/*-
* Copyright (c) 1998 Robert Nordier
* All rights reserved.
*
* Redistribution and use in source and binary forms are freely
* permitted provided that the above copyright notice and this
* paragraph and the following disclaimer are duplicated in all
* such forms.
*
* This software is provided "AS IS" and without any express or
* implied warranties, including, without limitation, the implied
* warranties of merchantability and fitness for a particular
* purpose.
*/
#include <sys/cdefs.h>
#include <stand.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/diskmbr.h>
#include <sys/vtoc.h>
#include <sys/disk.h>
#include <sys/reboot.h>
#include <sys/queue.h>
#include <multiboot.h>
#include <machine/bootinfo.h>
#include <machine/elf.h>
#include <machine/pc/bios.h>
#include <stdarg.h>
#include <stddef.h>
#include <a.out.h>
#include "bootstrap.h"
#include "libi386.h"
#include <btxv86.h>
#include "lib.h"
#include "rbx.h"
#include "cons.h"
#include "bootargs.h"
#include "disk.h"
#include "part.h"
#include "paths.h"
#include "libzfs.h"
#define ARGS 0x900
#define NOPT 14
#define NDEV 3
#define BIOS_NUMDRIVES 0x475
#define DRV_HARD 0x80
#define DRV_MASK 0x7f
#define TYPE_AD 0
#define TYPE_DA 1
#define TYPE_MAXHARD TYPE_DA
#define TYPE_FD 2
extern uint32_t _end;
/*
* Fake multiboot header to provide versioning and to pass
* partition start LBA. Partition is either GPT partition or
* VTOC slice.
*/
extern const struct multiboot_header mb_header;
extern uint64_t start_sector;
static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */
static const unsigned char flags[NOPT] = {
RBX_DUAL,
RBX_SERIAL,
RBX_ASKNAME,
RBX_CDROM,
RBX_CONFIG,
RBX_KDB,
RBX_GDB,
RBX_MUTE,
RBX_NOINTR,
RBX_PAUSE,
RBX_QUIET,
RBX_DFLTROOT,
RBX_SINGLE,
RBX_VERBOSE
};
uint32_t opts;
static const char *const dev_nm[NDEV] = {"ad", "da", "fd"};
static const unsigned char dev_maj[NDEV] = {30, 4, 2};
static struct i386_devdesc *bdev;
static char cmd[512];
static char cmddup[512];
static char kname[1024];
static int comspeed = SIOSPD;
static struct bootinfo bootinfo;
static uint32_t bootdev;
static struct zfs_boot_args zfsargs;
extern vm_offset_t high_heap_base;
extern uint32_t bios_basemem, bios_extmem, high_heap_size;
static char *heap_top;
static char *heap_bottom;
static void i386_zfs_probe(void);
void exit(int);
static void load(void);
static int parse_cmd(void);
struct arch_switch archsw; /* MI/MD interface boundary */
static char boot_devname[2 * ZFS_MAXNAMELEN + 8]; /* disk or pool:dataset */
struct devsw *devsw[] = {
&biosdisk,
&zfs_dev,
NULL
};
struct fs_ops *file_system[] = {
&zfs_fsops,
&ufs_fsops,
&dosfs_fsops,
NULL
};
/*
* probe arguments for partition iterator (see below)
*/
struct probe_args {
int fd;
char *devname;
u_int secsz;
uint64_t offset;
};
/*
* simple wrapper around read() to avoid using device specific
* strategy() directly.
*/
static int
parttblread(void *arg, void *buf, size_t blocks, off_t offset)
{
struct probe_args *ppa = arg;
size_t size = ppa->secsz * blocks;
lseek(ppa->fd, offset * ppa->secsz, SEEK_SET);
if (read(ppa->fd, buf, size) == size)
return (0);
return (EIO);
}
/*
* scan partition entries to find boot partition starting at start_sector.
* in case of MBR partition type PART_SOLARIS2, read VTOC and recurse.
*/
static int
probe_partition(void *arg, const char *partname,
const struct ptable_entry *part)
{
struct probe_args pa, *ppa = arg;
struct ptable *table;
char devname[32];
int ret = 0;
strncpy(devname, ppa->devname, strlen(ppa->devname) - 1);
devname[strlen(ppa->devname) - 1] = '\0';
sprintf(devname, "%s%s:", devname, partname);
if (part->type == PART_SOLARIS2) {
pa.offset = part->start;
pa.fd = open(devname, O_RDONLY);
if (pa.fd == -1)
return (ret);
pa.devname = devname;
pa.secsz = ppa->secsz;
table = ptable_open(&pa, part->end - part->start + 1,
ppa->secsz, parttblread);
if (table != NULL) {
ret = ptable_iterate(table, &pa, probe_partition);
ptable_close(table);
}
close(pa.fd);
if (ret) {
strcpy(ppa->devname, devname);
return (ret);
}
}
if (ppa->offset + part->start == start_sector) {
ret = 1; /* this is the end of the search */
strcpy(ppa->devname, devname);
}
return (ret);
}
/*
* open partition table on disk and scan partition entries to find
* boot partition starting at start_sector (recorded by installboot).
*/
static int
probe_disk(char *devname)
{
struct ptable *table;
struct probe_args pa;
off_t mediasz;
int ret;
pa.offset = 0;
pa.devname = devname;
pa.fd = open(devname, O_RDONLY);
if (pa.fd == -1) {
return (ENXIO);
}
ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz);
if (ret == 0)
ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz);
if (ret == 0) {
table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz,
parttblread);
if (table != NULL) {
ret = ptable_iterate(table, &pa, probe_partition);
ptable_close(table);
}
}
close(pa.fd);
return (ret);
}
int
main(void)
{
int auto_boot, i, fd, ret;
struct disk_devdesc devdesc;
bios_getmem();
if (high_heap_size > 0) {
heap_top = PTOV(high_heap_base + high_heap_size);
heap_bottom = PTOV(high_heap_base);
} else {
heap_bottom = (char *)
(roundup2(__base + (int32_t)&_end, 0x10000) - __base);
heap_top = (char *) PTOV(bios_basemem);
}
setheap(heap_bottom, heap_top);
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
archsw.arch_autoload = NULL;
archsw.arch_getdev = i386_getdev;
archsw.arch_copyin = NULL;
archsw.arch_copyout = NULL;
archsw.arch_readin = NULL;
archsw.arch_isainb = NULL;
archsw.arch_isaoutb = NULL;
archsw.arch_zfs_probe = i386_zfs_probe;
/*
* dont init zfs yet, need to run through probe_disk(), then init
* zfs with probing boot device by name first.
*/
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL && strcmp(devsw[i]->dv_name, "zfs"))
(devsw[i]->dv_init)();
bootinfo.bi_version = BOOTINFO_VERSION;
bootinfo.bi_size = sizeof(bootinfo);
bootinfo.bi_basemem = bios_basemem / 1024;
bootinfo.bi_extmem = bios_extmem / 1024;
bootinfo.bi_memsizes_valid++;
bootinfo.bi_bios_dev = *(uint8_t *)PTOV(ARGS);
/*
* detect partition from boot disk and start_sector
* we need partition as devsw/fs switch is depending on it.
*/
sprintf(boot_devname, "disk%d:", bd_bios2unit(bootinfo.bi_bios_dev));
ret = probe_disk(boot_devname);
if (!ret)
printf("start sector %llu does not match any partition on device: %s\n",
start_sector, boot_devname);
disk_parsedev(&devdesc, boot_devname+4, NULL);
bootdev = MAKEBOOTDEV(dev_maj[devdesc.d_type], devdesc.d_slice + 1,
devdesc.d_unit, devdesc.d_partition >= 0? devdesc.d_partition:0xff);
/*
* check for zfs on boot partition, we need to make sure this is
* the first registered pool.
*/
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL && strcmp(devsw[i]->dv_name, "zfs") == 0)
(devsw[i]->dv_init)();
/*
* zfs_fmtdev() can be called only after dv_init
*/
if (bdev != NULL && bdev->d_type == DEVT_ZFS) {
/* set up proper device name string for ZFS */
strcpy(boot_devname, zfs_fmtdev(bdev));
}
/* now make sure we have bdev on all cases */
if (bdev != NULL)
free(bdev);
i386_getdev((void **)&bdev, boot_devname, NULL);
env_setenv("currdev", EV_VOLATILE, boot_devname, i386_setcurrdev,
env_nounset);
/* Process configuration file */
setenv("LINES", "24", 1);
auto_boot = 1;
fd = open(PATH_CONFIG, O_RDONLY);
if (fd == -1)
fd = open(PATH_DOTCONFIG, O_RDONLY);
if (fd != -1) {
read(fd, cmd, sizeof(cmd));
close(fd);
}
if (*cmd) {
/*
* Note that parse_cmd() is destructive to cmd[] and we also want
* to honor RBX_QUIET option that could be present in cmd[].
*/
memcpy(cmddup, cmd, sizeof(cmd));
if (parse_cmd())
auto_boot = 0;
if (!OPT_CHECK(RBX_QUIET))
printf("%s: %s\n", PATH_CONFIG, cmddup);
/* Do not process this command twice */
*cmd = 0;
}
/*
* Try to exec stage 3 boot loader. If interrupted by a keypress,
* or in case of failure, switch off auto boot.
*/
if (auto_boot && !*kname) {
memcpy(kname, PATH_LOADER_ZFS, sizeof(PATH_LOADER_ZFS));
if (!keyhit(3)) {
load();
auto_boot = 0;
}
}
/* Present the user with the boot2 prompt. */
for (;;) {
if (!auto_boot || !OPT_CHECK(RBX_QUIET)) {
printf("\nillumos/x86 boot\n");
printf("Default: %s%s\nboot: ", boot_devname, kname);
}
if (ioctrl & IO_SERIAL)
sio_flush();
if (!auto_boot || keyhit(5))
getstr(cmd, sizeof(cmd));
else if (!auto_boot || !OPT_CHECK(RBX_QUIET))
putchar('\n');
auto_boot = 0;
if (parse_cmd())
putchar('\a');
else
load();
}
}
/* XXX - Needed for btxld to link the boot2 binary; do not remove. */
void
exit(int x)
{
}
static void
load(void)
{
union {
struct exec ex;
Elf32_Ehdr eh;
} hdr;
static Elf32_Phdr ep[2];
static Elf32_Shdr es[2];
caddr_t p;
uint32_t addr, x;
int fd, fmt, i, j;
if ((fd = open(kname, O_RDONLY)) == -1) {
printf("\nCan't find %s\n", kname);
return;
}
if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) {
close(fd);
return;
}
if (N_GETMAGIC(hdr.ex) == ZMAGIC)
fmt = 0;
else if (IS_ELF(hdr.eh))
fmt = 1;
else {
printf("Invalid %s\n", "format");
close(fd);
return;
}
if (fmt == 0) {
addr = hdr.ex.a_entry & 0xffffff;
p = PTOV(addr);
lseek(fd, PAGE_SIZE, SEEK_SET);
if (read(fd, p, hdr.ex.a_text) != hdr.ex.a_text) {
close(fd);
return;
}
p += roundup2(hdr.ex.a_text, PAGE_SIZE);
if (read(fd, p, hdr.ex.a_data) != hdr.ex.a_data) {
close(fd);
return;
}
p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE);
bootinfo.bi_symtab = VTOP(p);
memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms));
p += sizeof(hdr.ex.a_syms);
if (hdr.ex.a_syms) {
if (read(fd, p, hdr.ex.a_syms) != hdr.ex.a_syms) {
close(fd);
return;
}
p += hdr.ex.a_syms;
if (read(fd, p, sizeof(int)) != sizeof(int)) {
close(fd);
return;
}
x = *(uint32_t *)p;
p += sizeof(int);
x -= sizeof(int);
if (read(fd, p, x) != x) {
close(fd);
return;
}
p += x;
}
} else {
lseek(fd, hdr.eh.e_phoff, SEEK_SET);
for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) {
if (read(fd, ep + j, sizeof(ep[0])) != sizeof(ep[0])) {
close(fd);
return;
}
if (ep[j].p_type == PT_LOAD)
j++;
}
for (i = 0; i < 2; i++) {
p = PTOV(ep[i].p_paddr & 0xffffff);
lseek(fd, ep[i].p_offset, SEEK_SET);
if (read(fd, p, ep[i].p_filesz) != ep[i].p_filesz) {
close(fd);
return;
}
}
p += roundup2(ep[1].p_memsz, PAGE_SIZE);
bootinfo.bi_symtab = VTOP(p);
if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) {
lseek(fd, hdr.eh.e_shoff + sizeof(es[0]) * (hdr.eh.e_shstrndx + 1),
SEEK_SET);
if (read(fd, &es, sizeof(es)) != sizeof(es)) {
close(fd);
return;
}
for (i = 0; i < 2; i++) {
memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size));
p += sizeof(es[i].sh_size);
lseek(fd, es[i].sh_offset, SEEK_SET);
if (read(fd, p, es[i].sh_size) != es[i].sh_size) {
close(fd);
return;
}
p += es[i].sh_size;
}
}
addr = hdr.eh.e_entry & 0xffffff;
}
close(fd);
bootinfo.bi_esymtab = VTOP(p);
bootinfo.bi_kernelname = VTOP(kname);
if (bdev->d_type == DEVT_ZFS) {
zfsargs.size = sizeof(zfsargs);
zfsargs.pool = bdev->d_kind.zfs.pool_guid;
zfsargs.root = bdev->d_kind.zfs.root_guid;
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
bootdev,
KARGS_FLAGS_ZFS | KARGS_FLAGS_EXTARG,
(uint32_t) bdev->d_kind.zfs.pool_guid,
(uint32_t) (bdev->d_kind.zfs.pool_guid >> 32),
VTOP(&bootinfo),
zfsargs);
} else
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
bootdev, 0, 0, 0, VTOP(&bootinfo));
}
static int
mount_root(char *arg)
{
char *root;
struct i386_devdesc *ddesc;
uint8_t part;
root = malloc(strlen(arg) + 2);
if (root == NULL)
return (1);
sprintf(root, "%s:", arg);
if (i386_getdev((void **)&ddesc, root, NULL)) {
free(root);
return (1);
}
/* we should have new device descriptor, free old and replace it. */
if (bdev != NULL)
free(bdev);
bdev = ddesc;
if (bdev->d_type == DEVT_DISK) {
if (bdev->d_kind.biosdisk.partition == -1)
part = 0xff;
else
part = bdev->d_kind.biosdisk.partition;
bootdev = MAKEBOOTDEV(dev_maj[bdev->d_type],
bdev->d_kind.biosdisk.slice + 1,
bdev->d_unit, part);
bootinfo.bi_bios_dev = bd_unit2bios(bdev->d_unit);
}
setenv("currdev", root, 1);
free(root);
return (0);
}
static void
fs_list(char *arg)
{
int fd;
struct dirent *d;
char line[80];
fd = open(arg, O_RDONLY);
if (fd < 0)
return;
pager_open();
while ((d = readdirfd(fd)) != NULL) {
sprintf(line, "%s\n", d->d_name);
if (pager_output(line))
break;
}
pager_close();
close(fd);
}
static int
parse_cmd(void)
{
char *arg = cmd;
char *ep, *p, *q;
const char *cp;
char line[80];
int c, i, j;
while ((c = *arg++)) {
if (c == ' ' || c == '\t' || c == '\n')
continue;
for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++);
ep = p;
if (*p)
*p++ = 0;
if (c == '-') {
while ((c = *arg++)) {
if (c == 'P') {
if (*(uint8_t *)PTOV(0x496) & 0x10) {
cp = "yes";
} else {
opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL);
cp = "no";
}
printf("Keyboard: %s\n", cp);
continue;
} else if (c == 'S') {
j = 0;
while ((unsigned int)(i = *arg++ - '0') <= 9)
j = j * 10 + i;
if (j > 0 && i == -'0') {
comspeed = j;
break;
}
/* Fall through to error below ('S' not in optstr[]). */
}
for (i = 0; c != optstr[i]; i++)
if (i == NOPT - 1)
return -1;
opts ^= OPT_SET(flags[i]);
}
ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) :
OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD;
if (ioctrl & IO_SERIAL) {
if (sio_init(115200 / comspeed) != 0)
ioctrl &= ~IO_SERIAL;
}
} if (c == '?') {
printf("\n");
fs_list(arg);
zfs_list(arg);
return -1;
} else {
arg--;
/*
* Report pool status if the comment is 'status'. Lets
* hope no-one wants to load /status as a kernel.
*/
if (!strcmp(arg, "status")) {
pager_open();
for (i = 0; devsw[i] != NULL; i++) {
if (devsw[i]->dv_print != NULL) {
sprintf(line, "\n%s devices:\n", devsw[i]->dv_name);
if (pager_output(line))
break;
if (devsw[i]->dv_print(1))
break;
} else {
sprintf(line, "%s: (unknown)\n", devsw[i]->dv_name);
if (pager_output(line))
break;
}
}
pager_close();
return -1;
}
/*
* If there is a colon, switch pools.
*/
if (strncmp(arg, "zfs:", 4) == 0)
q = strchr(arg + 4, ':');
else
q = strchr(arg, ':');
if (q) {
*q++ = '\0';
if (mount_root(arg) != 0)
return -1;
arg = q;
}
if ((i = ep - arg)) {
if ((size_t)i >= sizeof(kname))
return -1;
memcpy(kname, arg, i + 1);
}
}
arg = p;
}
return 0;
}
static void
i386_zfs_probe(void)
{
char devname[32];
uint64_t pool_guid = 0;
int unit;
/*
* Open all the disks we can find and see if we can reconstruct
* ZFS pools from them. We start from boot device to get boot pool_guid.
*/
bdev = malloc(sizeof (struct i386_devdesc));
bzero(bdev, sizeof (struct i386_devdesc));
zfs_probe_dev(boot_devname, &pool_guid);
if (pool_guid) {
bdev->d_type = DEVT_ZFS;
bdev->d_dev = &zfs_dev;
bdev->d_kind.zfs.pool_guid = pool_guid;
}
for (unit = 0; unit < MAXBDDEV; unit++) {
if (bd_unit2bios(unit) == -1)
break;
sprintf(devname, "disk%d:", unit);
zfs_probe_dev(devname, NULL);
}
}