%% Lattices, algebraically
%read "../algebra/algebra2.elf".
%sig SemiLattice = {
%include FOLEQPFExt %open.
%struct mc : MagmaCommut.
%struct %implicit bd: Band = {
%struct sg.mag := mc.
} %open sg.mag.*.
}.
%sig BiSemiLattice = {
%include FOLEQPFExt %open.
%struct meet : SemiLattice %open * %as /\.
%struct join : SemiLattice %open * %as \/.
}.
%sig LatticeAlg = {
%include FOLEQPFExt %open.
%struct %implicit bisemlat: BiSemiLattice %open /\ \/.
absorbtion: ded forall [x] forall [y] ((x /\ (x \/ y) == x) and ((x \/ (x /\ y)) == x)).
leq : i -> i -> o = [x][y] x /\ y == x. %infix none 30 leq.
}.
%sig SemiLatticeBounded = {
%include FOLEQPFExt %open.
%struct %implicit sl : SemiLattice.
%struct mon : Monoid = {%struct sg := sl.} %open * e.
}.
%sig LocBddSemiLattice = {
%include FOLEQPFExt %open.
%struct meet : SemiLatticeBounded %open * %as /\ e %as bot.
%struct join : SemiLatticeBounded %open * %as \/ e %as top.
}.
%sig LatticeBddAlg = {
%include FOLEQPFExt %open.
%struct %implicit lat : LatticeAlg %open /\ \/.
%struct locbddslat : LocBddSemiLattice = {%struct meet.sl := lat.bisemlat.meet.
%struct join.sl := lat.bisemlat.join.} %open bot top.
}.