Hs2HOLCF.hs revision 8171fdc5e142d2e0e5b4af8172a5ed10e0daa827
{- |
Module : $Header: /repository/HetCATS/Comorphisms/Hs2HOLCF.hs,v 1.42 2007/05/25 10:49:58 paolot Exp $
Description : theory translation for the embedding comorphism from Haskell to Isabelle
Copyright : (c) Paolo Torrini and Till Mossakowski and Uni Bremen 2004-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : paolot@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (depends on programatica using MPTC)
theory translation for the embedding comorphism from Haskell to Isabelle.
-}
module Comorphisms.Hs2HOLCF (transTheory) where
import Monad
import qualified Data.Map as Map
import Common.Result
import Common.AS_Annotation
import Comorphisms.Hs2HOLCFaux
-- Haskell
import Haskell.HatAna as HatAna
-- Programatica
import NewPrettyPrint (pp)
import TypedIds
import TiTypes
import TiKinds
import PNT
import UniqueNames
import SyntaxRec
import TiPropDecorate
import PropSyntaxStruct
import HsDeclStruct
import HsGuardsStruct
import TiDecorate
-- Isabelle
import Isabelle.IsaSign as IsaSign
import Isabelle.IsaProof
import Isabelle.IsaConsts
import Debug.Trace
------------------------------ Top level function ------------------------
transTheory :: Continuity -> Bool -> HatAna.Sign -> [Named PrDecl]
-> Result (IsaSign.Sign, [Named IsaSign.Sentence])
transTheory c m sign sens = do
sign' <- transSignature c m sign
(sign'',sens'') <- transSentencesI c sign' (map sentence sens)
return (sign'', concatMap (\ (t, l) ->
map (\ (r, ars) -> makeNamed ""
$ Instance t (map snd ars) [r] $ toIsaProof DotDot) l)
(filter (not . flip elem
["unitT", "intT", "integerT", "charT", "ratT"] . fst)
$ Map.toList $ arities $ tsig sign'') ++ sens'')
------------------------------ Theory translation ------------------------
{- Relevant theories in Programatica: base/Ti/TiClasses (for
tcTopDecls); property/parse2/Parse/PropPosSyntax (def of HsDecl) -}
data TSt a = TSt (ISign -> Result (a, ISign))
instance Monad TSt
where
return x = TSt (\w -> return (x,w))
(TSt f) >>= g = TSt (\w -> do
(d,z) <- f w
let (TSt q) = (g d) in q z)
transSentencesI :: Continuity -> ISign -> [PrDecl]
-> Result (IsaSign.Sign, [Named IsaSign.Sentence])
transSentencesI c sign ls = let TSt f = transSentences c ls
in do (a,b) <- f sign
return (ff b, a)
where ff x = x {constTab = Map.filter (/= noTypeT) $ constTab x}
-------------------------------------------------------------------
transSentences :: Continuity -> [PrDecl]
-> TSt [Named IsaSign.Sentence]
transSentences c ls = do
xx0 <- mapM (transSentence c FunDef) ls
xs <- return [[s] | [s] <- xx0, notDummy s]
yys <- insFixpoints c xs
zz0 <- mapM (transSentence c InstDef) ls
zz1 <- return $ removeEL zz0
zz2 <- insFixpoints c zz1
zz3 <- return $ filter notDummy (yys ++ zz2)
zz <- return $ filter (\x -> extAxType x /= noTypeT) zz3
return zz
notDummy :: Named Sentence -> Bool
notDummy s = case sentence s of
ConstDef (IsaEq t _) ->
if t /= xDummy then True else False
RecDef _ [] -> False
RecDef _ [[]] -> False
RecDef _ ((IsaEq t _ : _) : _) ->
if t /= xDummy then True else False
_ -> True
transSentence :: Continuity -> ExpRole -> PrDecl
-> TSt [Named IsaSign.Sentence]
transSentence c a (TiPropDecorate.Dec d) =
case d of
PropSyntaxStruct.Base p -> case (a,p) of
(FunDef, HsDeclStruct.HsFunBind _ ws) -> do
k <- case ws of
_ -> transMMatch c ws
return [k]
(FunDef, HsPatBind _ q (HsBody e) _) -> do
k <- transCProp FunDef c q e
return [k]
(InstDef, HsInstDecl _ _ _ t (TiPropDecorate.Decs ds _)) -> do
k <- mapM (transIMatch c t)
[y | TiPropDecorate.Dec (PropSyntaxStruct.Base
(HsDeclStruct.HsFunBind _ [y])) <- ds]
w <-
mapM (uncurry $ transCProp InstDef c) [(q,e) |
TiPropDecorate.Dec (PropSyntaxStruct.Base
(HsDeclStruct.HsPatBind _ q (HsBody e) _)) <- ds]
return (k ++ w)
_ -> return []
_ -> return []
-------------- main functions for sentence translation -------------------
--------------------- inserts fixpoints ----------------------------------
insFixpoints :: Continuity -> [[Named IsaSign.Sentence]]
-> TSt [Named IsaSign.Sentence]
insFixpoints c xs = TSt $ \ssg ->
let ws = [[s] | s <- concat xs]
ys = fixMRec c ws
ac = newConstTab c ys
nc = Map.union (constTab ssg) ac
nssg = ssg {constTab = nc}
in return (ys,nssg)
--------------------------- constants -----------------------------------
constTabM :: TSt ConstTab
constTabM = TSt $ \sign -> return (constTab sign, sign)
transCProp :: ExpRole -> Continuity
-> PrPat -> PrExp
-> TSt (Named Sentence)
transCProp j a p e = do
cs <- constTabM
case (transPatBindX True a cs p e) of
Just (x,y) -> let k = fst $ extTBody x
in case (getTermName k) of
Nothing -> trace (show p) $ error "Hs2HOLCF.transCProp1"
Just nm -> case j of
InstDef -> case p of
TiPSpec (HsVar r) _ _ -> case (extClass r) of
Just c -> case e of
(TiPropDecorate.Exp (HsApp
(TiPropDecorate.TiSpec _ _ (g:_)) _)) ->
transInstEx a nm (mkVName nm)
(IsaClass c) (transType a [] g)
(typ $ termType x) [] y
_ -> trace (show p) $ error "Hs2HOLCF.transCProp2"
_ -> trace ("\n ER000: " ++ show j) $
trace ("\n ER111: " ++ show p) $
trace ("\n ER222: " ++ show e) $
error "Hs2HOLCF.transCProp3"
_ -> error "Hs2HOLCF.transCProp4"
FunDef -> return $ makeNamed nm $ ConstDef $ IsaEq x y
_ -> trace ("\n PAT: " ++ show p) $
trace ("\n EXP: " ++ show e) $
error "Hs2HOLCF.transCProp5"
------------------ translate pattern matching definitions ---------------
-- Main function. transMultiDef translate the expressions,
-- formCaseExp builds the case expression.
transMMatch :: Show ds => Continuity
-> [HsDeclStruct.HsMatchI PNT PrExp PrPat ds]
-> TSt (Named Sentence)
transMMatch c ds = TSt $ \sign -> case ds of
[] -> error "Hs2HOLCF.transMMatch"
a:_ -> let
cs = constTab sign
(a1, a2) = extInfo c cs a
df = mkVName $ showIsaName a1
y = maybe (noTypeT) id $ Map.lookup df cs
ls = map (snd . extInfo c cs) ds
in case ls of
[] -> error ("Hs2HOLCF.transMMatch 2")
[(ps,tx)] -> let
qs = wrapWild $ map (transPat c cs) ps
in mkkSent c df y qs tx sign
_ -> let
ww = transMultiDef c cs ls
tx = formCaseExp c ww
qs = map (mkVs "qX" . snd) $
zip (fst a2) [(1 :: Int)..]
in mkkSent c df y qs tx sign
where
extInfo c' cs' m = case m of
HsDeclStruct.HsMatch _ nm ps (HsGuardsStruct.HsBody x) _ ->
(nm, (elimDic ps, transExp c' cs' x))
HsDeclStruct.HsMatch _ nm ps (HsGuardsStruct.HsGuard xs) _ ->
let ys = [(transExp c' cs' x1, transExp c' cs' x2)
| (_,x1,x2) <- xs]
k = buildIfs c' ys
ps' = elimDic ps
in (nm, (ps', k))
mkkSent c' df' y' qs' tx' sign' = return
(makeSentence FunDef c' (IsaSign.orig df') y' df' qs' tx', sign')
wrapWild ls = map wrapW $ listEnum ls
wrapW (a,n) = case a of
Free x -> case new x of
"wildcX" -> Free $ mkVName ("wildcX" ++ show n)
_ -> a
_ -> a
elimDic :: [PrPat] -> [PrPat]
elimDic ls = case ls of
[] -> []
x:xs -> case x of
TiDecorate.Pat (HsPId (HsVar _)) -> elimDic xs
_ -> x:(elimDic xs)
------------------------- translates instances --------------------------
{- translates method definitions -}
transIMatch :: (Show ds) => Continuity -> HsType
-> HsDeclStruct.HsMatchI PNT PrExp PrPat ds
-> TSt (Named Sentence)
transIMatch a t s = do
ct <- constTabM
case s of
HsDeclStruct.HsMatch _ nm ps (HsGuardsStruct.HsBody ex) _ ->
let nam = showIsaName nm
df = mkVName $ showIsaName nm
tx = transExp a ct ex
qs = map (transPat a ct) ps
gt = getInstType t -- instatiating type
x = transType a [] $ gt -- instatiating type
c = transClass $ getInstClass t
-- instantiated class
in transInstEx a nam df c x noTypeT qs tx
_ -> error "Hs2HOLCF, transIMatch"
transInstEx :: Continuity -> String -> VName ->
IsaClass -> IsaType -> IsaType ->
[IsaTerm] -> IsaTerm -> TSt (Named Sentence)
transInstEx a nam df c@(IsaClass k) x x2 qs tx = TSt $ \sign ->
let ct = constTab sign
xx = typeId x
w = maybe [] id $ Map.lookup xx (arities $ tsig sign)
-- all arities of inst. type
cs = maybe [] id $ Map.lookup c (Map.fromList w)
-- selects the arity for the inst. class
xdf = new df
ndf = if enElem nam aweLits
then xdf ++ "_" ++ xx
else xx ++ "_" ++ xdf
pdf = if enElem nam aweLits
then mkVName ndf else df
nsg = if enElem nam ["return"]
then addMonOpDecs sign xx
else sign
mty = if enElem nam ["return"]
then returnType xx
else if enElem nam [">>="]
then bindType xx
else if enElem nam ["fail",">>"]
then noTypeT
else if enElem nam mthAll
then mthTy a k nam
else maybe x2 id $ Map.lookup df ct
-- abstract method type
nty = instTyp mty c x cs
-- in mty, replaces the variable of class c with type x,
-- constraining variables in x with cs
ntx = if enElem nam mthEq
then (case tx of
IsaSign.Const bb _ ->
if new bb == (xdf ++ "DF")
then defaultDef a nam x c cs
else tx
_ -> tx)
else tx
tst = makeSentence InstDef a ndf nty pdf qs ntx
in return (tst, nsg)
instTyp :: IsaType -> IsaClass -> IsaType -> [(IsaType,Sort)] -> IsaType
instTyp t c x cs = repVarClass t c (constrVarClass x cs)
defaultDef :: Continuity -> String -> IsaType -> IsaClass ->
[(IsaType,Sort)] -> IsaTerm
defaultDef c x t k@(IsaClass r) ks = let
w = mthTy c r x
z = instTyp w k t ks
in if enElem x ["=="] then eqDef c z
else if enElem x ["/="] then neqDef c z
else error "HsHOLCFaux, defaultDef"
eqDef :: Continuity -> IsaType -> IsaTerm
eqDef c t = let vs = [mkFree "x", mkFree "y"]
in termMAbs c vs $ termMAppl c (notPT c) $ [termMAppl c (neqTPT t) vs]
neqDef :: Continuity -> IsaType -> IsaTerm
neqDef c t = let vs = [mkFree "x", mkFree "y"]
in termMAbs c vs $ termMAppl c (notPT c) $ [termMAppl c (eqTPT t) vs]
-------------------- theory trans auxiliaries ------------------------
-------------------- transMMatch auxs -------------------------------
buildIfs :: Continuity -> [(IsaTerm,IsaTerm)] -> IsaTerm
buildIfs c xs = case xs of
[] -> bottomPT c
(y1,y2):ys -> case (getTermName y1) of
Just "otherwise" -> y2
_ -> If y1 y2 (buildIfs c ys) c
makeSentence :: ExpRole -> Continuity -> String -> IsaType ->
VName -> [IsaPattern] -> IsaTerm -> Named Sentence
makeSentence k a d y df ps tx =
makeNamed d $ ConstDef $ (if tx == xDummy
then IsaEq xDummy $ xDummy
else let w = ( case k of
InstDef -> dispMN y
FunDef -> hideNN y )
in IsaEq (Const df w) $ termMAbs a ps tx)
------------------- transIMatch auxs ---------------------------------
returnType :: String -> IsaType
returnType t = let
v = TFree "a" holType
x = IsaSign.Type t holType [v]
in IsaSign.Type "=>" holType [v,x]
bindType :: String -> IsaType
bindType t = let
va = TFree "a" holType
vb = TFree "b" holType
xa = IsaSign.Type t holType [va]
xb = IsaSign.Type t holType [vb]
f = IsaSign.Type "=>" holType [va, xb]
g = IsaSign.Type "=>" holType [f, xb]
in IsaSign.Type "=>" holType [xa, g]
addMonOpDecs :: ISign -> String -> ISign
addMonOpDecs sign xx = let
nrt = returnType xx
nbd = bindType xx
jrt = mkVName $ "return_" ++ xx
jbd = mkVName $ "mbind_" ++ xx
qqs = Map.fromList [(jrt, nrt), (jbd, nbd)]
nc = Map.union (constTab sign) qqs
in sign {constTab = nc}
extHead :: IsaType -> IsaType
extHead t = case t of
IsaSign.Type "=>" _ [_,b] -> extHead b
_ -> t
--------------- other theory trans auxs ----------------------------------
-- annotated translation function.
-- Each parameter pattern - IsaPattern - associated
-- with datatype information - [(String,Int)]
-- case variable name - IsaTerm
-- parameter name before translation - String
transMultiDef :: Continuity -> ConstTab -> [([PrPat], IsaTerm)]
-> [([([(String, Int)],((IsaTerm, String), IsaPattern))], IsaTerm)]
transMultiDef c sign ls =
let
ws = csAris [fst w | w <- ls]
ks = [([newInfo v | v <- xs], y) | (xs, y) <- ls]
ss = map standizeVars ks
in [(zipNE ws rs, s) | (rs,s) <- ss]
where
newInfo f = (snd $ extCI f, transPat c sign f)
zipNE ws rs = case ws of
[] -> []
hd : xs -> (case hd of
[] -> []
_ -> if rs == [] then error "Hs2HOLCF, zipNE"
else [(hd, head rs)]) ++ zipNE xs (tail rs)
-- Extract datatype information from a list of patterned parameter lists.
-- Returns the list of constructors and arities for parameter datatypes.
csAris :: [[PrPat]] -> [[(String,Int)]]
csAris ws = let
ls = removeEL ws
in case ls of
[] -> []
m : _ -> case m of
[] -> []
_ : _ -> extCL (map head ls) : csAris [tail a | a <- ls]
-- Standardizes parameter names from all the expressions.
-- Associates a case variable name.
standizeVars :: ([(String, IsaPattern)], IsaTerm)
-> ([((IsaTerm, String), IsaPattern)], IsaTerm)
standizeVars k' = let
mkqXVs = mkVs "qX"
stdVars (cs, sd) i = case cs of
[] -> ([], sd)
(a, b) : as -> let
na = sbVs (b, i)
nk = renVars na [b] sd
(ls, y) = stdVars (as, nk) (i + 1)
in (((mkqXVs i, a), na) : ls, y)
sbVs a = case a of
(Free _, b) -> mkqXVs b
(f, _) -> f
in stdVars k' 1
mkVs :: String -> Int -> IsaTerm
mkVs str n = Free (mkVName $ str ++ show n)
-- Forms the nested case expression, using trCase.
formCaseExp :: Continuity ->
[([([(String,Int)],((IsaTerm,String),IsaPattern))],IsaTerm)]
-> IsaTerm
formCaseExp ct ls =
case ls of
[] -> error "Hs2HOLCF.formCaseExp"
m : _ -> case fst m of
[] -> snd m
h : _ -> let
k1s = map fst ls
xs = map head (filter (/= []) k1s)
xxs = remove_duplicates [((snd $ fst $ snd x, snd $ snd x),
[(us,t) | (u:us,t) <- ls, u == x] ++
[(us,t) | ((_,(_,Free _)):us,t) <- ls]) | x <- xs]
ws = remove_duplicates
$ [((a,b),formCaseExp ct c) | ((a,b),c) <- xxs]
in makeCase (fst $ fst $ snd h) $ map (\z -> trCase ct z ws) (fst h)
where
makeCase t lst = Case t lst
------------------------ TERM translation --------------------------------
------------------------ Patterns ----------------------------------------
transPat :: Continuity -> ConstTab -> PrPat -> IsaPattern
transPat a c t = let
a' = if a == IsCont True then IsCont False else a
in maybe xDummy id $ transMPat a' c t
transMPat :: Continuity -> ConstTab -> PrPat -> Maybe IsaPattern
transMPat = transMPatX False
transMPatX :: Bool ->
Continuity -> ConstTab -> PrPat -> Maybe IsaPattern
transMPatX bx a' cs t = let
tInt = IsaSign.Type "int" holType []
a = if a' == IsCont True then IsCont False else a'
in case t of
TiDecorate.Pat p -> case p of
HsPLit _ (HsInt n) -> return $ liftExp a (show n) tInt
HsPList _ xs -> do
ws <- mapM (transMPatX bx a cs) xs
return $ foldr (termBAppl a $ consPT a) (nilPT a) ws
_ -> transP a (mkVName . showIsaName) (transMPat a cs) p
TiDecorate.TiPSpec w lt bb -> case w of
HsVar x -> case (showIsaName x) of
"errorH" -> Just $ bottomPT a
_ -> transHV bx a x bb lt
HsCon x -> transCN a x
TiDecorate.TiPTyped x _ -> transMPat a cs x
TiDecorate.TiPApp w z -> do w1 <- transMPat a cs w
z1 <- transMPat a cs z
return $ (termMAppl a w1 [z1])
transP :: IsaName i => Continuity -> (i -> VName) ->
(p -> Maybe IsaPattern) -> (PI i p) -> Maybe IsaPattern
transP a trId trP p =
case mapPI3 trId trP p of
Just (HsPId (HsVar _)) -> return $ conDouble "DIC"
Just (HsPTuple _ xs) -> return $ Tuplex xs a
Just (HsPParen x) -> return x
Just HsPWildCard -> return $ Free $ mkVName "wildcX"
_ -> Nothing
-------------------------- Terms --------------------------------------
transExp :: Continuity -> ConstTab -> PrExp -> IsaTerm
transExp a c t = maybe xDummy id $ transMExp a c t
transMExp :: Continuity -> ConstTab -> PrExp -> Maybe IsaTerm
transMExp a cs t = let
tInt = IsaSign.Type "int" holType []
tRat = IsaSign.Type "Rat" holType []
in case t of
(TiPropDecorate.Exp e) -> case e of
HsLit _ (HsInt n) -> return $ liftExp a (show n) tInt
HsLit _ (HsFloatPrim n) -> return $ liftExp a (show n) tRat
HsLit _ (HsString n) -> return $ liftStr a (show n)
HsList xs -> do
ws <- mapM (transMExp a cs) xs
return $ foldr (termBAppl a $ consPT a) (nilPT a) ws
HsLet (TiPropDecorate.Decs ds _) k -> do
w <- mapM (transPatBind False a cs) ds
z <- transMExp a cs k
return $ Let w z
HsCase e' as -> do
e1 <- transMExp a cs e'
bs <- transCases a cs (map extPE as)
return $ Case e1 bs
_ -> transE a (mkVName . showIsaName) (transMExp a cs)
(transMPat a cs) e
TiPropDecorate.TiSpec w st bb -> case w of
HsVar x -> case (showIsaName x) of
"errorH" -> Just $ bottomPT a
_ -> transHV False a x bb st
HsCon x -> transCN a x
TiPropDecorate.TiTyped x _ -> transMExp a cs x
transE :: Continuity -> (PNT -> VName) -> (e -> Maybe IsaTerm)
-> (p -> Maybe IsaPattern) -> (EI PNT e p j h k) -> Maybe IsaTerm
transE c trId trE trP e =
case (mapEI5 trId trE trP e) of
Just (HsId (HsVar _)) -> return $ conDouble "DIC"
Just (HsApp x y) -> return $ if x == bottomPT c
then x
else termMAppl c x [y]
Just (HsLambda ps x) -> return $ termMAbs c ps x
Just (HsIf x y z) -> return $ If x y z c
Just (HsTuple xs) -> return $ Tuplex xs c
Just (HsParen x) -> return x
_ -> Nothing
----------------------- TERM auxs ----------------------------------------
liftExp :: Continuity -> String -> Typ -> IsaTerm
liftExp c n t = case c of
IsCont _ -> App (conDouble "Def")
(Const (mkVName n) $ hideNN t) NotCont
NotCont -> Const (mkVName n) $ hideNN t
liftStr :: Continuity -> String -> IsaTerm
liftStr a n = let
st = Const (mkVName n) noType
in case a of
NotCont -> st
IsCont _ -> termAppl liftString st
transCases :: Continuity -> ConstTab ->
[(TiPat PNT, TiPropDecorate.TiExp PNT)] -> Maybe [(IsaTerm,IsaTerm)]
transCases r cs ks = case ks of
[] -> return []
_ : _ -> let
cnn = extCL $ map fst ks -- (cons, arity) list for the case value.
ys = [((snd $ extCI f, transPat r cs f), transExp r cs g)
| (f,g) <- ks] -- (cons, (ptn, exp)) list.
in if null cnn then trace ("\n CASES: " ++ show ks) $
error "Hs2HOLCF.transCases"
else return $ map (\h -> trCase r h ys) cnn
extPE :: HsGuardsStruct.HsAlt (TiPropDecorate.TiExp PNT) (TiPat PNT)
(TiPropDecorate.TiDecls PNT) -> (TiPat PNT, TiPropDecorate.TiExp PNT)
extPE k = case k of
HsAlt _ p (HsBody e) _ -> (p,e)
_ -> error "HsHOLCF.extPE"
extCL :: [TiPat PNT] -> [(String,Int)]
extCL ks = case ks of -- ((cons, arity) list, cons).
[] -> []
x:xs -> let p = (fst $ extCI x)
in if p /= [] then p else extCL xs
extCI :: (TiPat PNT) -> ([(String,Int)],String)
extCI k = case k of
TiPSpec (HsCon (PNT z (ConstrOf _ x) _)) _ _ ->
([(gBN $ conName w, conArity w) | w <- constructors x], pp z)
TiPSpec (HsVar (PNT z _ _)) _ _ -> ([], pp z)
TiPApp m _ -> extCI m
TiDecorate.Pat u -> case u of
HsPWildCard -> ([],"wildcX")
HsPParen p -> extCI p
HsPLit _ (HsString "") -> ([],"emptyString")
_ -> ([], pp u)
TiPTyped p _ -> ([], pp p)
_ -> error "H2HOLCF.extCI"
where
gBN (UniqueNames.PN q _) = q
trCase :: Continuity -> (String, Int) ->
[((String, IsaPattern), IsaTerm)] -> (IsaTerm, IsaTerm)
trCase r' h ys = let
r = case r' of
IsCont _ -> IsCont False
_ -> r'
in case ys of
[] -> case r of
IsCont _ -> (buildPat r h, bottomPT r)
NotCont -> error "Hs2HOLCF.trCase"
((a, b), c) : as ->
if a == fst h
then repVsCPt b c (snd h) -- snd h :: Int
else if take 6 a == "wildcX"
then (buildPat r h, c)
else trCase r h as
where
mkpXVs = mkVs "pX"
repVsCPt a b n = case a of
IsaSign.Const _ _ -> (a, b)
IsaSign.App x y@(IsaSign.Free _) z' -> let
nv = mkpXVs n
nr = renVars nv [y] b
st = repVsCPt x nr (n-1)
nf = termMAppl z' (fst st) [nv]
ns = renVars nv [y] $ snd st
in (nf, ns)
_ -> trace ("\n print A: " ++ show a) $
trace ("\n print B: " ++ show b) $
error "Hs2HOLCF.repVsCPt"
buildPat s (x, n) = let
hh = string2iterm s x Nothing
k = Const (mkVName $ showIsaName x) noTypeC
j = maybe k id hh
sk = termMAppl s j $ reverse $ map mkpXVs [1..n]
in sk
extClass :: PNT -> Maybe String
extClass p = case p of
PNT _ (MethodOf (PN x _) _ _) _ -> Just x
_ -> Nothing
transPatBindX :: Bool ->
Continuity -> ConstTab -> PrPat -> PrExp -> Maybe (IsaTerm,IsaTerm)
transPatBindX b a cs p e = do
x <- transMPatX b a cs p
y <- transMExp a cs e
return (x, y)
transPatBind :: Bool ->
Continuity -> ConstTab -> PrDecl -> Maybe (IsaTerm,IsaTerm)
transPatBind b a cs s = case s of
TiPropDecorate.Dec (PropSyntaxStruct.Base
(HsDeclStruct.HsPatBind _ p (HsGuardsStruct.HsBody e) _)) ->
transPatBindX b a cs p e
_ -> error "HsHOLCF.transPatBind"
transCN :: Continuity -> PNT -> Maybe IsaTerm
transCN c x = let
k = pp x
y = showIsaName x
w = Const (mkVName y) $ Hide noTypeT TCon (extArity x)
zz = string2iterm c k Nothing
in return $ maybe w id $ zz
extArity :: PNT -> Maybe Int
extArity p = case p of
(PNT z (ConstrOf _ x) _) -> let
y = pp z
ls = [(gBN $ conName w, conArity w) | w <- constructors x]
ns = Map.fromList ls
in Map.lookup y ns
_ -> Nothing
where
gBN (UniqueNames.PN q _) = q
transHV :: Bool -> Continuity -> PNT -> [HsType] ->
HsScheme -> Maybe IsaTerm
transHV _ a x lt tt = let
qq = pp x
n = showIsaName x
xt = maybe noTypeT id $ transMScheme a tt
kt = maybe noTypeT id $ case lt of
r:_ -> transMType a [] r
_ -> Nothing
zt = replaceTyVar kt xt
dx = case x of
PNT (PN _ (UniqueNames.G _ _ _)) _ _ ->
mkConstV n (hideNN zt)
PNT (PN _ (UniqueNames.S _)) _ _ -> mkFree n
PNT (PN _ (UniqueNames.Sn _ _)) _ _ -> mkFree n
_ -> error "Hs2HOLCF.transHV"
rt = maybe dx id $ string2iterm a qq (Just lt)
in return rt
string2iterm :: Continuity -> String ->
Maybe [HsType] -> Maybe IsaTerm
string2iterm a qq ls =
case (showIsaName qq) of
"()" -> return $ unitPT a
"(,)" -> return $ pairPT a
"True" -> return $ truePT a
"False" -> return $ falsePT a
"conjH" -> return $ andPT a
"disjH" -> return $ orPT a
"notH" -> return $ notPT a
":" -> return $ consPT a
"[]" -> return $ nilPT a
"Nothing" -> return $ nothingPT a
"Just" -> return $ justPT a
"fstH" -> return $ fstPT a
"sndH" -> return $ sndPT a
"headH" -> return $ headPT a
"tailH" -> return $ tailPT a
"Left" -> return $ leftPT a
"Right" -> return $ rightPT a
"return" -> return $ mkTyConst a ls "return"
"mbind" -> return $ mkTyConst a ls "mbind"
"mbbind" -> return $ mkTyConst a ls "mbbind"
_ -> Nothing
where
mkTyConst aa tt s = let
ndf = (case tt of
Just (x:_) -> (let
w = typeId $ extHead $ transType aa [] x
in s ++ "_" ++ w)
_ -> s)
in Const (mkVName ndf) noType
----------------------- TERM trans recursive schemes ---------------------
mapEI5 :: (i1 -> i2) -> (e1 -> Maybe e2) -> (p1 -> Maybe p2)
-> EI i1 e1 p1 d t c -> Maybe (EI i2 e2 p2 d t c)
mapEI5 vf ef pf ex =
case ex of
HsId n -> return $ HsId (mapHsIdent2 vf vf n)
HsApp x y -> do a <- ef x
b <- ef y
return $ HsApp a b
HsLambda ps e -> do xs <- mapM pf ps
y <- ef e
return $ HsLambda xs y
HsIf x y z -> do a <- ef x
b <- ef y
c <- ef z
return $ HsIf a b c
HsTuple xs -> do zs <- mapM ef xs
return $ HsTuple zs
HsParen x -> do a <- ef x
return $ HsParen a
HsList xs -> do ys <- mapM ef xs
return $ HsList ys
_ -> Nothing
mapPI3 :: (i1 -> i2) -> (p1 -> Maybe p2) -> PI i1 p1 -> Maybe (PI i2 p2)
mapPI3 vf pf pat =
case pat of
HsPId n -> return $ HsPId (mapHsIdent2 vf vf n)
HsPLit s l -> return $ HsPLit s l
HsPTuple s ps -> do bs <- mapM pf ps
return $ HsPTuple s bs
HsPParen p -> do h <- pf p
return $ HsPParen h
HsPWildCard -> return $ HsPWildCard
HsPList s ps -> do qs <- mapM pf ps
return $ HsPList s qs
HsPApp nm ps -> do qs <- mapM pf ps
return $ HsPApp (vf nm) qs
HsPSucc s n l -> return $ HsPSucc s (vf n) l
_ -> Nothing
-------------------------------------------------------------------------
------------------------ SIGNATURE translation --------------------------
-------------------------------------------------------------------------
transSignature :: Continuity -> Bool -> HatAna.Sign -> Result IsaSign.Sign
transSignature c m sign = let
tys = HatAna.types sign
vals = HatAna.values sign
xx = getDomainTab c vals
nsig = IsaSign.emptySign
{ baseSig = case (c,m) of
(IsCont _,False) -> HsHOLCF_thy
(NotCont,False) -> HsHOL_thy
(IsCont _,True) -> MHsHOLCF_thy
(NotCont,True) -> MHsHOL_thy,
tsig = emptyTypeSig
{
classrel = getClassrel c tys,
abbrs = getAbbrs c tys,
arities = getArities c xx (HatAna.instances sign)
},
constTab = getConstTab c vals,
domainTab = xx
}
in Result [] $ Just nsig
------------------------------ TYPE translation -------------------------
{- signature translation takes after one to Stratego, relies
on Isabelle.Translation to solve naming conflicts. -}
transType :: Continuity -> [HsType] -> HsType -> IsaType
transType a c t = maybe noTypeT id $ transMType a c t
transMType :: Continuity -> [HsType] -> HsType -> Maybe IsaType
transMType a c (Typ t) = transT a
(transIdV a c) (transIdC a) (transMType a c) t
transT :: Show d => Continuity -> (PNT -> Maybe IsaType)
-> (PNT -> Maybe IsaType) -> (d -> Maybe IsaType)
-> TI PNT d -> Maybe IsaType
transT c trIdV trIdC trT t =
case mapTI3 trIdV trIdC trT t of
Just (HsTyFun t1 t2) -> return $ (case c of
IsCont _ -> mkContFun t1 t2
NotCont -> mkFunType t1 t2)
Just (HsTyApp t1 t2) ->
case t1 of
IsaSign.Type name s args -> -- better resolve nested HsTyApp first
return $ IsaSign.Type name s $ args ++ [t2]
_ -> Nothing
Just (HsTyVar a) -> return a
Just (HsTyCon k) -> return k
_ -> Nothing
getSort :: Continuity -> [HsType] -> PNT -> IsaSort
getSort r c t = case c of
[] -> case r of
IsCont _ -> dom
NotCont -> holType
(x@(Typ (HsTyApp _ _))):cs -> let
a = getInstType x
b = getInstClass x
d = getLitName a
s = getSort r cs t
k = transClass b
u = showIsaName d
v = showIsaName t
in if u == v then k:s else s
_:cs -> getSort r cs t
transIdV :: Continuity -> [HsType] -> PNT -> Maybe IsaType
transIdV a c t = return $ TFree (showIsaName t) (getSort a c t)
transIdC :: Continuity -> PNT -> Maybe IsaType
transIdC c t = case t of
PNT _ (TypedIds.Class _ _) _ -> Nothing
_ -> return $ let
tfs = transFields c t
srt = case c of
IsCont _ -> dom
NotCont -> holType
in
case (UniqueNames.orig t) of
UniqueNames.G (PlainModule m) n _ ->
IsaSign.Type (transTN c m n) srt tfs
UniqueNames.G (MainModule m) n _ ->
IsaSign.Type (transPath m n) srt tfs
_ -> IsaSign.Type (showIsaName t) srt tfs
transFields :: Continuity -> PNT -> [IsaType]
transFields c t = let
srt = case c of
IsCont _ -> dom
NotCont -> holType
in case t of
PNT _ (TypedIds.Type q) _ ->
[TFree (showIsaS x) srt | (PN x _) <- TypedIds.fields q]
PNT _ (TypedIds.FieldOf _ q) _ ->
[TFree (showIsaS x) srt | (PN x _) <- TypedIds.fields q]
_ -> []
mapTI3 :: (Show i1, Show i2, Show t1, Show t2) =>
(i1 -> Maybe i2) -> (i1 -> Maybe i2) -> (t1 -> Maybe t2)
-> TI i1 t1 -> Maybe (TI i2 t2)
mapTI3 vf cf tf hty = case hty of
HsTyFun x y -> do a <- tf x
b <- tf y
return $ HsTyFun a b
HsTyApp f x -> do a <- tf f
b <- tf x
return $ HsTyApp a b
HsTyVar nm -> do a <- vf nm
return $ HsTyVar a
HsTyCon nm -> do a <- cf nm
return $ HsTyCon a
_ -> Nothing
------------------------------ Class translation ------------------------
transClass :: HsType -> IsaClass
transClass x = case x of
Typ (HsTyCon c) -> IsaClass (showIsaName c)
Typ _ -> trace ("\n CLASS: " ++ show x) $
error "Hs2HOLCF.transClass"
-------------------------- SIGN fields translation -----------------------
-------------------------- translation for ConstTab ----------------------
getConstTab :: Continuity -> VaMap -> ConstTab
getConstTab c = Map.map fst . Map.filter ((== IsaVal) . snd)
. getAConstTab c
getAConstTab :: Continuity -> VaMap -> AConstTab
getAConstTab c f =
liftMapByListD Map.toList Map.fromList (mkVName . showIsaName . fst)
(\ (x, y) -> (transMScheme c y, getValInfo x)) nothingFiOut f
getValInfo :: HsId -> IsaVT
getValInfo n = case n of
HsCon _ -> IsaConst
_ -> IsaVal
transMScheme :: Continuity -> HsScheme -> Maybe IsaType
transMScheme a s = case s of
Forall _ _ (c TiTypes.:=> t) -> transMType a c t
------------------------ translation of domaintab -----------------------
getDomainTab :: Continuity -> VaMap -> DomainTab
getDomainTab c f = let
ls = remove_duplicates
[getDomainEntry (getAConstTab c f) x |
x <- Map.keys f, checkTyCons x]
in reverse $ getDepDoms ls
getDomainEntry :: AConstTab -> HsId -> [DomainEntry]
getDomainEntry ctab t = case t of
HsCon (PNT _ (TypedIds.ConstrOf _ d) _) ->
[(getDomType ctab (mkVName $ showIsaName t),
[(b, getFieldTypes ctab b)
| b <- [ mkVName $ showIsaName c
| PN c _ <- map conName (constructors d)]])]
_ -> []
---------------------- translation for Classrel (from KEnv) ------------
getClassrel :: Continuity -> TyMap -> Classrel
getClassrel c f = liftMapByList Map.toList Map.fromList
(IsaClass . showIsaName) (transClassInfo c) f
transClassInfo :: Continuity -> (Kind, HsTypeInfo) -> Maybe [IsaClass]
transClassInfo c p = case snd p of
TiTypes.Class _ _ _ _ ->
Just $ remove_duplicates $ (case c of
IsCont _ -> dom
NotCont -> holType)
++ map transClass (extClassInfo $ snd p)
_ -> Nothing
------------------- translation of Abbrs (from KEnv) --------------------
getAbbrs :: Continuity -> TyMap -> Abbrs
getAbbrs c = Map.foldWithKey (\ k v -> case v of
Nothing -> id
Just p -> Map.insert k p) Map.empty
. liftMapByList Map.toList Map.fromList
(showTyNm c) (transAbbrsInfo c)
where showTyNm w t = case t of
HsCon x -> case transIdC w x of
Just (IsaSign.Type n _ _) -> n
_ -> showIsaName t
_ -> showIsaName t
transAbbrsInfo :: Continuity -> (Kind, HsTypeInfo) ->
Maybe ([TName], IsaType)
transAbbrsInfo c p = case (snd p) of
TiTypes.Synonym _ _ -> let (x, y) = extAbbrsInfo (snd p) in
Just (map showIsaName x, transType c [] y)
_ -> Nothing
---------------------- translation of arities ---------------------------
getArities :: Continuity -> DomainTab -> HsInstances -> IsaSign.Arities
getArities c dt db = Map.fromList (groupInst $ getTypeInsts c dt db)
getTypeInsts :: Continuity -> DomainTab -> HsInstances -> [IsaTypeInsts]
getTypeInsts c dt db =
[(typeId $ transType c [] $ getMainInstType x,
[transInst c x]) | x <- db]
++ [(u,[(IsaClass "Eq", [])]) | [(IsaSign.Type u _ [],_)] <- dt]
transInst :: Continuity -> HsInstance ->
(IsaClass, [(IsaType, [IsaClass])])
transInst c i = let (x, y) = prepInst i
w = case c of
IsCont _ -> pcpo
NotCont -> isaTerm
in (transClass x,
reverse [(transType c [] a, w : map transClass b) | (a, b) <- y])
--------------------------------------------------------------------------