StaticAnalysis.hs revision f20c085644aa49702488405bc2d4245cf0e5a713
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
{- |
Module : $Header$
Copyright : Felix Gabriel Mance
License : GPLv2 or higher, see LICENSE.txt
Maintainer : f.mance@jacobs-university.de
Stability : provisional
Portability : portable
Contains : static analysis for OWL 2
-}
module OWL2.StaticAnalysis where
import OWL2.Sign
import OWL2.AS
import OWL2.MS
import OWL2.Theorem
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
import Data.Maybe
import Common.AS_Annotation
import Common.Result
import Common.GlobalAnnotations
import Common.ExtSign
import Common.Lib.State
import Control.Monad
-- | Error messages for static analysis
failMsg :: Maybe Entity -> String -> String
failMsg ent s = case ent of
Just (Entity ty e) -> "Static analysis cannot find " ++ showEntityType ty
++ " " ++ showQN e ++ s
Nothing -> s
getObjRoleFromExpression :: ObjectPropertyExpression -> IndividualRoleIRI
getObjRoleFromExpression opExp =
case opExp of
ObjectProp u -> u
ObjectInverseOf objProp -> getObjRoleFromExpression objProp
getObjRoleFromSubExpression :: SubObjectPropertyExpression
-> [IndividualRoleIRI]
getObjRoleFromSubExpression sopExp =
case sopExp of
OPExpression opExp -> [getObjRoleFromExpression opExp]
SubObjectPropertyChain expList ->
map getObjRoleFromExpression expList
sortObjData :: Sign -> ObjectPropertyExpression
-> Maybe ObjectPropertyExpression
sortObjData s op =
let p = getObjRoleFromExpression op in
if Set.member p (objectProperties s) then Just op
else Nothing
sortObjDataList :: Sign -> [ObjectPropertyExpression]
-> [ObjectPropertyExpression]
sortObjDataList s = mapMaybe $ sortObjData s
modEntity f (Entity ty u) = do
s <- get
let chg = f u
put $ case ty of
Datatype -> s { datatypes = chg $ datatypes s }
Class -> s { concepts = chg $ concepts s }
ObjectProperty -> s { objectProperties = chg $ objectProperties s }
DataProperty -> s { dataProperties = chg $ dataProperties s }
NamedIndividual -> s { individuals = chg $ individuals s }
AnnotationProperty -> s {annotationRoles = chg $ annotationRoles s}
-- | adding entities to the signature
addEntity :: Entity -> State Sign ()
addEntity = modEntity Set.insert
-- | adding annotations for theorems
anaAxiom :: Axiom -> Named Axiom
anaAxiom x = findImplied x $ makeNamed "" x
-- | checks if an entity is in the signature
checkEntity :: Sign -> a -> Entity -> Result a
checkEntity s a ent = let Entity ty e = ent in case ty of
Datatype -> if Set.member e (datatypes s) then return a
else fail $ failMsg (Just ent) ""
Class -> if Set.member e (concepts s) then return a
else fail $ failMsg (Just ent) ""
ObjectProperty -> if Set.member e (objectProperties s) then return a
else fail $ failMsg (Just ent) ""
DataProperty -> if Set.member e (dataProperties s) then return a
else fail $ failMsg (Just ent) ""
NamedIndividual -> if Set.member e (individuals s) then return a
else fail $ failMsg (Just ent) ""
AnnotationProperty -> if Set.member e (annotationRoles s) then return a
else fail $ failMsg (Just ent) ""
-- | checks if a DataRange is valid
checkDataRange :: Sign -> DataRange -> Result DataRange
checkDataRange s dr =
case dr of
DataType dt _ -> do
checkEntity s dr (Entity Datatype dt)
return dr
DataJunction _ drl -> do
mapM_ (checkDataRange s) drl
return dr
DataComplementOf r -> checkDataRange s r
_ -> return dr
{- | converts ClassExpression to DataRanges because some
DataProperties may be parsed as ObjectProperties -}
classExpressionToDataRange :: Sign -> ClassExpression -> Result DataRange
classExpressionToDataRange s ce = case ce of
Expression u -> do
checkEntity s ce (Entity Datatype u)
return $ DataType u []
ObjectJunction jt cel -> do
nrl <- mapM (classExpressionToDataRange s) cel
return $ DataJunction jt nrl
ObjectComplementOf c -> do
nr <- classExpressionToDataRange s c
return $ DataComplementOf nr
_ -> fail $ failMsg Nothing
"Static analysis cannot correct so parsed ClassExpression\n\n"
++ show ce ++ "\n\nto a DataRange"
{- | checks a ClassExpression and recursively converts the
(maybe inappropriately) parsed syntax to a one satisfying the signature -}
checkClassExpression :: Sign -> ClassExpression -> Result ClassExpression
checkClassExpression s desc = case desc of
Expression u -> case u of
QN _ "Thing" _ _ -> return $ Expression $ QN "owl" "Thing" False ""
QN _ "Nothing" _ _ -> return $ Expression $ QN "owl" "Nothing" False ""
_ -> checkEntity s desc (Entity Class u)
ObjectJunction a ds -> do
nl <- mapM (checkClassExpression s) ds
return $ ObjectJunction a nl
ObjectComplementOf d -> do
n <- checkClassExpression s d
return $ ObjectComplementOf n
ObjectOneOf is -> do
mapM_ (checkEntity s desc . Entity NamedIndividual) is
return desc
ObjectValuesFrom a opExpr d -> do
let iri = getObjRoleFromExpression opExpr
x = Set.member iri (objectProperties s)
z = Set.member iri (dataProperties s)
if x then do
n <- checkClassExpression s d
return $ ObjectValuesFrom a opExpr n
else if z then do
ndr <- classExpressionToDataRange s d
checkDataRange s ndr
return $ DataValuesFrom a iri [] ndr
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectHasSelf opExpr -> do
let iri = getObjRoleFromExpression opExpr
if Set.member iri (objectProperties s) then return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectHasValue opExpr i -> do
let iri = getObjRoleFromExpression opExpr
x = Set.member iri (objectProperties s)
if x then do
checkEntity s desc (Entity NamedIndividual i)
return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectCardinality (Cardinality a b opExpr md) -> do
let iri = getObjRoleFromExpression opExpr
let x = Set.member iri (objectProperties s)
let z = Set.member iri (dataProperties s)
case md of
Nothing ->
if x then return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
Just d ->
if x then do
n <- checkClassExpression s d
return $ ObjectCardinality (Cardinality a b opExpr (Just n))
else do
dr <- classExpressionToDataRange s d
checkDataRange s dr
if z then return $ DataCardinality (Cardinality a b iri (Just dr))
else fail $ failMsg (Just $ Entity DataProperty iri)
" in the following ClassExpression\n\n" ++ show desc
DataValuesFrom _ dExp ds r -> do
checkDataRange s r
let x = Set.isSubsetOf (Set.fromList (dExp : ds)) (dataProperties s)
if x then return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
DataHasValue dExp _ -> do
let x = Set.member dExp (dataProperties s)
if x then return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
DataCardinality (Cardinality _ _ dExp mr) -> do
let x = Set.member dExp (dataProperties s)
if x then
case mr of
Nothing -> return desc
Just d -> do
checkDataRange s d
return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
-- corrects the frame bits according to the signature
checkAnnBit :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkAnnBit s fb = case fb of
DatatypeBit dr -> do
checkDataRange s dr
return fb
ClassDisjointUnion cel -> do
n <- mapM (checkClassExpression s) cel
return $ ClassDisjointUnion n
ClassHasKey _ _ -> checkHasKey s fb
ObjectSubPropertyChain ol -> checkObjPropList s fb ol
_ -> return fb
checkListBit :: Sign -> (Maybe Relation) -> ListFrameBit -> Result ListFrameBit
checkListBit s r fb = case fb of
AnnotationBit anl -> case r of
Just (DRRelation _) -> return fb
_ -> do
let apl = map snd anl
mapM_ (checkEntity s fb . Entity AnnotationProperty) apl
return fb
ExpressionBit anl -> do
let ans = map fst anl
let ce = map snd anl
n <- mapM (checkClassExpression s) ce
return $ ExpressionBit $ zip ans n
ObjectBit anl -> do
let ans = map fst anl
let ol = map snd anl
--checkObjPropList s fb ol
let x = sortObjDataList s ol
if null x then do
let dpl = map getObjRoleFromExpression ol
let nb = DataBit $ zip ans dpl
checkDataPropList s nb dpl
else
if length x == length ol then return fb
else fail $ "Static analysis found that there are" ++
" multiple types of properties in\n\n" ++
show x ++ show
(map getObjRoleFromExpression (ol \\ x))
ObjectCharacteristics _ -> return fb
DataBit anl -> do
let dl = map snd anl
checkDataPropList s fb dl
DataPropRange anl -> do
let dr = map snd anl
mapM_ (checkDataRange s) dr
return fb
IndividualFacts anl -> do
let f = map snd anl
checkFactList s fb f
IndividualSameOrDifferent anl -> do
let i = map snd anl
mapM_ (checkEntity s fb . Entity NamedIndividual) i
return fb
checkBit :: Sign -> FrameBit -> Result FrameBit
checkBit s fb = case fb of
ListFrameBit mr lfb -> do
nf <- checkListBit s mr lfb
return $ ListFrameBit mr nf
AnnFrameBit ans afb -> do
nf <- checkAnnBit s afb
return $ AnnFrameBit ans nf
checkFactList :: Sign -> ListFrameBit -> [Fact] -> Result ListFrameBit
checkFactList s fb fl = do
mapM_ (checkFact s fb) fl
return fb
checkFact :: Sign -> ListFrameBit -> Fact -> Result ListFrameBit
checkFact s fb f =
case f of
ObjectPropertyFact _ op _ ->
if Set.member (getObjRoleFromExpression op) (objectProperties s) then
return fb
else fail "Static analysis. ObjectPropertyFact failed"
DataPropertyFact _ dp _ ->
if Set.member dp (dataProperties s) then return fb
else fail "Static analysis. DataProperty fact failed"
checkObjPropList :: Sign -> a -> [ObjectPropertyExpression] -> Result a
checkObjPropList s fb ol = do
let x = map (\ u -> Set.member (getObjRoleFromExpression u)
(objectProperties s) ) ol
if elem False x then
fail $ "Static analysis found that not all properties" ++
" in the following list are ObjectProperties\n\n"
++ show ol
else return fb
checkDataPropList :: Sign -> a -> [DataPropertyExpression] -> Result a
checkDataPropList s fb dl = do
let x = map (\ u -> Set.member u (dataProperties s) ) dl
if elem False x then
fail $ "Static analysis found that not all properties" ++
" in the following list are DataProperties\n\n"
++ show dl
else return fb
checkHasKeyAll :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkHasKeyAll s k = case k of
ClassHasKey ol dl -> do
let x = map (\ u -> Set.member (getObjRoleFromExpression u)
(objectProperties s) ) ol
y = map (\ u -> Set.member u (dataProperties s) ) dl
if elem False (x ++ y) then
fail "Static analysis. Keys failed, undeclared Data or Object Properties"
else return $ ClassHasKey ol dl
_ -> return k
checkHasKey :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkHasKey s k = case k of
ClassHasKey ol _ -> do
let x = sortObjDataList s ol
let k2 = ClassHasKey x (map getObjRoleFromExpression (ol \\ x))
checkHasKeyAll s k2
_ -> return k
-- | checks a frame and applies desired changes
checkFrame :: Sign -> Frame -> Result Frame
checkFrame s (Frame eith fbl) = do
nl <- mapM (checkBit s) fbl
return $ Frame eith nl
correctFrames :: Sign -> [Frame] -> Result [Frame]
correctFrames s = mapM (checkFrame s)
getEntityFromFrame :: Frame -> State Sign ()
getEntityFromFrame f = case f of
Frame (SimpleEntity e) _ -> addEntity e
_ -> return ()
createSign :: [Frame] -> State Sign ()
createSign = mapM_ getEntityFromFrame
createAxioms :: Sign -> [Frame] -> Result ([Named Axiom], [Frame])
createAxioms s fl = do
x <- correctFrames s fl
return (map anaAxiom $ concatMap getAxioms x, x)
modifyOntologyDocument :: OntologyDocument -> [Frame] -> OntologyDocument
modifyOntologyDocument
OntologyDocument {mOntology = mo, prefixDeclaration = pd} fl =
OntologyDocument { mOntology = mo {ontologyFrame = fl},
prefixDeclaration = pd}
-- | static analysis of ontology with incoming sign.
basicOWL2Analysis ::
(OntologyDocument, Sign, GlobalAnnos) ->
Result (OntologyDocument, ExtSign Sign Entity, [Named Axiom])
basicOWL2Analysis (odoc, inSign, _) = do
let ns = prefixDeclaration odoc
fs = ontologyFrame $ mOntology odoc
integNamespace <- integrateNamespaces (prefixMap inSign) ns
let syms = Set.difference (symOf accSign) $ symOf inSign
accSign = execState
(createSign fs)
inSign {prefixMap = integNamespace}
(axl, nfl) <- createAxioms accSign fs
let newdoc = modifyOntologyDocument odoc nfl
return (newdoc , ExtSign accSign syms, axl)
testAndInteg :: PrefixMap -> (String, String) -> Result PrefixMap
testAndInteg old (pre, ouri) =
case Map.lookup pre old of
Just iri -> if ouri == iri then return old else
fail $ "Static analysis found a prefix clash " ++ pre
Nothing -> return $ Map.insert pre ouri old
uniteSign :: Sign -> Sign -> Result Sign
uniteSign s1 s2 = do
pm <- integrateNamespaces (prefixMap s1) (prefixMap s2)
return $ (addSign s1 s2) {prefixMap = pm}
integrateNamespaces :: PrefixMap -> PrefixMap
-> Result PrefixMap
integrateNamespaces oldNsMap testNsMap =
foldM testAndInteg oldNsMap (Map.toList testNsMap)
findImplied :: Axiom -> Named Axiom -> Named Axiom
findImplied ax sent =
if isToProve ax then sent
{ isAxiom = False
, isDef = False
, wasTheorem = False }
else sent { isAxiom = True }