%------------------------------------------------------------------------------
% File : CSR134^1 : TPTP v5.4.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : In 2009, what are different feelings of people to Anna?
% Version : Especial.
% English : In the context of year 2009: Does there exists a relation ?R and
% persons ?X and ?Y so that ?R holds between ?X and Anna but not
% between ?Y and Anna.
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : ef_rv_6.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.40 v5.4.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.50 v4.1.0
% Syntax : Number of formulae : 23 ( 8 unit; 12 type; 0 defn)
% Number of atoms : 92 ( 0 equality; 4 variable)
% Maximal formula depth : 9 ( 4 average)
% Number of connectives : 62 ( 0 ~; 0 |; 1 &; 61 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&; 0 !!; 0 ??)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 16 ( 12 :)
% Number of variables : 3 ( 0 sgn; 0 !; 3 ?; 0 ^)
% ( 3 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : THF_THM_NEQ
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2THF translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,(
num: $tType )).
thf(holdsDuring_THFTYPE_IiooI,type,(
holdsDuring_THFTYPE_IiooI: $i > $o > $o )).
thf(lAnna_THFTYPE_i,type,(
lAnna_THFTYPE_i: $i )).
thf(lBen_THFTYPE_i,type,(
lBen_THFTYPE_i: $i )).
thf(lBill_THFTYPE_i,type,(
lBill_THFTYPE_i: $i )).
thf(lBob_THFTYPE_i,type,(
lBob_THFTYPE_i: $i )).
thf(lMary_THFTYPE_i,type,(
lMary_THFTYPE_i: $i )).
thf(lSue_THFTYPE_i,type,(
lSue_THFTYPE_i: $i )).
thf(lYearFn_THFTYPE_IiiI,type,(
lYearFn_THFTYPE_IiiI: $i > $i )).
thf(likes_THFTYPE_IiioI,type,(
likes_THFTYPE_IiioI: $i > $i > $o )).
thf(n2009_THFTYPE_i,type,(
n2009_THFTYPE_i: $i )).
thf(parent_THFTYPE_IiioI,type,(
parent_THFTYPE_IiioI: $i > $i > $o )).
%----The translated axioms
thf(ax,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lAnna_THFTYPE_i ) )).
thf(ax_001,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ) )).
thf(ax_002,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( ~ @ ( parent_THFTYPE_IiioI @ lBob_THFTYPE_i @ lAnna_THFTYPE_i ) ) )).
thf(ax_003,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ) )).
thf(ax_004,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ) )).
thf(ax_005,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( ~ @ ( parent_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBen_THFTYPE_i ) ) )).
thf(ax_006,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ) )).
thf(ax_007,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lAnna_THFTYPE_i ) )).
thf(ax_008,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBen_THFTYPE_i ) )).
thf(ax_009,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( ~ @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lMary_THFTYPE_i ) ) )).
%----The translated conjecture
thf(con,conjecture,(
? [R: $i > $i > $o,X: $i,Y: $i] :
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i )
@ ( ( R @ X @ lAnna_THFTYPE_i )
& ( ~ @ ( R @ Y @ lAnna_THFTYPE_i ) ) ) ) )).
%------------------------------------------------------------------------------