array that is grown in chunks
* to optimize memory allocation.
* Indices are assigned to each array entry in-order so that
* the original device tree ordering can be discerned at a later time.
*
* add_lookup_entry is called from the libdevinfo tree traversal callbacks:
* 1) devinfo_node_walk - physical device path for each node in
* the devinfo tree via di_walk_node(), lookup entry name is
* /devices/[di_devfs_path]
* 2) devinfo_minor_walk - physical device path plus minor name for
* each minor associated with a node via di_walk_minor(), lookup entry
* name is /devices/[di_devfs_path:di_minor_name]
* 3) devinfo_devlink_walk - for each minor's /dev link from its /devices
* path via di_devlink_walk(), lookup entry name is di_devlink_path()
*/
static int
add_lookup_entry(lookup_table_t *table, const char *name, di_node_t node)
{
size_t size;
lookup_entry_t *new_table;
/* Grow the lookup table by USAGE_ALLOC_SIZE slots if necessary */
if (table->n_entries == table->n_slots) {
size = (table->n_slots + USAGE_ALLOC_SIZE) *
sizeof (lookup_entry_t);
new_table = (lookup_entry_t *)realloc(table->table, size);
if (new_table == NULL) {
dprintf((stderr, "add_lookup_entry: alloc failed: %s\n",
strerror(errno)));
errno = ENOMEM;
return (-1);
}
table->table = new_table;
table->n_slots += USAGE_ALLOC_SIZE;
}
dprintf((stderr, "add_lookup_entry[%d]:%s\n", table->n_entries, name));
/* Add this name to the next slot */
if ((table->table[table->n_entries].name = strdup(name)) == NULL) {
dprintf((stderr, "add_lookup_entry: strdup failed: %s\n",
strerror(errno)));
errno = ENOMEM;
return (-1);
}
table->table[table->n_entries].index = table->n_entries;
table->table[table->n_entries].node = node;
table->table[table->n_entries].n_usage = 0;
table->table[table->n_entries].usage = NULL;
table->n_entries += 1;
return (0);
}
/*
* lookup table entry names are full pathname strings, all start with /
*/
static int
table_compare_names(const void *a, const void *b)
{
lookup_entry_t *entry1 = (lookup_entry_t *)a;
lookup_entry_t *entry2 = (lookup_entry_t *)b;
return (strcmp(entry1->name, entry2->name));
}
/*
* Compare two indices and return -1 for less, 1 for greater, 0 for equal
*/
static int
table_compare_indices(const void *a, const void *b)
{
lookup_entry_t *entry1 = (lookup_entry_t *)a;
lookup_entry_t *entry2 = (lookup_entry_t *)b;
if (entry1->index < entry2->index)
return (-1);
if (entry1->index > entry2->index)
return (1);
return (0);
}
/*
* Given a RCM resource name, find the matching entry in the IO device table
*/
static lookup_entry_t *
lookup(lookup_table_t *table, const char *rcm_rsrc)
{
lookup_entry_t *entry;
lookup_entry_t lookup_arg;
dprintf((stderr, "lookup:%s\n", rcm_rsrc));
lookup_arg.name = (char *)rcm_rsrc;
entry = bsearch(&lookup_arg, table->table, table->n_entries,
sizeof (lookup_entry_t), table_compare_names);
#ifdef DEBUG
if (entry != NULL) {
dprintf((stderr, " found entry:%d\n", entry->index));
}
#endif /* DEBUG */
return (entry);
}
/*
* Add RCM usage to the given device table entry.
* Returns -1 on realloc failure.
*/
static int
add_usage(lookup_entry_t *entry, const char *rcm_rsrc, rcm_info_tuple_t *tuple)
{
size_t size;
const char *info;
usage_t *new_usage;
if ((entry == NULL) ||
((info = rcm_info_info(tuple)) == NULL))
return (0);
if (rcm_ignore((char *)rcm_rsrc, (char *)info) == 0)
return (0);
size = (entry->n_usage + 1) * sizeof (usage_t);
new_usage = (usage_t *)realloc(entry->usage, size);
if (new_usage == NULL) {
dprintf((stderr, "add_usage: alloc failed: %s\n",
strerror(errno)));
return (-1);
}
dprintf((stderr, "add_usage: entry %d rsrc: %s info: %s\n",
entry->index, rcm_rsrc, info));
entry->usage = new_usage;
entry->usage[entry->n_usage].rsrc = rcm_rsrc;
entry->usage[entry->n_usage].info = info;
entry->n_usage += 1;
return (0);
}
static void
empty_table(lookup_table_t *table)
{
int i;
if (table) {
for (i = 0; i < table->n_entries; i++) {
if (table->table[i].name)
free(table->table[i].name);
/*
* Note: the strings pointed to from within
* usage were freed already by rcm_free_info
*/
if (table->table[i].usage)
free(table->table[i].usage);
}
if (table->table)
free(table->table);
table->table = NULL;
table->n_entries = 0;
table->n_slots = 0;
}
}