%read "modules.elf".
%read "base-zf.elf".
%view ForallMOD-ZF : ForallMOD -> FOLZFCModel = {
%include BaseFOLMOD-ZF.
forall := ∀.
forall1 := [F : Elem univ -> ℬ][p]
subset_antisym ∞greatest
(⋂infimum [a]
subset_eq ⊆‍refl
(sym (ForallE p a))).
forall0 := [F : Elem univ -> ℬ][p]
subset_antisym (ExistsE p [a][q] subset_eq ⋂subset q)
∅least.
}.
%view ExistsMOD-ZF : ExistsMOD -> FOLZFCModel = {
%include BaseFOLMOD-ZF.
existq.exists := ∃.
exists1 := [F : Elem univ -> ℬ][p]
subset_antisym ∞greatest
(ExistsE p [a][q] eq_subset (sym q) ⋃subset).
exists0 := [F : Elem univ -> ℬ][p]
subset_antisym (⋃supremum [a] subset_eq ⊆‍refl (ForallE p a))
∅least.
}.
%view EqualMOD-ZF : EqualMOD -> FOLZFCModel = {
%include BaseFOLMOD-ZF.
equal.eq := [x][y] reflect (x Eq y).
equaliff := [x][y] equivI ([p] reflectI1 p) ([q] reflectE1 q).
}.