StaticAnalysis.hs revision 22a0bc45b22397199459c4b56e0e770f44a0f34a
{- |
Module : $Header$
Copyright : Felix Gabriel Mance
License : GPLv2 or higher, see LICENSE.txt
Maintainer : f.mance@jacobs-university.de
Stability : provisional
Portability : portable
Contains : static analysis for OWL 2
-}
module OWL2.StaticAnalysis where
import OWL2.Sign
import OWL2.AS
import OWL2.MS
import OWL2.Theorem
import OWL2.XML (simpleSplit)
import OWL2.Expand
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
import Data.Maybe
import Common.AS_Annotation
import Common.Result
import Common.GlobalAnnotations
import Common.ExtSign
import Common.Lib.State
import Control.Monad
-- | Error messages for static analysis
failMsg :: Maybe Entity -> String -> String
failMsg ent s = case ent of
Just (Entity ty e) -> "Static analysis cannot find " ++ showEntityType ty
++ " " ++ showQN e ++ s
Nothing -> s
getObjRoleFromExpression :: ObjectPropertyExpression -> IndividualRoleIRI
getObjRoleFromExpression opExp =
case opExp of
ObjectProp u -> u
ObjectInverseOf objProp -> getObjRoleFromExpression objProp
sortObjData :: Sign -> ObjectPropertyExpression
-> Maybe ObjectPropertyExpression
sortObjData s op =
let p = getObjRoleFromExpression op in
if Set.member p (objectProperties s) then Just op
else Nothing
sortObjDataList :: Sign -> [ObjectPropertyExpression]
-> [ObjectPropertyExpression]
sortObjDataList s = mapMaybe $ sortObjData s
modEntity :: (IRI -> Set.Set IRI -> Set.Set IRI) -> Entity -> State Sign ()
modEntity f (Entity ty u) = do
s <- get
let chg = f u
if elem u $ map (simpleSplit . mkQName) datatypeKeys then put s
else put $ case ty of
Datatype -> s { datatypes = chg $ datatypes s }
Class -> s { concepts = chg $ concepts s }
ObjectProperty -> s { objectProperties = chg $ objectProperties s }
DataProperty -> s { dataProperties = chg $ dataProperties s }
NamedIndividual -> s { individuals = chg $ individuals s }
AnnotationProperty -> s {annotationRoles = chg $ annotationRoles s}
-- | adding entities to the signature
addEntity :: Entity -> State Sign ()
addEntity = modEntity Set.insert
-- | adding annotations for theorems
anaAxiom :: Axiom -> Named Axiom
anaAxiom x = findImplied x $ makeNamed "" x
-- | checks if an entity is in the signature
checkEntity :: Sign -> a -> Entity -> Result a
checkEntity s a ent =
let Entity ty e = ent
in case ty of
Datatype -> if Set.member e (datatypes s) ||
elem (localPart e) datatypeKeys
then return a
else fail $ failMsg (Just ent) ""
Class -> if Set.member e (concepts s) then return a
else fail $ failMsg (Just ent) ""
ObjectProperty -> if Set.member e (objectProperties s) then return a
else fail $ failMsg (Just ent) ""
DataProperty -> if Set.member e (dataProperties s) then return a
else fail $ failMsg (Just ent) ""
NamedIndividual -> if Set.member e (individuals s) then return a
else fail $ failMsg (Just ent) ""
AnnotationProperty -> if Set.member e (annotationRoles s) then return a
else fail $ failMsg (Just ent) ""
-- | checks if a DataRange is valid
checkDataRange :: Sign -> DataRange -> Result DataRange
checkDataRange s dr =
case dr of
DataType dt _ -> do
checkEntity s dr (Entity Datatype dt)
return dr
DataJunction _ drl -> do
mapM_ (checkDataRange s) drl
return dr
DataComplementOf r -> checkDataRange s r
_ -> return dr
{- | converts ClassExpression to DataRanges because some
DataProperties may be parsed as ObjectProperties -}
classExpressionToDataRange :: Sign -> ClassExpression -> Result DataRange
classExpressionToDataRange s ce = case ce of
Expression u -> do
checkEntity s ce (Entity Datatype u)
return $ DataType u []
ObjectJunction jt cel -> do
nrl <- mapM (classExpressionToDataRange s) cel
return $ DataJunction jt nrl
ObjectComplementOf c -> do
nr <- classExpressionToDataRange s c
return $ DataComplementOf nr
_ -> fail $ failMsg Nothing
"Static analysis cannot correct so parsed ClassExpression\n\n"
++ show ce ++ "\n\nto a DataRange"
{- | checks a ClassExpression and recursively converts the
(maybe inappropriately) parsed syntax to a one satisfying the signature -}
checkClassExpression :: Sign -> ClassExpression -> Result ClassExpression
checkClassExpression s desc = case desc of
Expression u -> case u of
QN _ "Thing" _ _ -> return $ Expression $ QN "owl" "Thing" False ""
QN _ "Nothing" _ _ -> return $ Expression $ QN "owl" "Nothing" False ""
_ -> checkEntity s desc (Entity Class u)
ObjectJunction a ds -> do
nl <- mapM (checkClassExpression s) ds
return $ ObjectJunction a nl
ObjectComplementOf d -> do
n <- checkClassExpression s d
return $ ObjectComplementOf n
ObjectOneOf is -> do
mapM_ (checkEntity s desc . Entity NamedIndividual) is
return desc
ObjectValuesFrom a opExpr d -> do
let iri = getObjRoleFromExpression opExpr
x = Set.member iri (objectProperties s)
z = Set.member iri (dataProperties s)
if x then do
n <- checkClassExpression s d
return $ ObjectValuesFrom a opExpr n
else if z then do
ndr <- classExpressionToDataRange s d
checkDataRange s ndr
return $ DataValuesFrom a iri [] ndr
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectHasSelf opExpr -> do
let iri = getObjRoleFromExpression opExpr
if Set.member iri (objectProperties s) then return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectHasValue opExpr i -> do
let iri = getObjRoleFromExpression opExpr
x = Set.member iri (objectProperties s)
if x then do
checkEntity s desc (Entity NamedIndividual i)
return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
ObjectCardinality (Cardinality a b opExpr md) -> do
let iri = getObjRoleFromExpression opExpr
let x = Set.member iri (objectProperties s)
let z = Set.member iri (dataProperties s)
case md of
Nothing ->
if x then return desc
else fail $ failMsg (Just $ Entity ObjectProperty iri)
" in the following ClassExpression\n\n" ++ show desc
Just d ->
if x then do
n <- checkClassExpression s d
return $ ObjectCardinality (Cardinality a b opExpr (Just n))
else do
dr <- classExpressionToDataRange s d
checkDataRange s dr
if z then return $ DataCardinality (Cardinality a b iri (Just dr))
else fail $ failMsg (Just $ Entity DataProperty iri)
" in the following ClassExpression\n\n" ++ show desc
DataValuesFrom _ dExp ds r -> do
checkDataRange s r
let x = Set.isSubsetOf (Set.fromList (dExp : ds)) (dataProperties s)
if x then return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
DataHasValue dExp _ -> do
let x = Set.member dExp (dataProperties s)
if x then return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
DataCardinality (Cardinality _ _ dExp mr) -> do
let x = Set.member dExp (dataProperties s)
if x then
case mr of
Nothing -> return desc
Just d -> do
checkDataRange s d
return desc
else fail $ failMsg (Just $ Entity DataProperty dExp)
" in the following ClassExpression\n\n" ++ show desc
-- corrects the frame bits according to the signature
checkAnnBit :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkAnnBit s fb = case fb of
DatatypeBit dr -> do
checkDataRange s dr
return fb
ClassDisjointUnion cel -> do
n <- mapM (checkClassExpression s) cel
return $ ClassDisjointUnion n
ClassHasKey _ _ -> checkHasKey s fb
ObjectSubPropertyChain ol -> checkObjPropList s fb ol
_ -> return fb
checkListBit :: Sign -> Maybe Relation -> ListFrameBit -> Result ListFrameBit
checkListBit s r fb = case fb of
AnnotationBit anl -> case r of
Just (DRRelation _) -> return fb
_ -> do
let apl = map snd anl
mapM_ (checkEntity s fb . Entity AnnotationProperty) apl
return fb
ExpressionBit anl -> do
let ans = map fst anl
let ce = map snd anl
n <- mapM (checkClassExpression s) ce
return $ ExpressionBit $ zip ans n
ObjectBit anl -> do
let ans = map fst anl
let ol = map snd anl
let x = sortObjDataList s ol
if null x then do
let dpl = map getObjRoleFromExpression ol
let nb = DataBit $ zip ans dpl
checkDataPropList s nb dpl
else
if length x == length ol then return fb
else fail $ "Static analysis found that there are" ++
" multiple types of properties in\n\n" ++
show x ++ show
(map getObjRoleFromExpression (ol \\ x))
ObjectCharacteristics _ -> return fb
DataBit anl -> do
let dl = map snd anl
checkDataPropList s fb dl
DataPropRange anl -> do
let dr = map snd anl
mapM_ (checkDataRange s) dr
return fb
IndividualFacts anl -> do
let f = map snd anl
checkFactList s fb f
IndividualSameOrDifferent anl -> do
let i = map snd anl
mapM_ (checkEntity s fb . Entity NamedIndividual) i
return fb
checkBit :: Sign -> FrameBit -> Result FrameBit
checkBit s fb = case fb of
ListFrameBit mr lfb -> do
nf <- checkListBit s mr lfb
return $ ListFrameBit mr nf
AnnFrameBit ans afb -> do
nf <- checkAnnBit s afb
return $ AnnFrameBit ans nf
checkFactList :: Sign -> ListFrameBit -> [Fact] -> Result ListFrameBit
checkFactList s fb fl = do
mapM_ (checkFact s fb) fl
return fb
checkFact :: Sign -> ListFrameBit -> Fact -> Result ListFrameBit
checkFact s fb f =
case f of
ObjectPropertyFact _ op _ ->
if Set.member (getObjRoleFromExpression op) (objectProperties s) then
return fb
else fail "Static analysis. ObjectPropertyFact failed"
DataPropertyFact _ dp _ ->
if Set.member dp (dataProperties s) then return fb
else fail "Static analysis. DataProperty fact failed"
checkObjPropList :: Sign -> a -> [ObjectPropertyExpression] -> Result a
checkObjPropList s fb ol = do
let x = map (\ u -> Set.member (getObjRoleFromExpression u)
(objectProperties s) ) ol
if elem False x then
fail $ "Static analysis found that not all properties" ++
" in the following list are ObjectProperties\n\n"
++ show ol
else return fb
checkDataPropList :: Sign -> a -> [DataPropertyExpression] -> Result a
checkDataPropList s fb dl = do
let x = map (\ u -> Set.member u (dataProperties s) ) dl
if elem False x then
fail $ "Static analysis found that not all properties" ++
" in the following list are DataProperties\n\n"
++ show dl
else return fb
checkHasKeyAll :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkHasKeyAll s k = case k of
ClassHasKey ol dl -> do
let x = map (\ u -> Set.member (getObjRoleFromExpression u)
(objectProperties s) ) ol
y = map (\ u -> Set.member u (dataProperties s) ) dl
if elem False (x ++ y) then
fail "Static analysis. Keys failed, undeclared Data or Object Properties"
else return k
_ -> return k
checkHasKey :: Sign -> AnnFrameBit -> Result AnnFrameBit
checkHasKey s k = case k of
ClassHasKey ol dl -> do
let x = sortObjDataList s ol
let k2 = ClassHasKey x (map getObjRoleFromExpression (ol \\ x) ++ dl)
checkHasKeyAll s k2
_ -> return k
checkExtended :: Sign -> Extended -> Result Extended
checkExtended s e = case e of
ClassEntity ce -> do
ne <- checkClassExpression s ce
return $ ClassEntity ne
_ -> return e
-- | checks a frame and applies desired changes
checkFrame :: Sign -> Frame -> Result Frame
checkFrame s (Frame eith fbl) = do
ne <- checkExtended s eith
nl <- mapM (checkBit s) fbl
return $ Frame ne nl
correctFrames :: Sign -> [Frame] -> Result [Frame]
correctFrames s = mapM (checkFrame s)
getEntityFromFrame :: Frame -> State Sign ()
getEntityFromFrame f = case f of
Frame (SimpleEntity e) _ -> addEntity e
Frame (ClassEntity (Expression e)) _ ->
addEntity $ Entity Class e
Frame (ObjectEntity (ObjectProp e)) _ ->
addEntity $ Entity ObjectProperty e
_ -> return ()
createSign :: [Frame] -> State Sign ()
createSign f = do
s <- get
mapM_ (getEntityFromFrame . expF s) f
createAxioms :: Sign -> [Frame] -> Result ([Named Axiom], [Frame])
createAxioms s fl = do
x <- correctFrames s $ map (expF s) fl
return (map anaAxiom $ concatMap getAxioms x, x)
modifyOntologyDocument :: OntologyDocument -> [Frame] -> OntologyDocument
modifyOntologyDocument
OntologyDocument {mOntology = mo, prefixDeclaration = pd} fl =
OntologyDocument { mOntology = mo {ontologyFrame = fl},
prefixDeclaration = pd}
-- | static analysis of ontology with incoming sign.
basicOWL2Analysis ::
(OntologyDocument, Sign, GlobalAnnos) ->
Result (OntologyDocument, ExtSign Sign Entity, [Named Axiom])
basicOWL2Analysis (odoc, inSign, _) = do
let ns = prefixDeclaration odoc
fs = ontologyFrame $ mOntology odoc
integNamespace <- integrateNamespaces (prefixMap inSign) ns
let syms = Set.difference (symOf accSign) $ symOf inSign
accSign = execState
(createSign fs)
inSign {prefixMap = integNamespace}
(axl, nfl) <- createAxioms accSign fs
let newdoc = modifyOntologyDocument odoc nfl
return (newdoc , ExtSign accSign syms, axl)
testAndInteg :: PrefixMap -> (String, String) -> Result PrefixMap
testAndInteg old (pre, ouri) =
case Map.lookup pre old of
Just iri -> if ouri == iri then return old else
fail $ "Static analysis found a prefix clash " ++ pre
Nothing -> return $ Map.insert pre ouri old
uniteSign :: Sign -> Sign -> Result Sign
uniteSign s1 s2 = do
pm <- integrateNamespaces (prefixMap s1) (prefixMap s2)
return $ (addSign s1 s2) {prefixMap = pm}
integrateNamespaces :: PrefixMap -> PrefixMap
-> Result PrefixMap
integrateNamespaces oldNsMap testNsMap =
foldM testAndInteg oldNsMap (Map.toList testNsMap)
findImplied :: Axiom -> Named Axiom -> Named Axiom
findImplied ax sent =
if isToProve ax then sent
{ isAxiom = False
, isDef = False
, wasTheorem = False }
else sent { isAxiom = True }