{-# LANGUAGE CPP, MultiParamTypeClasses, TypeSynonymInstances #-}
{-# OPTIONS -w #-}
{- |
Module : ./OWL2/Logic_OWL2.hs
Description : instance of the class Logic for OWL2
Copyright : (c) Christian Maeder, DFKI GmbH 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable
Here is the place where the class Logic is instantiated for OWL2.
-}
module OWL2.Logic_OWL2 where
import ATC.ProofTree ()
import Common.AS_Annotation
import Common.Consistency
import Common.DefaultMorphism
import Common.Doc
import Common.DocUtils
import Common.ProofTree
import Common.ProverTools
import Common.IRI
import Common.ExtSign
import Common.Result
import Data.Char (isAlpha)
import Data.Monoid
import qualified Data.Map as Map
import qualified Data.Set as Set
import Logic.Logic
import OWL2.AS
import OWL2.ATC_OWL2 ()
import OWL2.ColimSign
import OWL2.Conservativity
import OWL2.MS
import OWL2.MS2Ship
import OWL2.ManchesterParser
import OWL2.ManchesterPrint
import OWL2.Morphism
import OWL2.Parse
import OWL2.Print ()
import OWL2.ProfilesAndSublogics
import OWL2.ProveFact
import OWL2.ProvePellet
import OWL2.Rename
import OWL2.Sign
import OWL2.StaticAnalysis
import OWL2.Symbols
import OWL2.Taxonomy
import OWL2.Theorem
import OWL2.ExtractModule
data OWL2 = OWL2
instance Show OWL2 where
show _ = "OWL"
instance Language OWL2 where
description _ =
"OWL -- Web Ontology Language http://www.w3.org/TR/owl2-overview/"
instance Category Sign OWLMorphism where
ide sig = inclOWLMorphism sig sig
dom = osource
cod = otarget
legal_mor = legalMor
isInclusion = isOWLInclusion
composeMorphisms = composeMor
instance Monoid Ontology where
mempty = emptyOntology []
mappend (Ontology n i1 a1 f1) (Ontology _ i2 a2 f2) =
Ontology n (i1 ++ i2) (a1 ++ a2) $ f1 ++ f2
instance Monoid OntologyDocument where
mempty = emptyOntologyDoc
mappend (OntologyDocument p1 o1) (OntologyDocument p2 o2) =
OntologyDocument (Map.union p1 p2) $ mappend o1 o2
instance Syntax OWL2 OntologyDocument Entity SymbItems SymbMapItems where
parsersAndPrinters OWL2 = addSyntax "Ship" (basicSpec, ppShipOnt)
$ addSyntax "Manchester" (basicSpec, pretty)
$ makeDefault (basicSpec, pretty)
parseSingleSymbItem OWL2 = Just symbItem
parse_symb_items OWL2 = Just symbItems
parse_symb_map_items OWL2 = Just symbMapItems
symb_items_name OWL2 = symbItemsName
instance Sentences OWL2 Axiom Sign OWLMorphism Entity where
map_sen OWL2 = mapSen
print_named OWL2 = printOneNamed
sym_of OWL2 = singletonList . symOf
symmap_of OWL2 = symMapOf
sym_name OWL2 = entityToId
sym_label OWL2 = label
fullSymName OWL2 s = let
i = cutIRI s
x = showIRI i --expandedIRI i
in if null x then getPredefName i else x
symKind OWL2 = takeWhile isAlpha . showEntityType . entityKind
symsOfSen OWL2 _ = Set.toList . symsOfAxiom
pair_symbols OWL2 = pairSymbols
inducedFromToMor :: Map.Map RawSymb RawSymb ->
ExtSign Sign Entity ->
ExtSign Sign Entity ->
Result OWLMorphism
inducedFromToMor rm s@(ExtSign ssig _) t@(ExtSign tsig _) =
case Map.toList rm of
[] -> do
let
mkImplMap f k =
case Set.toList (f tsig) of
[x] ->
let aEntity = Entity Nothing k x
in Map.fromList $
map (\y -> (ASymbol $ Entity Nothing k y,
ASymbol $ aEntity)) $
Set.toList $ f ssig
_ -> Map.empty
rm' = Map.unions
[mkImplMap concepts Class,
mkImplMap objectProperties ObjectProperty,
mkImplMap dataProperties DataProperty,
mkImplMap individuals NamedIndividual]
in inducedFromToMorphismAux rm' s t
_ -> inducedFromToMorphismAux rm s t
inducedFromToMorphismAux :: Map.Map RawSymb RawSymb ->
ExtSign Sign Entity ->
ExtSign Sign Entity ->
Result OWLMorphism
inducedFromToMorphismAux rm s@(ExtSign ssig _) t@(ExtSign tsig _) = do
mor <- inducedFromMor rm ssig
let csig = cod mor
incl <- inclusion OWL2 csig tsig
composeMorphisms mor incl
instance StaticAnalysis OWL2 OntologyDocument Axiom
SymbItems SymbMapItems
Sign
OWLMorphism
Entity RawSymb where
basic_analysis OWL2 = Just basicOWL2Analysis
stat_symb_items OWL2 s = return . statSymbItems s
stat_symb_map_items OWL2 = statSymbMapItems
convertTheory OWL2 = Just convertBasicTheory
empty_signature OWL2 = emptySign
signature_union OWL2 = uniteSign
intersection OWL2 = intersectSign
morphism_union OWL2 = morphismUnion
signatureDiff OWL2 s = return . diffSig s
final_union OWL2 = signature_union OWL2
is_subsig OWL2 = isSubSign
subsig_inclusion OWL2 s = return . inclOWLMorphism s
matches OWL2 = matchesSym
symbol_to_raw OWL2 = ASymbol
id_to_raw OWL2 = idToRaw
add_symb_to_sign OWL2 = addSymbToSign
induced_from_morphism OWL2 = inducedFromMor
induced_from_to_morphism OWL2 = inducedFromToMor
cogenerated_sign OWL2 = cogeneratedSign
generated_sign OWL2 = generatedSign
signature_colimit OWL2 = return . signColimit
corresp2th OWL2 = corr2theo
equiv2cospan OWL2 = addEquiv
extract_module OWL2 = extractModule
#ifdef UNI_PACKAGE
theory_to_taxonomy OWL2 = onto2Tax
#endif
instance Logic OWL2 ProfSub OntologyDocument Axiom SymbItems SymbMapItems
Sign
OWLMorphism Entity RawSymb ProofTree where
empty_proof_tree OWL2 = emptyProofTree
-- just a selection of sublogics
all_sublogics OWL2 = bottomS : concat allProfSubs ++ [topS]
bottomSublogic OWL2 = Just bottomS
sublogicDimensions OWL2 = allProfSubs
parseSublogic OWL2 _ = Just topS -- ignore sublogics
provers OWL2 = [pelletProver, pelletEL, factProver]
cons_checkers OWL2 = [pelletConsChecker, factConsChecker]
conservativityCheck OWL2 = map
(\ ct -> ConservativityChecker ("Locality_" ++ ct)
(checkOWLjar localityJar) $ conserCheck ct)
["BOTTOM_BOTTOM", "TOP_BOTTOM", "TOP_TOP"]
stability OWL2 = Stable
instance SemiLatticeWithTop ProfSub where
lub = maxS
top = topS
instance SublogicName ProfSub where
sublogicName = nameS
instance MinSublogic ProfSub Axiom where
minSublogic = psAxiom
instance MinSublogic ProfSub OWLMorphism where
minSublogic = sMorph
instance ProjectSublogic ProfSub OWLMorphism where
projectSublogic = prMorph
instance MinSublogic ProfSub Sign where
minSublogic = sSig
instance ProjectSublogic ProfSub Sign where
projectSublogic = prSign
instance MinSublogic ProfSub SymbItems where
minSublogic = const topS
instance MinSublogic ProfSub SymbMapItems where
minSublogic = const topS
instance MinSublogic ProfSub Entity where
minSublogic = const topS
instance MinSublogic ProfSub OntologyDocument where
minSublogic = profilesAndSublogic
instance ProjectSublogicM ProfSub SymbItems where
projectSublogicM = const Just
instance ProjectSublogicM ProfSub SymbMapItems where
projectSublogicM = const Just
instance ProjectSublogicM ProfSub Entity where
projectSublogicM = const Just
instance ProjectSublogic ProfSub OntologyDocument where
projectSublogic = prOntDoc