{- |
Module : ./Propositional/Analysis.hs
Description : Basic analysis for propositional logic
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : portable
Basic and static analysis for propositional logic
Ref.
<http://en.wikipedia.org/wiki/Propositional_logic>
-}
module Propositional.Analysis
( basicPropositionalAnalysis
, mkStatSymbItems
, mkStatSymbMapItem
, inducedFromMorphism
, inducedFromToMorphism
, signatureColimit
, pROPsen_analysis
)
where
import Common.ExtSign
import Common.Lib.Graph
import Common.SetColimit
import Data.Graph.Inductive.Graph
import Propositional.Sign as Sign
import qualified Common.AS_Annotation as AS_Anno
import qualified Common.GlobalAnnotations as GlobalAnnos
import qualified Common.Id as Id
import qualified Common.Result as Result
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Propositional.AS_BASIC_Propositional as AS_BASIC
import qualified Propositional.Morphism as Morphism
import qualified Propositional.Symbol as Symbol
-- | Datatype for formulas with diagnosis data
data DIAG_FORM = DiagForm
{
formula :: AS_Anno.Named AS_BASIC.FORMULA,
diagnosis :: Result.Diagnosis
}
-- | Formula annotated with a number
data NUM_FORM = NumForm
{
nfformula :: AS_Anno.Annoted AS_BASIC.FORMULA
, nfnum :: Integer
}
data TEST_SIG = TestSig
{
msign :: Sign.Sign
, occurence :: Int
, tdiagnosis :: [Result.Diagnosis]
}
-- | Retrieves the signature out of a basic spec
makeSig ::
AS_BASIC.BASIC_SPEC -- Input SPEC
-> Sign.Sign -- Input Signature
-> TEST_SIG -- Output Signature
makeSig (AS_BASIC.Basic_spec spec) sig = List.foldl retrieveBasicItem
TestSig { msign = sig
, occurence = 0
, tdiagnosis = []
}
spec
-- Helper for makeSig
retrieveBasicItem ::
TEST_SIG -- Input Signature
-> AS_Anno.Annoted AS_BASIC.BASIC_ITEMS -- Input Item
-> TEST_SIG -- Output Signature
retrieveBasicItem tsig x =
let
occ = occurence tsig
nocc = occ == 0
in
case AS_Anno.item x of
AS_BASIC.Pred_decl apred -> List.foldl (\ asig ax -> TestSig
{ msign = Sign.addToSig (msign asig) $ Id.simpleIdToId ax
, occurence = occ
, tdiagnosis = tdiagnosis tsig ++
[ Result.Diag
{ Result.diagKind = if nocc then Result.Hint else Result.Error
, Result.diagString = if nocc then "All fine" else
"Definition of proposition " ++ show (pretty ax)
++ " after first axiom"
, Result.diagPos = AS_Anno.opt_pos x }]
}) tsig $ (\ (AS_BASIC.Pred_item xs _) -> xs) apred
AS_BASIC.Axiom_items _ -> TestSig
{ msign = msign tsig
, occurence = occ + 1
, tdiagnosis = tdiagnosis tsig ++
[ Result.Diag
{ Result.diagKind = Result.Hint
, Result.diagString = "First axiom"
, Result.diagPos = AS_Anno.opt_pos x }]
}
-- | Retrieve the formulas out of a basic spec
makeFormulas ::
AS_BASIC.BASIC_SPEC
-> Sign.Sign
-> [DIAG_FORM]
makeFormulas (AS_BASIC.Basic_spec bspec) sig =
List.foldl (\ xs bs -> retrieveFormulaItem xs bs sig) [] bspec
-- Helper for makeFormulas
retrieveFormulaItem ::
[DIAG_FORM]
-> AS_Anno.Annoted AS_BASIC.BASIC_ITEMS
-> Sign.Sign
-> [DIAG_FORM]
retrieveFormulaItem axs x sig =
case AS_Anno.item x of
AS_BASIC.Pred_decl _ -> axs
AS_BASIC.Axiom_items ax ->
List.foldl (\ xs bs -> addFormula xs bs sig) axs $ numberFormulae ax 0
-- Number formulae
numberFormulae :: [AS_Anno.Annoted AS_BASIC.FORMULA] -> Integer -> [NUM_FORM]
numberFormulae [] _ = []
numberFormulae (x : xs) i
| label == "" = NumForm {nfformula = x, nfnum = i}
: numberFormulae xs (i + 1)
| otherwise = NumForm {nfformula = x, nfnum = 0} : numberFormulae xs i
where
label = AS_Anno.getRLabel x
-- Add a formula to a named list of formulas
addFormula :: [DIAG_FORM]
-> NUM_FORM
-> Sign.Sign
-> [DIAG_FORM]
addFormula formulae nf sign
| isLegal = formulae ++
[DiagForm
{
formula = makeNamed f i
, diagnosis = Result.Diag
{
Result.diagKind = Result.Hint
, Result.diagString = "All fine"
, Result.diagPos = lnum
}
}]
| otherwise = formulae ++
[DiagForm
{
formula = makeNamed f i
, diagnosis = Result.Diag
{ Result.diagKind = Result.Error
, Result.diagString = "Unknown propositions "
++ show (pretty difference)
++ " in formula "
++ show (pretty nakedFormula)
, Result.diagPos = lnum
}
}]
where
f = nfformula nf
i = nfnum nf
nakedFormula = AS_Anno.item f
varsOfFormula = propsOfFormula nakedFormula
isLegal = Sign.isSubSigOf varsOfFormula sign
difference = Sign.sigDiff varsOfFormula sign
lnum = AS_Anno.opt_pos f
-- generates a named formula
makeNamed :: AS_Anno.Annoted AS_BASIC.FORMULA -> Integer
-> AS_Anno.Named AS_BASIC.FORMULA
makeNamed f i = (AS_Anno.makeNamed (if label == "" then "Ax_" ++ show i
else label) $ AS_Anno.item f)
{ AS_Anno.isAxiom = not isTheorem }
where
label = AS_Anno.getRLabel f
annos = AS_Anno.r_annos f
isImplies = foldl (\ y x -> AS_Anno.isImplies x || y) False annos
isImplied = foldl (\ y x -> AS_Anno.isImplied x || y) False annos
isTheorem = isImplies || isImplied
-- Retrives the signature of a formula
propsOfFormula :: AS_BASIC.FORMULA -> Sign.Sign
propsOfFormula (AS_BASIC.Negation form _) = propsOfFormula form
propsOfFormula (AS_BASIC.Implication form1 form2 _) =
Sign.unite (propsOfFormula form1) (propsOfFormula form2)
propsOfFormula (AS_BASIC.Equivalence form1 form2 _) =
Sign.unite (propsOfFormula form1) (propsOfFormula form2)
propsOfFormula (AS_BASIC.True_atom _) = Sign.emptySig
propsOfFormula (AS_BASIC.False_atom _) = Sign.emptySig
propsOfFormula (AS_BASIC.Predication x) = Sign.Sign
{ Sign.items = Set.singleton $ Id.simpleIdToId x }
propsOfFormula (AS_BASIC.Conjunction xs _) = List.foldl
(\ sig frm -> Sign.unite sig $ propsOfFormula frm) Sign.emptySig xs
propsOfFormula (AS_BASIC.Disjunction xs _) = List.foldl
(\ sig frm -> Sign.unite sig $ propsOfFormula frm) Sign.emptySig xs
-- Basic analysis for propositional logic
basicPropositionalAnalysis
:: (AS_BASIC.BASIC_SPEC, Sign.Sign, GlobalAnnos.GlobalAnnos)
-> Result.Result (AS_BASIC.BASIC_SPEC,
ExtSign Sign.Sign Symbol.Symbol,
[AS_Anno.Named AS_BASIC.FORMULA])
basicPropositionalAnalysis (bs, sig, _) =
Result.Result diags $ if exErrs then Nothing else
Just (bs, ExtSign sigItems declaredSyms, formulae)
where
bsSig = makeSig bs sig
sigItems = msign bsSig
declaredSyms = Set.map Symbol.Symbol
$ Set.difference (items sigItems) $ items sig
bsForm = makeFormulas bs sigItems
formulae = map formula bsForm
diags = map diagnosis bsForm ++ tdiagnosis bsSig
exErrs = Result.hasErrors diags
-- | Static analysis for symbol maps
mkStatSymbMapItem :: [AS_BASIC.SYMB_MAP_ITEMS]
-> Result.Result (Map.Map Symbol.Symbol Symbol.Symbol)
mkStatSymbMapItem xs =
Result.Result
{
Result.diags = []
, Result.maybeResult = Just $
foldl
(
\ smap x ->
case x of
AS_BASIC.Symb_map_items sitem _ ->
Map.union smap $ statSymbMapItem sitem
)
Map.empty
xs
}
statSymbMapItem :: [AS_BASIC.SYMB_OR_MAP]
-> Map.Map Symbol.Symbol Symbol.Symbol
statSymbMapItem =
foldl
(
\ mmap x ->
case x of
AS_BASIC.Symb sym ->
Map.insert (symbToSymbol sym) (symbToSymbol sym) mmap
AS_BASIC.Symb_map s1 s2 _ ->
Map.insert (symbToSymbol s1) (symbToSymbol s2) mmap
)
Map.empty
-- | Retrieve raw symbols
mkStatSymbItems :: [AS_BASIC.SYMB_ITEMS] -> Result.Result [Symbol.Symbol]
mkStatSymbItems a = Result.Result
{
Result.diags = []
, Result.maybeResult = Just $ statSymbItems a
}
statSymbItems :: [AS_BASIC.SYMB_ITEMS] -> [Symbol.Symbol]
statSymbItems = concatMap symbItemsToSymbol
symbItemsToSymbol :: AS_BASIC.SYMB_ITEMS -> [Symbol.Symbol]
symbItemsToSymbol (AS_BASIC.Symb_items syms _) = map symbToSymbol syms
symbToSymbol :: AS_BASIC.SYMB -> Symbol.Symbol
symbToSymbol (AS_BASIC.Symb_id tok) =
Symbol.Symbol {Symbol.symName = Id.simpleIdToId tok}
makePMap :: Map.Map Symbol.Symbol Symbol.Symbol -> Sign.Sign
-> Map.Map Id.Id Id.Id
makePMap imap sig = Set.fold ( \ x ->
let symOf = Symbol.Symbol { Symbol.symName = x }
y = Symbol.symName $ Symbol.applySymMap imap symOf
in Map.insert x y ) Map.empty $ Sign.items sig
-- | Induce a signature morphism from a source signature and a raw symbol map
inducedFromMorphism :: Map.Map Symbol.Symbol Symbol.Symbol
-> Sign.Sign
-> Result.Result Morphism.Morphism
inducedFromMorphism imap sig = let pMap = makePMap imap sig in
return
Morphism.Morphism
{ Morphism.source = sig
, Morphism.propMap = pMap
, Morphism.target = Sign.Sign
{ Sign.items = Set.map (Morphism.applyMap pMap)
$ Sign.items sig }
}
-- | Induce a signature morphism from a source signature and a raw symbol map
inducedFromToMorphism :: Map.Map Symbol.Symbol Symbol.Symbol
-> ExtSign Sign.Sign Symbol.Symbol
-> ExtSign Sign.Sign Symbol.Symbol
-> Result.Result Morphism.Morphism
inducedFromToMorphism imap (ExtSign sig _) (ExtSign tSig _) =
let
sigItems = Sign.items sig
pMap :: Map.Map Id.Id Id.Id
pMap = Set.fold ( \ x ->
let symOf = Symbol.Symbol { Symbol.symName = x }
y = Symbol.symName $ Symbol.applySymMap imap symOf
in Map.insert x y ) Map.empty sigItems
targetSig = Sign.Sign
{ Sign.items = Set.map (Morphism.applyMap pMap)
$ Sign.items sig }
isSub = Sign.items targetSig `Set.isSubsetOf` Sign.items tSig
in if isSub then return Morphism.Morphism
{ Morphism.source = sig
, Morphism.propMap = makePMap imap sig
, Morphism.target = tSig
}
else fail "Incompatible mapping"
signatureColimit :: Gr Sign.Sign (Int, Morphism.Morphism)
-> Result.Result (Sign.Sign, Map.Map Int Morphism.Morphism)
signatureColimit graph = do
let graph1 = nmap Sign.items $ emap (\ (x, y) -> (x, Morphism.propMap y)) graph
(set, maps) = addIntToSymbols $ computeColimitSet graph1
cSig = Sign.Sign {Sign.items = set}
return (cSig,
Map.fromList $ map (\ (i, n) ->
(i, Morphism.Morphism {
Morphism.source = n,
Morphism.target = cSig,
Morphism.propMap = maps Map.! i
})) $ labNodes graph)
pROPsen_analysis :: (AS_BASIC.BASIC_SPEC, Sign.Sign, AS_BASIC.FORMULA)
-> Result.Result AS_BASIC.FORMULA
pROPsen_analysis (_, s, f) =
let x = addFormula [] (NumForm annoF 0) s
h = return . diagnosis . head
g = Just . AS_Anno.sentence . formula . head
annoF = AS_Anno.Annoted f Id.nullRange [] []
in Result.Result (h x) (g x)