AsUtils.hs revision 72b9099aeec0762bae4546db3bc4b48721027bf4
{- |
Module : $Header$
Description : some utilities for the abstract syntax
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
utility functions and computations of meaningful positions for
various data types of the abstract syntax
-}
module HasCASL.AsUtils where
import HasCASL.As
import HasCASL.FoldType
import HasCASL.HToken
import Common.Id
import Common.Lexer
import Common.Keywords
import Common.DocUtils
import qualified Data.Set as Set
import qualified Text.ParserCombinators.Parsec as P
-- | the string for the universe type
typeUniverseS :: String
typeUniverseS = "Type"
-- | the id of the universe type
universeId :: Id
universeId = stringToId typeUniverseS
-- | the type universe
universe :: Kind
universe = ClassKind universeId
-- | the type universe
universeWithRange :: Range -> Kind
universeWithRange = ClassKind . simpleIdToId . Token typeUniverseS
-- | the name for the Unit type
unitTypeS :: String
unitTypeS = "Unit"
-- | the identifier for the Unit type
unitTypeId :: Id
unitTypeId = stringToId unitTypeS
-- | single step beta reduce type abstractions
redStep :: Type -> Maybe Type
redStep ty = case ty of
TypeAppl t1 t2 -> case t1 of
TypeAbs (TypeArg _ _ _ _ c _ _) b _ -> return $
foldType mapTypeRec
{ foldTypeName = \ t _ _ n -> if n == c then t2 else t
, foldTypeAbs = \ t v1@(TypeArg _ _ _ _ n _ _) tb p ->
if n == c then t else TypeAbs v1 tb p } b
ExpandedType _ t -> redStep $ TypeAppl t t2
KindedType t _ _ -> redStep $ TypeAppl t t2
_ -> do
r1 <- redStep t1
redStep $ TypeAppl r1 t2
ExpandedType e t -> fmap (ExpandedType e) $ redStep t
KindedType t k ps -> do
r <- redStep t
return $ KindedType r k ps
_ -> fail "unreducible"
strippedType :: Type -> Type
strippedType = foldType mapTypeRec
{ foldTypeAppl = \ trm f a -> let t = TypeAppl f a in
case redStep trm of
Nothing -> case f of
TypeName i _ 0 -> if i == lazyTypeId then a else
if isArrow i then TypeAppl (toFunType PFunArr) a else t
_ -> t
Just r -> strippedType r
, foldTypeName = \ _ i k v -> TypeName (if v >= 0 then i else typeId) k v
, foldKindedType = \ _ t _ _ -> t
, foldExpandedType = \ _ _ t -> t }
eqStrippedType :: Type -> Type -> Bool
eqStrippedType t1 t2 = strippedType t1 == strippedType t2
-- | get top-level type constructor and its arguments and beta reduce
getTypeAppl :: Type -> (Type, [Type])
getTypeAppl = getTypeApplAux True
-- | get top-level type constructor and its arguments and beta reduce if True
getTypeApplAux :: Bool -> Type -> (Type, [Type])
getTypeApplAux b ty = let (t, args) = getTyAppl ty in (t, reverse args) where
getTyAppl typ =
case typ of
TypeAppl t1 t2 -> case redStep typ of
Just r | b -> getTyAppl r
_ -> let (t, args) = getTyAppl t1 in (t, t2 : args)
ExpandedType _ te -> let (t, args) = getTyAppl te in case t of
TypeName _ _ _ -> (t, args)
_ -> if null args then (typ, []) else (t, args)
KindedType t _ _ -> getTyAppl t
_ -> (typ, [])
-- | the builtin function arrows
data Arrow = FunArr| PFunArr | ContFunArr | PContFunArr deriving (Eq, Ord)
instance Show Arrow where
show a = case a of
FunArr -> funS
PFunArr -> pFun
ContFunArr -> contFun
PContFunArr -> pContFun
-- | construct an infix identifier for a function arrow
arrowId :: Arrow -> Id
arrowId a = mkId $ map mkSimpleId [place, show a, place]
-- | test for a function identifier
isArrow :: Id -> Bool
isArrow i = isPartialArrow i || elem i (map arrowId [FunArr, ContFunArr])
-- | test for a partial function identifier
isPartialArrow :: Id -> Bool
isPartialArrow i = elem i $ map arrowId [PFunArr, PContFunArr]
-- | construct a mixfix product identifier with n places
productId :: Int -> Range -> Id
productId n r = if n > 1 then
mkId $ placeTok : concat (replicate (n - 1) [Token prodS r, placeTok])
else error "productId"
-- | test for a product identifier
isProductId :: Id -> Bool
isProductId i = isProductIdWithArgs i 0
-- | test for a product identifier
isProductIdWithArgs :: Id -> Int -> Bool
isProductIdWithArgs (Id ts cs _) m = let n = length ts in
null cs && (if m > 1 then m == div (n + 1) 2 else n > 2) && altPlaceProd ts
where altPlaceProd l = case l of
[] -> False
t : r -> isPlace t && altProdPlace r
altProdPlace l = case l of
[] -> True
t : r -> tokStr t == prodS && altPlaceProd r
-- | map a kind and its variance
mapKindV :: (Variance -> Variance) -> (a -> b) -> AnyKind a -> AnyKind b
mapKindV g f k = case k of
ClassKind a -> ClassKind $ f a
FunKind v a b r -> FunKind (g v) (mapKindV g f a) (mapKindV g f b) r
-- | map a kind and keep variance the same
mapKind :: (a -> b) -> AnyKind a -> AnyKind b
mapKind = mapKindV id
-- | ignore variances of raw kinds
nonVarRawKind :: RawKind -> RawKind
nonVarRawKind = mapKindV (const NonVar) id
-- | compute raw kind (if class ids or no higher kinds)
toRaw :: Kind -> RawKind
toRaw = mapKind $ const ()
-- | the type universe as raw kind
rStar :: RawKind
rStar = ClassKind ()
-- | the Unit type (name)
unitType :: Type
unitType = toType unitTypeId
-- | the Unit type (name)
unitTypeWithRange :: Range -> Type
unitTypeWithRange = toType . simpleIdToId . Token unitTypeS
-- | the prefix name for lazy types
lazyTypeId :: Id
lazyTypeId = mkId [mkSimpleId "?"]
-- | the kind of the lazy type constructor
coKind :: Kind
coKind = FunKind CoVar universe universe nullRange
-- | the lazy type constructor
lazyTypeConstr :: Type
lazyTypeConstr = TypeName lazyTypeId (toRaw coKind) 0
-- | make a type lazy
mkLazyType :: Type -> Type
mkLazyType = TypeAppl lazyTypeConstr
-- | function type
mkFunArrType :: Type -> Arrow -> Type -> Type
mkFunArrType t1 a t2 = mkTypeAppl (toFunType a) [t1, t2]
mkFunArrTypeWithRange :: Range -> Type -> Arrow -> Type -> Type
mkFunArrTypeWithRange r t1 a t2 =
mkTypeAppl (TypeName (mkId [placeTok, Token (show a) r, placeTok])
(toRaw $ funKindWithRange r) 0) [t1, t2]
-- | construct a product type
mkProductType :: [Type] -> Type
mkProductType ts = mkProductTypeWithRange ts nullRange
-- | construct a product type
mkProductTypeWithRange :: [Type] -> Range -> Type
mkProductTypeWithRange ts r = case ts of
[] -> unitType
[t] -> t
_ -> let n = length ts in
mkTypeAppl (toProdType n r) ts
-- | convert a type with unbound variables to a scheme
simpleTypeScheme :: Type -> TypeScheme
simpleTypeScheme t = TypeScheme [] t nullRange
{- | add the unit type as result type or convert a parsed empty tuple
to the unit type -}
predType :: Range -> Type -> Type
predType r t = case t of
BracketType Parens [] _ -> mkLazyType $ unitTypeWithRange r
_ -> mkFunArrTypeWithRange r t PFunArr $ unitTypeWithRange r
-- | change the type of the scheme to a 'predType'
predTypeScheme :: Range -> TypeScheme -> TypeScheme
predTypeScheme = mapTypeOfScheme . predType
-- | check for and remove predicate arrow
unPredType :: Type -> (Bool, Type)
unPredType t = case getTypeAppl t of
(TypeName at _ 0, [ty, TypeName ut (ClassKind _) 0])
| ut == unitTypeId && at == arrowId PFunArr -> (True, ty)
(TypeName lt _ 0, [TypeName ut (ClassKind _) 0])
| ut == unitTypeId && lt == lazyTypeId ->
(True, BracketType Parens [] nullRange) -- for printing only
_ -> (False, t)
-- | test if type is a predicate type
isPredType :: Type -> Bool
isPredType = fst . unPredType
-- | remove predicate arrow in a type scheme
unPredTypeScheme :: TypeScheme -> TypeScheme
unPredTypeScheme = mapTypeOfScheme (snd . unPredType)
funKindWithRange3 :: Range -> Kind -> Kind -> Kind -> Kind
funKindWithRange3 r a b c = FunKind ContraVar a (FunKind CoVar b c r) r
funKind3 :: Kind -> Kind -> Kind -> Kind
funKind3 = funKindWithRange3 nullRange
funKindWithRange :: Range -> Kind
funKindWithRange r = let c = universeWithRange r in funKindWithRange3 r c c c
-- | the kind of the function type
funKind :: Kind
funKind = funKindWithRange nullRange
-- | construct higher order kind from arguments and result kind
mkFunKind :: Range -> [(Variance, AnyKind a)] -> AnyKind a -> AnyKind a
mkFunKind r args res = foldr ( \ (v, a) k -> FunKind v a k r) res args
-- | the 'Kind' of the product type
prodKind1 :: Int -> Range -> Kind -> Kind
prodKind1 n r c =
if n > 1 then mkFunKind r (replicate n (CoVar, c)) c
else error "prodKind"
prodKind :: Int -> Range -> Kind
prodKind n r = prodKind1 n r universe
-- | a type name with a universe kind
toType :: Id -> Type
toType i = TypeName i rStar 0
-- | the type name for a function arrow
toFunType :: Arrow -> Type
toFunType a = TypeName (arrowId a) (toRaw funKind) 0
-- | the type name for a function arrow
toProdType :: Int -> Range -> Type
toProdType n r = TypeName (productId n r) (toRaw $ prodKind n r) 0
-- | the brackets as tokens with positions
mkBracketToken :: BracketKind -> Range -> [Token]
mkBracketToken k ps =
map ( \ s -> Token s ps) $ (\ (o,c) -> [o,c]) $ getBrackets k
-- | construct a tuple from non-singleton lists
mkTupleTerm :: [Term] -> Range -> Term
mkTupleTerm ts ps = if isSingle ts then head ts else TupleTerm ts ps
-- | try to extract tuple arguments
getTupleArgs :: Term -> Maybe [Term]
getTupleArgs t = case t of
TypedTerm trm qt _ _ -> case qt of
InType -> Nothing
_ -> getTupleArgs trm
TupleTerm ts _ -> Just ts
_ -> Nothing
{- | decompose an 'ApplTerm' into an application of an operation and a
list of arguments -}
getAppl :: Term -> Maybe (Id, TypeScheme, [Term])
getAppl = thrdM reverse . getRevAppl where
thrdM :: (c -> c) -> Maybe (a, b, c) -> Maybe (a, b, c)
thrdM f = fmap ( \ (a, b, c) -> (a, b, f c))
getRevAppl :: Term -> Maybe (Id, TypeScheme, [Term])
getRevAppl t = case t of
TypedTerm trm q _ _ -> case q of
InType -> Nothing
_ -> getRevAppl trm
QualOp _ (PolyId i _ _) sc _ _ _ -> Just (i, sc, [])
QualVar (VarDecl v ty _ _) -> Just (v, simpleTypeScheme ty, [])
ApplTerm t1 t2 _ -> thrdM (t2:) $ getRevAppl t1
_ -> Nothing
-- | extract bindings from an analysed pattern
extractVars :: Term -> [VarDecl]
extractVars pat = case pat of
QualVar vd -> getVd vd
ApplTerm p1 p2 _ ->
extractVars p1 ++ extractVars p2
TupleTerm pats _ -> concatMap extractVars pats
TypedTerm p _ _ _ -> extractVars p
AsPattern v p2 _ -> getVd v ++ extractVars p2
ResolvedMixTerm _ _ pats _ -> concatMap extractVars pats
_ -> []
where getVd vd@(VarDecl v _ _ _) = if showId v "" == "_" then [] else [vd]
-- | construct term from id
mkOpTerm :: Id -> TypeScheme -> Term
mkOpTerm i sc = QualOp Op (PolyId i [] nullRange) sc [] Infer nullRange
-- | bind a term
mkForall :: [GenVarDecl] -> Term -> Term
mkForall vl f = if null vl then f else QuantifiedTerm Universal vl f nullRange
-- | construct application with curried arguments
mkApplTerm :: Term -> [Term] -> Term
mkApplTerm = foldl ( \ t a -> ApplTerm t a nullRange)
-- | make function arrow partial after some arguments
addPartiality :: [a] -> Type -> Type
addPartiality args t = case args of
[] -> mkLazyType t
_ : rs -> case getTypeAppl t of
(TypeName a _ _, [t1, t2]) | a == arrowId FunArr ->
if null rs then case getTypeAppl t2 of
(TypeName l _ _, [t3]) | l == lazyTypeId
-> mkFunArrType t1 PFunArr t3
_ -> mkFunArrType t1 PFunArr t2
else mkFunArrType t1 FunArr $ addPartiality rs t2
_ -> error "addPartiality"
-- | convert a type argument to a type
typeArgToType :: TypeArg -> Type
typeArgToType (TypeArg i _ _ rk c _ _) = TypeName i rk c
{- | convert a parameterized type identifier with a result raw kind
to a type application -}
patToType :: Id -> [TypeArg] -> RawKind -> Type
patToType i args rk =
mkTypeAppl (TypeName i (typeArgsListToRawKind args rk) 0)
$ map typeArgToType args
-- | create the (raw if True) kind from type arguments
typeArgsListToRawKind :: [TypeArg] -> RawKind -> RawKind
typeArgsListToRawKind tArgs = mkFunKind (getRange tArgs) $
map (\ (TypeArg _ v _ rk _ _ _) -> (v, rk)) tArgs
-- | create the kind from type arguments
typeArgsListToKind :: [TypeArg] -> Kind -> Kind
typeArgsListToKind tArgs = mkFunKind (getRange tArgs) $
map ( \ (TypeArg _ v ak _ _ _ _) -> (v, toKind ak)) tArgs
-- | get the type of a constructor with given curried argument types
getFunType :: Type -> Partiality -> [Type] -> Type
getFunType rty p ts = (case p of
Total -> id
Partial -> addPartiality ts)
$ foldr (\ c -> mkFunArrType c FunArr) rty ts
-- | get the type of a selector given the data type as first arguemnt
getSelType :: Type -> Partiality -> Type -> Type
getSelType dt p = (case p of
Partial -> addPartiality [dt]
Total -> id) . mkFunArrType dt FunArr
-- | make type argument non-variant
nonVarTypeArg :: TypeArg -> TypeArg
nonVarTypeArg (TypeArg i _ vk rk c o p) = TypeArg i NonVar vk rk c o p
-- | get the type variable
getTypeVar :: TypeArg -> Id
getTypeVar(TypeArg v _ _ _ _ _ _) = v
-- | construct application left-associative
mkTypeAppl :: Type -> [Type] -> Type
mkTypeAppl = foldl TypeAppl
-- | get the kind of an analyzed type variable
toKind :: VarKind -> Kind
toKind vk = case vk of
VarKind k -> k
Downset t -> case t of
KindedType _ k _ | Set.size k == 1 -> Set.findMin k
_ -> error "toKind: Downset"
MissingKind -> error "toKind: Missing"
-- | try to reparse the pretty printed input as an identifier
reparseAsId :: Pretty a => a -> Maybe Id
reparseAsId t = case P.parse (opId << P.eof) "" $ showDoc t "" of
Right x -> Just x
_ -> Nothing
-- | generate a comparison string
expected :: Pretty a => a -> a -> String
expected a b =
"\n expected: " ++ showDoc a
"\n found: " ++ showDoc b "\n"