/*-
* Copyright (c) 2008-2010 Rui Paulo
* Copyright (c) 2006 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <stand.h>
#include <string.h>
#include <setjmp.h>
#include <efi.h>
#include <efilib.h>
#include <efigpt.h>
#include <bootstrap.h>
#include <smbios.h>
#ifdef EFI_ZFS_BOOT
#include <libzfs.h>
#endif
#include "loader_efi.h"
extern char bootprog_name[];
extern char bootprog_rev[];
extern char bootprog_date[];
extern char bootprog_maker[];
struct arch_switch archsw; /* MI/MD interface boundary */
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
EFI_GUID serial_io = SERIAL_IO_PROTOCOL;
extern void acpi_detect(const caddr_t);
void efi_serial_init(void);
#ifdef EFI_ZFS_BOOT
static void efi_zfs_probe(void);
#endif
/*
* Need this because EFI uses UTF-16 unicode string constants, but we
* use UTF-8. We can't use printf due to the possiblity of \0 and we
* don't support support wide characters either.
*/
static void
print_str16(const CHAR16 *str)
{
int i;
for (i = 0; str[i]; i++)
printf("%c", (char)str[i]);
}
static void
cp16to8(const CHAR16 *src, char *dst, size_t len)
{
size_t i;
for (i = 0; i < len && src[i]; i++)
dst[i] = (char)src[i];
}
static int
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
int retval = 0;
/*
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
* do the typical dance to get the right sized buffer.
*/
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
/*
* Look at each of the handles. If it supports the device path protocol,
* use it to get the device path for this handle. Then see if that
* device path matches either the USB device path for keyboards or the
* legacy device path for keyboards.
*/
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
/*
* Check for the ACPI keyboard node. All PNP3xx nodes
* are keyboards of different flavors. Note: It is
* unclear of there's always a keyboard node when
* there's a keyboard controller, or if there's only one
* when a keyboard is detected at boot.
*/
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = 1;
goto out;
}
/*
* Check for USB keyboard node, if present. Unlike a
* PS/2 keyboard, these definitely only appear when
* connected to the system.
*/
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 && /* HID */
usb->DeviceSubClass == 1 && /* Boot devices */
usb->DeviceProtocol == 1) { /* Boot keyboards */
retval = 1;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
char var[128];
EFI_LOADED_IMAGE *img;
EFI_GUID *guid;
int i, j, vargood, unit, howto;
struct devsw *dev;
uint64_t pool_guid;
UINTN k;
int has_kbd;
archsw.arch_autoload = efi_autoload;
archsw.arch_getdev = efi_getdev;
archsw.arch_copyin = efi_copyin;
archsw.arch_copyout = efi_copyout;
archsw.arch_readin = efi_readin;
#ifdef EFI_ZFS_BOOT
/* Note this needs to be set before ZFS init. */
archsw.arch_zfs_probe = efi_zfs_probe;
#endif
has_kbd = has_keyboard();
/*
* XXX Chicken-and-egg problem; we want to have console output
* early, but some console attributes may depend on reading from
* eg. the boot device, which we can't do yet. We can use
* printf() etc. once this is done.
*/
cons_probe();
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
/*
* Parse the args to set the console settings, etc
* boot1.efi passes these in, if it can read /boot.config or /boot/config
* or iPXE may be setup to pass these in.
*
* Loop through the args, and for each one that contains an '=' that is
* not the first character, add it to the environment. This allows
* loader and kernel env vars to be passed on the command line. Convert
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied.
*/
howto = 0;
for (i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
for (j = 1; argv[i][j] != 0; j++) {
int ch;
ch = argv[i][j];
switch (ch) {
case 'a':
howto |= RB_ASKNAME;
break;
case 'd':
howto |= RB_KDB;
break;
case 'D':
howto |= RB_MULTIPLE;
break;
case 'h':
howto |= RB_SERIAL;
break;
case 'm':
howto |= RB_MUTE;
break;
case 'p':
howto |= RB_PAUSE;
break;
case 'P':
if (!has_kbd)
howto |= RB_SERIAL | RB_MULTIPLE;
break;
case 'r':
howto |= RB_DFLTROOT;
break;
case 's':
howto |= RB_SINGLE;
break;
case 'S':
if (argv[i][j + 1] == 0) {
if (i + 1 == argc) {
setenv("comconsole_speed", "115200", 1);
} else {
cp16to8(&argv[i + 1][0], var,
sizeof(var));
setenv("comconsole_speedspeed", var, 1);
}
i++;
break;
} else {
cp16to8(&argv[i][j + 1], var,
sizeof(var));
setenv("comconsole_speed", var, 1);
break;
}
case 'v':
howto |= RB_VERBOSE;
break;
}
}
} else {
vargood = 0;
for (j = 0; argv[i][j] != 0; j++) {
if (j == sizeof(var)) {
vargood = 0;
break;
}
if (j > 0 && argv[i][j] == '=')
vargood = 1;
var[j] = (char)argv[i][j];
}
if (vargood) {
var[j] = 0;
putenv(var);
}
}
}
for (i = 0; howto_names[i].ev != NULL; i++)
if (howto & howto_names[i].mask)
setenv(howto_names[i].ev, "YES", 1);
if (howto & RB_MULTIPLE) {
if (howto & RB_SERIAL)
setenv("console", "ttya text" , 1);
else
setenv("console", "text ttya" , 1);
} else if (howto & RB_SERIAL) {
setenv("console", "ttya" , 1);
}
if (efi_copy_init()) {
printf("failed to allocate staging area\n");
return (EFI_BUFFER_TOO_SMALL);
}
/*
* March through the device switch probing for things.
*/
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
/* Get our loaded image protocol interface structure. */
BS->HandleProtocol(IH, &imgid, (VOID**)&img);
printf("Command line arguments:");
for (i = 0; i < argc; i++) {
printf(" ");
print_str16(argv[i]);
}
printf("\n");
printf("Image base: 0x%lx\n", (u_long)img->ImageBase);
printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf("EFI Firmware: ");
/* printf doesn't understand EFI Unicode */
ST->ConOut->OutputString(ST->ConOut, ST->FirmwareVendor);
printf(" (rev %d.%02d)\n", ST->FirmwareRevision >> 16,
ST->FirmwareRevision & 0xffff);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
/*
* Disable the watchdog timer. By default the boot manager sets
* the timer to 5 minutes before invoking a boot option. If we
* want to return to the boot manager, we have to disable the
* watchdog timer and since we're an interactive program, we don't
* want to wait until the user types "quit". The timer may have
* fired by then. We don't care if this fails. It does not prevent
* normal functioning in any way...
*/
BS->SetWatchdogTimer(0, 0, 0, NULL);
if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &pool_guid) != 0)
return (EFI_NOT_FOUND);
switch (dev->dv_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS: {
struct zfs_devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
currdev.d_type = currdev.d_dev->dv_type;
currdev.d_opendata = NULL;
currdev.pool_guid = pool_guid;
currdev.root_guid = 0;
env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev),
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset,
env_nounset);
#ifdef __FreeBSD__
init_zfs_bootenv(zfs_fmtdev(&currdev));
#endif
break;
}
#endif
default: {
struct devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
currdev.d_opendata = NULL;
currdev.d_type = currdev.d_dev->dv_type;
env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev),
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset,
env_nounset);
break;
}
}
setenv("LINES", "24", 1); /* optional */
setenv("COLUMNS", "80", 1); /* optional */
setenv("ISADIR", "amd64", 1); /* we only build 64bit */
for (k = 0; k < ST->NumberOfTableEntries; k++) {
guid = &ST->ConfigurationTable[k].VendorGuid;
if (!memcmp(guid, &smbios, sizeof(EFI_GUID)) ||
!memcmp(guid, &smbios3, sizeof(EFI_GUID))) {
smbios_detect(ST->ConfigurationTable[k].VendorTable);
continue;
}
if (!memcmp(guid, &acpi20, sizeof(EFI_GUID))) {
acpi_detect(ST->ConfigurationTable[k].VendorTable);
}
}
efi_serial_init(); /* detect and set up serial ports */
interact(NULL); /* doesn't return */
return (EFI_SUCCESS); /* keep compiler happy */
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc __attribute((unused)),
char *argv[] __attribute((unused)))
{
int i;
const CHAR16 *msg = L"Reboot from the loader";
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 23, (CHAR16 *)msg);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc __attribute((unused)),
char *argv[] __attribute((unused)))
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
int rv = 0;
char line[80];
static const char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
snprintf(line, 80, "%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
pager_open();
rv = pager_output(line);
if (rv) {
pager_close();
return (CMD_OK);
}
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
snprintf(line, 80, "%23s %012lx %012lx %08lx ",
types[p->Type],
p->PhysicalStart,
p->VirtualStart,
p->NumberOfPages);
rv = pager_output(line);
if (rv)
break;
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
rv = pager_output("\n");
if (rv)
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static const char *
guid_to_string(EFI_GUID *guid)
{
static char buf[40];
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
return (buf);
}
static int
command_configuration(int argc __attribute((unused)),
char *argv[] __attribute((unused)))
{
UINTN i;
printf("NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
printf("MPS Table");
else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
printf("ACPI Table");
else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
printf("ACPI 2.0 Table");
else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
printf("SMBIOS Table");
else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID)))
printf("SMBIOS3 Table");
else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
printf("DXE Table");
else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
printf("HOB List Table");
else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
printf("Memory Type Information Table");
else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
printf("Debug Image Info Table");
else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
printf("FDT Table");
else
printf("Unknown Table (%s)", guid_to_string(guid));
printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
}
return (CMD_OK);
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
char rowenv[8];
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
extern void HO(void);
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
sprintf(rowenv, "%u", (unsigned)rows);
setenv("LINES", rowenv, 1);
sprintf(rowenv, "%u", (unsigned)cols);
setenv("COLUMNS", rowenv, 1);
HO(); /* set cursor */
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
COMMAND_SET(nvram, "nvram", "get NVRAM variables", command_nvram);
static int
command_nvram(int argc __attribute((unused)),
char *argv[] __attribute((unused)))
{
CHAR16 var[128];
UINT8 *data; /* value is in bytes */
EFI_STATUS status;
EFI_GUID varguid = { 0,0,0,{0,0,0,0,0,0,0,0} };
UINTN varsz, datasz, i;
UINT32 attr;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
conout = ST->ConOut;
pager_open();
var[0] = 0; /* Initiate the enumeration */
varsz = 128;
for (status = RS->GetNextVariableName(&varsz, var, &varguid);
status != EFI_NOT_FOUND;
status = RS->GetNextVariableName(&varsz, var, &varguid)) {
/*
* as term emu is keeping track on cursor, use putchar().
*/
for (i = 0; var[i] != 0; i++)
putchar(var[i]);
varsz = 128; /* GetNextVariableName() did change it. */
printf(": Attributes:");
datasz = 0;
status = RS->GetVariable(var, &varguid, &attr, &datasz, NULL);
if ((data = malloc(datasz)) == NULL)
break;
status = RS->GetVariable(var, &varguid, &attr, &datasz, data);
if (EFI_ERROR(status))
printf("<error retrieving variable>");
else {
if (attr & EFI_VARIABLE_NON_VOLATILE)
printf(" NV");
if (attr & EFI_VARIABLE_BOOTSERVICE_ACCESS)
printf(" BS");
if (attr & EFI_VARIABLE_RUNTIME_ACCESS)
printf(" RS");
if (attr & EFI_VARIABLE_HARDWARE_ERROR_RECORD)
printf(" HR");
if (attr & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
printf(" AW");
if (attr &
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)
printf(" TW");
printf(": DataLength: %lld", (long long)datasz);
}
free(data);
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
struct protocol_name {
EFI_GUID guid;
const char *name;
} proto_names[] = {
{ DEVICE_PATH_PROTOCOL, "device path" },
{ BLOCK_IO_PROTOCOL, "block io" },
{ DISK_IO_PROTOCOL, "disk io" },
{ EFI_DISK_INFO_PROTOCOL_GUID, "disk info" },
{ SIMPLE_FILE_SYSTEM_PROTOCOL, "simple fs" },
{ LOAD_FILE_PROTOCOL, "load file" },
{ DEVICE_IO_PROTOCOL, "device io" },
{ UNICODE_COLLATION_PROTOCOL, "unicode collation" },
{ EFI_UNICODE_COLLATION2_PROTOCOL_GUID, "unicode collation2" },
{ EFI_SIMPLE_NETWORK_PROTOCOL, "simple network" },
{ SIMPLE_TEXT_OUTPUT_PROTOCOL, "simple text output" },
{ SIMPLE_TEXT_INPUT_PROTOCOL, "simple text input" },
{ EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL_GUID, "simple text ex input" },
{ EFI_CONSOLE_CONTROL_PROTOCOL_GUID, "console control" },
{ EFI_CONSOLE_IN_DEVICE_GUID, "stdin" },
{ EFI_CONSOLE_OUT_DEVICE_GUID, "stdout" },
{ EFI_STANDARD_ERROR_DEVICE_GUID, "stderr" },
{ EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID, "GOP" },
{ EFI_UGA_DRAW_PROTOCOL_GUID, "UGA draw" },
{ EFI_PXE_BASE_CODE_PROTOCOL, "PXE base code" },
{ EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL, "PXE base code callback" },
{ SERIAL_IO_PROTOCOL, "serial io" },
{ LOADED_IMAGE_PROTOCOL, "loaded image" },
{ EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID,
"loaded image device path" },
{ EFI_ISA_IO_PROTOCOL_GUID, "ISA io" },
{ EFI_IDE_CONTROLLER_INIT_PROTOCOL_GUID, "IDE controller init" },
{ EFI_ISA_ACPI_PROTOCOL_GUID, "ISA ACPI" },
{ EFI_PCI_IO_PROTOCOL_GUID, "PCI" },
{ EFI_PCI_ROOT_IO_GUID, "PCI root" },
{ EFI_PCI_ENUMERATION_COMPLETE_GUID, "PCI enumeration" },
{ EFI_DRIVER_DIAGNOSTICS_PROTOCOL_GUID, "Driver diagnostics" },
{ EFI_DRIVER_DIAGNOSTICS2_PROTOCOL_GUID, "Driver diagnostics2" },
{ EFI_SIMPLE_POINTER_PROTOCOL_GUID, "simple pointer" },
{ EFI_ABSOLUTE_POINTER_PROTOCOL_GUID, "absolute pointer" },
{ EFI_VLAN_CONFIG_PROTOCOL_GUID, "VLAN config" },
{ EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID, "ARP service binding" },
{ EFI_ARP_PROTOCOL_GUID, "ARP" },
{ EFI_IP4_SERVICE_BINDING_PROTOCOL, "IPv4 service binding" },
{ EFI_IP4_PROTOCOL, "IPv4" },
{ EFI_IP4_CONFIG_PROTOCOL_GUID, "IPv4 config" },
{ EFI_IP6_SERVICE_BINDING_PROTOCOL, "IPv6 service binding" },
{ EFI_IP6_PROTOCOL, "IPv6" },
{ EFI_IP6_CONFIG_PROTOCOL_GUID, "IPv6 config" },
{ EFI_UDP4_PROTOCOL, "UDPv4" },
{ EFI_UDP4_SERVICE_BINDING_PROTOCOL, "UDPv4 service binding" },
{ EFI_UDP6_PROTOCOL, "UDPv6" },
{ EFI_UDP6_SERVICE_BINDING_PROTOCOL, "UDPv6 service binding" },
{ EFI_TCP4_PROTOCOL, "TCPv4" },
{ EFI_TCP4_SERVICE_BINDING_PROTOCOL, "TCPv4 service binding" },
{ EFI_TCP6_PROTOCOL, "TCPv6" },
{ EFI_TCP6_SERVICE_BINDING_PROTOCOL, "TCPv6 service binding" },
{ EFI_PART_TYPE_EFI_SYSTEM_PART_GUID, "EFI System partition" },
{ EFI_PART_TYPE_LEGACY_MBR_GUID, "MBR legacy" },
{ EFI_DEVICE_TREE_GUID, "device tree" },
{ EFI_USB_IO_PROTOCOL_GUID, "USB io" },
{ EFI_USB2_HC_PROTOCOL_GUID, "USB2 HC" },
{ EFI_COMPONENT_NAME_PROTOCOL_GUID, "component name" },
{ EFI_COMPONENT_NAME2_PROTOCOL_GUID, "component name2" },
{ EFI_DRIVER_BINDING_PROTOCOL_GUID, "driver binding" },
{ EFI_DRIVER_CONFIGURATION_PROTOCOL_GUID, "driver configuration" },
{ EFI_DRIVER_CONFIGURATION2_PROTOCOL_GUID, "driver configuration2" },
{ EFI_DECOMPRESS_PROTOCOL_GUID, "decompress" },
{ EFI_EBC_INTERPRETER_PROTOCOL_GUID, "ebc interpreter" },
{ EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL,
"network interface identifier" },
{ EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_31,
"network interface identifier_31" },
{ EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID,
"managed network service binding" },
{ EFI_MANAGED_NETWORK_PROTOCOL_GUID, "managed network" },
{ EFI_FORM_BROWSER2_PROTOCOL_GUID, "form browser" },
{ EFI_HII_CONFIG_ROUTING_PROTOCOL_GUID, "HII config routing" },
{ EFI_HII_DATABASE_PROTOCOL_GUID, "HII database" },
{ EFI_HII_STRING_PROTOCOL_GUID, "HII string" },
{ EFI_HII_IMAGE_PROTOCOL_GUID, "HII image" },
{ EFI_HII_FONT_PROTOCOL_GUID, "HII font" },
{ EFI_HII_CONFIGURATION_ACCESS_PROTOCOL_GUID, "HII config" },
{ EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID, "MTFTP4 service binding" },
{ EFI_MTFTP4_PROTOCOL_GUID, "MTFTP4" },
{ EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID, "MTFTP6 service binding" },
{ EFI_MTFTP6_PROTOCOL_GUID, "MTFTP6" },
{ EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID, "DHCP4 service binding" },
{ EFI_DHCP4_PROTOCOL_GUID, "DHCP4" },
{ EFI_DHCP6_SERVICE_BINDING_PROTOCOL_GUID, "DHCP6 service binding" },
{ EFI_DHCP6_PROTOCOL_GUID, "DHCP6" },
{ EFI_SCSI_IO_PROTOCOL_GUID, "SCSI io" },
{ EFI_SCSI_PASS_THRU_PROTOCOL_GUID, "SCSI pass thru" },
{ EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID, "SCSI pass thru ext" },
{ EFI_CAPSULE_ARCH_PROTOCOL_GUID, "Capsule arch" },
{ EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID, "monotonic counter arch" },
{ EFI_REALTIME_CLOCK_ARCH_PROTOCOL_GUID, "realtime clock arch" },
{ EFI_VARIABLE_ARCH_PROTOCOL_GUID, "variable arch" },
{ EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID, "variable write arch" },
{ EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID, "watchdog timer arch" },
{ EFI_MP_SERVICES_PROTOCOL_GUID, "MP services" },
{ EFI_ACPI_SUPPORT_PROTOCOL_GUID, "ACPI support" },
{ EFI_BDS_ARCH_PROTOCOL_GUID, "BDS arch" },
{ EFI_METRONOME_ARCH_PROTOCOL_GUID, "metronome arch" },
{ EFI_TIMER_ARCH_PROTOCOL_GUID, "timer arch" },
{ EFI_DPC_PROTOCOL_GUID, "DPC" },
{ EFI_PRINT2_PROTOCOL_GUID, "print2" },
{ EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID, "device path to text" },
{ EFI_RESET_ARCH_PROTOCOL_GUID, "reset arch" },
{ EFI_CPU_ARCH_PROTOCOL_GUID, "CPU arch" },
{ EFI_CPU_IO2_PROTOCOL_GUID, "CPU IO2" },
{ EFI_LEGACY_8259_PROTOCOL_GUID, "Legacy 8259" },
{ EFI_SECURITY_ARCH_PROTOCOL_GUID, "Security arch" },
{ EFI_SECURITY2_ARCH_PROTOCOL_GUID, "Security2 arch" },
{ EFI_RUNTIME_ARCH_PROTOCOL_GUID, "Runtime arch" },
{ EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID, "status code runtime" },
{ EFI_DATA_HUB_PROTOCOL_GUID, "data hub" },
{ PCD_PROTOCOL_GUID, "PCD" },
{ EFI_PCD_PROTOCOL_GUID, "EFI PCD" },
{ EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL_GUID, "firmware volume block" },
{ EFI_FIRMWARE_VOLUME2_PROTOCOL_GUID, "firmware volume2" },
{ EFI_FIRMWARE_VOLUME_DISPATCH_PROTOCOL_GUID,
"firmware volume dispatch" },
{ LZMA_COMPRESS_GUID, "lzma compress" },
{ { 0,0,0,{0,0,0,0,0,0,0,0} }, NULL } /* must be last entry */
};
COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
static int
command_lsefi(int argc __attribute((unused)),
char *argv[] __attribute((unused)))
{
EFI_HANDLE *buffer = NULL;
EFI_HANDLE handle;
UINTN bufsz = 0, i, j;
EFI_STATUS status;
int k, ret;
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (status != EFI_BUFFER_TOO_SMALL) {
snprintf(command_errbuf, sizeof (command_errbuf),
"unexpected error: %lld", (long long)status);
return (CMD_ERROR);
}
if ((buffer = malloc(bufsz)) == NULL) {
sprintf(command_errbuf, "out of memory");
return (CMD_ERROR);
}
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (EFI_ERROR(status)) {
free(buffer);
snprintf(command_errbuf, sizeof (command_errbuf),
"LocateHandle() error: %lld", (long long)status);
return (CMD_ERROR);
}
pager_open();
for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
UINTN nproto = 0;
EFI_GUID **protocols = NULL;
handle = buffer[i];
printf("Handle %p", handle);
if (pager_output("\n"))
break;
/* device path */
status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
if (EFI_ERROR(status)) {
snprintf(command_errbuf, sizeof (command_errbuf),
"ProtocolsPerHandle() error: %lld",
(long long)status);
continue;
}
for (j = 0; j < nproto; j++) {
for (k = 0; proto_names[k].name != NULL; k++)
if (memcmp(protocols[j], &proto_names[k].guid,
sizeof (proto_names[k].guid)) == 0)
break;
if (proto_names[k].name != NULL)
printf(" %s", proto_names[k].name);
else
printf(" %s", guid_to_string(protocols[j]));
ret = pager_output("\n");
if (ret)
break;
}
BS->FreePool(protocols);
if (ret)
break;
}
pager_close();
free(buffer);
return (CMD_OK);
}
#ifdef EFI_ZFS_BOOT
COMMAND_SET(lszfs, "lszfs", "list child datasets of a zfs dataset",
command_lszfs);
static int
command_lszfs(int argc, char *argv[])
{
int err;
if (argc != 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
err = zfs_list(argv[1]);
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
#ifdef __FreeBSD__
COMMAND_SET(reloadbe, "reloadbe", "refresh the list of ZFS Boot Environments",
command_reloadbe);
static int
command_reloadbe(int argc, char *argv[])
{
int err;
char *root;
if (argc > 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
if (argc == 2) {
err = zfs_bootenv(argv[1]);
} else {
root = getenv("zfs_be_root");
if (root == NULL) {
return (CMD_OK);
}
err = zfs_bootenv(root);
}
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
#endif /* __FreeBSD__ */
#endif
void
efi_serial_init(void)
{
EFI_HANDLE *buffer = NULL;
UINTN bufsz = 0, i;
EFI_STATUS status;
int serial = 0;
/*
* get buffer size
*/
status = BS->LocateHandle(ByProtocol, &serial_io, NULL, &bufsz, buffer);
if (status != EFI_BUFFER_TOO_SMALL) {
snprintf(command_errbuf, sizeof (command_errbuf),
"unexpected error: %lld", (long long)status);
return;
}
if ((buffer = malloc(bufsz)) == NULL) {
sprintf(command_errbuf, "out of memory");
return;
}
/*
* get handle array
*/
status = BS->LocateHandle(ByProtocol, &serial_io, NULL, &bufsz, buffer);
if (EFI_ERROR(status)) {
free(buffer);
snprintf(command_errbuf, sizeof (command_errbuf),
"LocateHandle() error: %lld", (long long)status);
return;
}
for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
SERIAL_IO_INTERFACE *sio;
status = BS->OpenProtocol(buffer[i], &serial_io, (void**)&sio,
IH, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL);
if (EFI_ERROR(status)) {
snprintf(command_errbuf, sizeof (command_errbuf),
"OpenProtocol() error: %lld", (long long)status);
}
printf("serial# %d\n", serial++);
}
free(buffer);
}
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
#ifdef EFI_ZFS_BOOT
static void
efi_zfs_probe(void)
{
EFI_HANDLE h;
u_int unit;
int i;
char dname[SPECNAMELEN + 1];
uint64_t guid;
unit = 0;
h = efi_find_handle(&efipart_dev, 0);
for (i = 0; h != NULL; h = efi_find_handle(&efipart_dev, ++i)) {
snprintf(dname, sizeof(dname), "%s%d:", efipart_dev.dv_name, i);
if (zfs_probe_dev(dname, &guid) == 0)
(void)efi_handle_update_dev(h, &zfs_dev, unit++, guid);
}
}
#endif