{- |
Module : ./Temporal/ModalCaslToCtl.hs
Copyright : (c) Klaus Hartke, Uni Bremen 2008
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
-}
module ModalCaslToCtl where
import Control.Monad as Monad
import Data.Maybe as Maybe
import ModalCasl as Casl
import Ctl
{- ----------------------------------------------------------------------------
Convert Modal CASL formulas to CTL formulas
---------------------------------------------------------------------------- -}
convert :: Casl.StateFormula a -> Maybe (Ctl.Formula a)
convert (Casl.Var x) = Just (Ctl.Atom x)
convert (Casl.Snot phi) = liftM Ctl.Not (convert phi)
convert (Casl.Sand phi psi) = liftM2 Ctl.And (convert phi) (convert psi)
convert (Casl.Sor phi psi) = liftM2 Ctl.Or (convert phi) (convert psi)
convert (Casl.A (Casl.X phi)) = liftM Ctl.AX (convert' phi)
convert (Casl.E (Casl.X phi)) = liftM Ctl.EX (convert' phi)
convert (Casl.A (Casl.G phi)) = liftM Ctl.AG (convert' phi)
convert (Casl.E (Casl.G phi)) = liftM Ctl.EG (convert' phi)
convert (Casl.A (Casl.F phi)) = liftM Ctl.AF (convert' phi)
convert (Casl.E (Casl.F phi)) = liftM Ctl.EF (convert' phi)
convert (Casl.A (Casl.W phi psi)) = convert (Casl.A ((phi `Casl.Pand` psi)
`Casl.B` (Casl.Pnot phi `Casl.Pand` psi)))
convert (Casl.E (Casl.W phi psi)) = convert (Casl.E ((phi `Casl.Pand` psi)
`Casl.B` (Casl.Pnot phi `Casl.Pand` psi)))
convert (Casl.A (Casl.U phi psi)) = convert (Casl.A (psi `Casl.Pand`
(Casl.Pnot phi `Casl.Pand` Casl.Pnot psi)))
convert (Casl.E (Casl.U phi psi)) = convert (Casl.E (psi `Casl.Pand`
(Casl.Pnot phi `Casl.Pand` Casl.Pnot psi)))
convert (Casl.A (Casl.B phi psi)) = convert (Casl.A (Casl.Pnot
(Casl.Pnot phi `Casl.U'` psi)))
convert (Casl.E (Casl.B phi psi)) = convert (Casl.E (Casl.Pnot
(Casl.Pnot phi `Casl.U'` psi)))
convert (Casl.A (Casl.W' phi psi)) = convert (Casl.A (Casl.Pnot phi `Casl.U'`
Casl.Pand phi psi))
convert (Casl.E (Casl.W' phi psi)) = convert (Casl.E (Casl.Pnot phi `Casl.U'`
Casl.Pand phi psi))
convert (Casl.A (Casl.U' phi psi)) = liftM2 Ctl.AU (convert' phi) (convert' psi)
convert (Casl.E (Casl.U' phi psi)) = liftM2 Ctl.EU (convert' phi) (convert' psi)
convert (Casl.A (Casl.B' phi psi)) = convert (Casl.A (Casl.Pnot phi `Casl.U'`
Casl.Pand phi (Casl.Pnot psi)))
convert (Casl.E (Casl.B' phi psi)) = convert (Casl.E (Casl.Pnot phi `Casl.U'`
Casl.Pand phi (Casl.Pnot psi)))
convert _ = Nothing
convert' :: Casl.PathFormula a -> Maybe (Ctl.Formula a)
convert' (State phi) = convert phi
convert' (Casl.Pnot phi) = liftM Ctl.Not (convert' phi)
convert' (Casl.Pand phi psi) = liftM2 Ctl.And (convert' phi) (convert' psi)
convert' (Casl.Por phi psi) = liftM2 Ctl.Or (convert' phi) (convert' psi)
convert' _ = Nothing
-- ----------------------------------------------------------------------------