%read "../syntax/fol.elf".
%read "../../propositional/proof_theory/prop.elf".
%read "ifol.elf".
%sig FOLPF = {
%include IFOLPF %open.
%include TND %open.
non_empty_universe : ded exists [x] true.
}.
%sig FOLEQPF = {
%include FOLPF %open.
%include FOLEQ %open.
%include EqualPF %open.
=> = [x][y] x imp y. %infix right 5 =>.
<=> = [x][y]((x => y) and (y => x)).
%infix none 4 <=>.
== = [x][y] x eq y. %infix none 30 ==.
!= = [x][y] not (x == y). %infix none 30 !=.
|- = [x] ded x. %prefix 0 |-.
}.
%view FOL2FOLPF : FOL -> FOLPF = {
}.