RelScheme2CASL.hs revision a558f62efc3526d426481c9f839928edb3413b6e
{- |
Module : $Header$
Description : Comorphism from RelScheme to CASL
Copyright : (c) Dominik Luecke and Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : non-portable (imports Logic.Logic)
The translating comorphism from DL to CASL_DL basically this is an
identity comorphism from SROIQ(D) to SROIQ(D)
-}
module Comorphisms.RelScheme2CASL
(
RelScheme2CASL(..)
)
where
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Result
import Common.Id
import qualified Data.Set as Set
import qualified Data.Map as Map
-- RelScheme
import RelationalScheme.Logic_Rel as LRel
import RelationalScheme.AS as ARel
import qualified RelationalScheme.Sign as SRel
--CASL = codomain
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.Morphism
import Data.List(nub)
data RelScheme2CASL = RelScheme2CASL deriving (Show)
instance Language RelScheme2CASL
instance Comorphism
RelScheme2CASL -- comorphism
RelScheme -- lid domain
() -- sublogics domain
RSScheme -- Basic spec domain
Sentence -- sentence domain
() -- symbol items domain
() -- symbol map items domain
SRel.Sign -- signature domain
SRel.RSMorphism -- morphism domain
SRel.RSSymbol -- symbol domain
SRel.RSRawSymbol -- rawsymbol domain
() -- proof tree codomain
CASL -- lid codomain
CASL_Sublogics -- sublogics codomain
CASLBasicSpec -- Basic spec codomain
CASLFORMULA -- sentence codomain
SYMB_ITEMS -- symbol items codomain
SYMB_MAP_ITEMS -- symbol map items codomain
CASLSign -- signature codomain
CASLMor -- morphism codomain
Symbol -- symbol codomain
RawSymbol -- rawsymbol codomain
Q_ProofTree -- proof tree domain
where
sourceLogic RelScheme2CASL = RelScheme
sourceSublogic RelScheme2CASL = ()
targetLogic RelScheme2CASL = CASL
mapSublogic RelScheme2CASL _ = Just SL.caslTop
map_theory RelScheme2CASL = map_RelScheme_theory
map_morphism RelScheme2CASL = return . mapMorphism
map_sentence RelScheme2CASL = mapSen
isInclusionComorphism RelScheme2CASL = True
map_RelScheme_theory :: (SRel.Sign, [Named Sentence])
-> Result (CASLSign, [Named CASLFORMULA])
map_RelScheme_theory (sig, n_sens) = do
let tsign = mapSign sig
tax <- sequence $ map genAxioms $ Set.toList $ SRel.tables sig
tsens <- sequence $ map (mapNamedSen sig) n_sens
return (tsign, concat (tsens:tax))
mapSign :: SRel.Sign -> CASLSign
mapSign sig = let
(sorts,ops,preds) = genCASLSig (Set.toList $ SRel.tables sig)
in (emptySign ()){
sortSet = sorts,
opMap = ops,
predMap = preds
}
mapMorphism :: SRel.RSMorphism -> CASLMor
mapMorphism phi = let
ssign = mapSign $ SRel.domain phi
in
Morphism {
msource = ssign,
mtarget = mapSign $ SRel.codomain phi,
morKind = InclMor,
sort_map = Map.empty,
fun_map = Map.fromList $
map (\(tab,(c1,c2)) -> let
t = head $
filter (\tb -> SRel.t_name tb == tab) $
types = map stringToId $ map show $
map SRel.c_data $ SRel.columns t
resType = stringToId $ show $ SRel.c_data $
head $ filter
(\col -> SRel.c_name col == c1) $
fname = stringToId $
(show tab) ++ "_" ++ (show c1)
ftype = OpType{
opKind = Total,
opArgs = types,
opRes = resType
}
rname = stringToId $
(show$(Map.!)(SRel.table_map phi) tab)
++ "_" ++ (show c2)
in
((fname, ftype),(rname, Partial))
) $
concat $ map (\(x,f)-> map (\y-> (x,y)) $
) $ Map.toList $
SRel.column_map phi,
pred_map = Map.fromList $ concat $
map (\(i, pSet) ->
[((i, pt),(Map.!) (SRel.table_map phi) i)
| pt <- Set.toList pSet]) $
Map.toList $ predMap ssign,
extended_map = ()
}
genCASLSig :: [SRel.RSTable] ->
Set.Set SORT ->
(Set.Set SORT,
)
genCASLSig tabList sorts ops preds=
case tabList of
[] -> (sorts, ops, preds)
t:tList -> let
sorts' = Set.fromList $ map stringToId $ map show $
nub $ map SRel.c_data $ SRel.columns t
ops' = let
arity = map stringToId $ map show $ map SRel.c_data $
in Map.fromList $
map (
\c -> (stringToId $
(show $ SRel.t_name t) ++ "_"
++ (show $ SRel.c_name c),
OpType{opKind = Total,
opArgs = arity,
opRes = stringToId $
show $ SRel.c_data c
})
) $ SRel.columns t
preds' = Map.insert (SRel.t_name t)
(Set.singleton $ PredType $ map stringToId $
map show $ map SRel.c_data $
SRel.columns t) preds
in genCASLSig tList
(Set.union sorts sorts')
(Map.union ops ops')
preds'
genAxioms :: SRel.RSTable -> Result [Named CASLFORMULA]
genAxioms tab = do
case (Set.null $ SRel.t_keys tab) of
True -> projections tab
_ -> do
axK <- axiomsForKeys tab
axP <- projections tab
return $ axK ++ axP
axiomsForKeys :: SRel.RSTable -> Result [Named CASLFORMULA]
axiomsForKeys tab = do
let
types = map stringToId $ map show $ map SRel.c_data $ SRel.columns tab
vars_x = map (\(t,n) -> (genToken ("x"++ (show n)), t)) $
zip types [1::Int ..]
vars_y = map (\(t,n) -> (genToken ("y"++ (show n)), t)) $
zip types [1::Int ..]
vardecls = map (\(v,t) -> Var_decl [v] t nullRange)
qual_vars = map (\(v,t) -> Qual_var v t nullRange )
conjuncts = map (\(x,y) -> Strong_equation x y nullRange) $
zip (qual_vars vars_x)(qual_vars vars_y)
keys = Set.toList $ SRel.t_keys tab
keysEqual = map (\(cid, ctype) -> Strong_equation
(Application
(Qual_op_name (stringToId $ (show $ SRel.t_name tab)++ "_" ++ (show cid))
(Op_type Total types (stringToId $ show ctype) nullRange)
nullRange) (qual_vars vars_x)
nullRange)
(Application
(Qual_op_name (stringToId $ (show $ SRel.t_name tab)++ "_" ++ (show cid))
(Op_type Total types (stringToId $ show ctype) nullRange)
nullRange) (qual_vars vars_y)
nullRange)
nullRange) keys
return $ [makeNamed "" $ Quantification Universal
((vardecls vars_x) ++ (vardecls vars_y))
(Implication
(Conjunction
([Predication
(Qual_pred_name (SRel.t_name tab) (Pred_type types nullRange)
nullRange)
(qual_vars vars_x)
nullRange,
Predication
(Qual_pred_name (SRel.t_name tab) (Pred_type types nullRange)
nullRange)
(qual_vars vars_y)
nullRange] ++ keysEqual)
nullRange)
(Conjunction
conjuncts
nullRange)
True
nullRange)
nullRange]
projections :: SRel.RSTable -> Result [Named CASLFORMULA]
projections tab = do
let
types = map stringToId $ map show $ map SRel.c_data $ SRel.columns tab
vars_x = map (\(t,n) -> (genToken ("x"++ (show n)), t)) $
zip types [1::Int ..]
vardecls = map (\(v,t) -> Var_decl [v] t nullRange)
qual_vars = map (\(v,t) -> Qual_var v t nullRange )
fields = map show $ map SRel.c_name $ SRel.columns tab
projAx (c, (vRes,typeRes)) = makeNamed "" $
Quantification Universal
(vardecls vars_x)
(Strong_equation
(Application
(Qual_op_name (stringToId $ (show $ SRel.t_name tab)++ "_" ++ c)
(Op_type Total types typeRes nullRange)
nullRange) (qual_vars vars_x)
nullRange)
(Qual_var vRes typeRes nullRange)
nullRange)
nullRange
return $ map projAx $ zip fields vars_x
mapNamedSen :: SRel.Sign -> Named Sentence -> Result (Named CASLFORMULA)
mapNamedSen sign n_sens =
let
s = sentence n_sens
in
do
ts <- mapSen sign s
return $ n_sens {sentence = ts}
mapSen :: SRel.Sign -> Sentence -> Result CASLFORMULA
mapSen sign sen = do
let
linkedcols = zip (map column $ r_lhs sen) (map column $ r_rhs sen)
rtableName = head $ map table $ r_rhs sen
ltableName = head $ map table $ r_lhs sen
ltable = head $ filter (\t -> SRel.t_name t == ltableName) $ Set.toList $
SRel.tables sign
rtable = head $ filter (\t -> SRel.t_name t == rtableName) $ Set.toList $
SRel.tables sign
allRcols = zip (SRel.columns rtable) [1::Int ..]
typesL = map stringToId $ map show $ map SRel.c_data $ SRel.columns ltable
typesR = map stringToId $ map show $ map SRel.c_data $ SRel.columns rtable
vars_x = map (\(t,n) -> (genToken ("x"++ (show n)), t)) $
zip typesL [1::Int ..]
vardecls = map (\(v,t) -> Var_decl [v] t nullRange)
qual_vars = map (\(v,t) -> Qual_var v t nullRange )
quantif = case r_type sen of
RSone_to_one -> Unique_existential
_ -> Existential
(decls,terms) = foldl (\(dList,tList) (c,i) ->
case SRel.c_name c `elem` (map snd linkedcols) of
True -> let
ti = Application
(Qual_op_name (stringToId $ (show ltableName) ++ "_" ++ (show $ fst $ head $ filter(\(_,y) -> y == SRel.c_name c) linkedcols))
(Op_type Total typesL (stringToId $ show $ SRel.c_data c) nullRange)
nullRange) (qual_vars vars_x)
nullRange
in
(dList,ti:tList)
_ -> let
di = Var_decl [genToken ("y"++ (show i))] (stringToId $ show $ SRel.c_data c) nullRange
ti = Qual_var (genToken ("y"++ (show i))) (stringToId $ show $ SRel.c_data c) nullRange
in (di:dList,ti:tList)
) ([],[]) allRcols
return $ Quantification Universal (vardecls vars_x)
(Implication
(Predication
(Qual_pred_name ltableName
(Pred_type typesL nullRange)
nullRange) (qual_vars vars_x)
nullRange)
(Quantification quantif (reverse decls)
(Predication
(Qual_pred_name rtableName
(Pred_type typesR nullRange)
nullRange)
(reverse terms)
nullRange)
nullRange)
True
nullRange)
nullRange