CFOL2IsabelleHOL.hs revision eb0e19a83d8e3eaeb936c197555b20d37129022c
{- |
Module : $Header$
Copyright : (c) Till Mossakowski and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from CASL to Isabelle-HOL.
-}
module Comorphisms.CFOL2IsabelleHOL
( CFOL2IsabelleHOL(..)
, transTheory
, mapSen
, IsaTheory
, SignTranslator
, FormulaTranslator
, quantifyIsa
, transSort
, transOP_SYMB
, var
) where
import Logic.Logic
import Logic.Comorphism
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.Morphism
import CASL.Quantification
import CASL.Fold
import Isabelle.IsaSign as IsaSign
import Isabelle.IsaConsts
import Isabelle.Logic_Isabelle
import Isabelle.Translate
import Common.AS_Annotation
import Common.Id
import Common.Result
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.List as List
import Data.Maybe (mapMaybe)
isSingleton :: Set.Set a -> Bool
isSingleton s = Set.size s == 1
-- | The identity of the comorphism
data CFOL2IsabelleHOL = CFOL2IsabelleHOL deriving (Show)
-- Isabelle theories
type IsaTheory = (IsaSign.Sign, [Named IsaSign.Sentence])
-- extended signature translation
type SignTranslator f e = CASL.Sign.Sign f e -> e -> IsaTheory -> IsaTheory
-- extended signature translation for CASL
sigTrCASL :: SignTranslator () ()
sigTrCASL _ _ = id
-- extended formula translation
type FormulaTranslator f e = CASL.Sign.Sign f e -> f -> Term
-- extended formula translation for CASL
formTrCASL :: FormulaTranslator () ()
formTrCASL _ _ = error "CFOL2IsabelleHOL: No extended formulas allowed in CASL"
instance Language CFOL2IsabelleHOL -- default definition is okay
instance Comorphism CFOL2IsabelleHOL
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ()
Isabelle () () IsaSign.Sentence () ()
IsaSign.Sign
IsabelleMorphism () () () where
sourceLogic _ = CASL
sourceSublogic _ = SL.top
{ sub_features = NoSub, -- no subsorting yet ...
has_part = False -- no partiality yet ...
}
targetLogic _ = Isabelle
mapSublogic cid sl = if sl `isSubElem` sourceSublogic cid
then Just () else Nothing
map_theory _ = transTheory sigTrCASL formTrCASL
map_morphism = mapDefaultMorphism
map_sentence _ sign =
return . mapSen formTrCASL sign
has_model_expansion _ = True
is_weakly_amalgamable _ = True
---------------------------- Signature -----------------------------
baseSign :: BaseSig
baseSign = Main_thy
transTheory :: SignTranslator f e ->
FormulaTranslator f e ->
(CASL.Sign.Sign f e, [Named (FORMULA f)])
-> Result IsaTheory
transTheory trSig trForm (sign, sens) =
fmap (trSig sign (extendedInfo sign)) $
return (IsaSign.emptySign {
baseSig = baseSign,
tsig = emptyTypeSig {arities =
Set.fold (\s -> let s1 = showIsaTypeT s baseSign in
Map.insert s1 [(isaTerm, [])])
Map.empty (sortSet sign)},
constTab = Map.foldWithKey insertPreds
(Map.foldWithKey insertOps Map.empty
$ opMap sign) $ predMap sign,
domainTab = dtDefs},
map (mapNamed myMapSen) real_sens)
-- for now, no new sentences
where
myMapSen = mkSen . transTopFORMULA sign trForm (getAssumpsToks sign)
(real_sens, sort_gen_axs) = List.partition
(\ s -> case sentence s of
Sort_gen_ax _ _ -> False
_ -> True) sens
dtDefs = makeDtDefs sign sort_gen_axs
ga = globAnnos sign
insertOps op ts m = if isSingleton ts then
let t = Set.findMin ts in
Map.insert (mkIsaConstT False ga (length $ opArgs t) op baseSign)
(transOpType t) m
else foldl (\m1 (t,i) ->
Map.insert (mkIsaConstIT False ga
(length $ opArgs t) op i baseSign)
(transOpType t) m1) m
(zip (Set.toList ts) [1..])
insertPreds pre ts m = if isSingleton ts then
let t = Set.findMin ts in
Map.insert (mkIsaConstT True ga (length $ predArgs t) pre baseSign)
(transPredType t) m
else foldl (\m1 (t,i) ->
Map.insert (mkIsaConstIT True ga
(length $ predArgs t) pre i baseSign)
(transPredType t) m1) m
(zip (Set.toList ts) [1..])
makeDtDefs :: CASL.Sign.Sign f e -> [Named (FORMULA f)]
-> [[(Typ,[(VName,[Typ])])]]
makeDtDefs sign = delDoubles . (mapMaybe $ makeDtDef sign)
where
delDoubles xs = delDouble xs []
delDouble [] _ = []
delDouble (x:xs) sortList = let (Type s _a _b) = fst (head x) in
if (length sortList) ==
(length (addSortList s sortList)) then
delDouble xs sortList
else
(x:(delDouble xs (s:sortList)))
addSortList x xs = (List.nub (x :xs))
makeDtDef :: CASL.Sign.Sign f e -> Named (FORMULA f) ->
Maybe [(Typ,[(VName,[Typ])])]
makeDtDef sign nf = case sentence nf of
Sort_gen_ax constrs True -> Just(map makeDt srts) where
(srts,ops,_maps) = recover_Sort_gen_ax constrs
makeDt s = (transSort s, map makeOp (filter (hasTheSort s) ops))
makeOp opSym = (transOP_SYMB sign opSym, transArgs opSym)
hasTheSort s (Qual_op_name _ ot _) = s == res_OP_TYPE ot
hasTheSort _ _ = error "CFOL2IsabelleHOL.hasTheSort"
transArgs (Qual_op_name _ ot _) = map transSort $ args_OP_TYPE ot
transArgs _ = error "CFOL2IsabelleHOL.transArgs"
_ -> Nothing
transSort :: SORT -> Typ
transSort s = Type (showIsaTypeT s baseSign) [] []
transOpType :: OpType -> Typ
transOpType ot = mkCurryFunType (map transSort $ opArgs ot)
$ transSort (opRes ot)
transPredType :: PredType -> Typ
transPredType pt = mkCurryFunType (map transSort $ predArgs pt) boolType
------------------------------ Formulas ------------------------------
getAssumpsToks :: CASL.Sign.Sign f e -> Set.Set String
getAssumpsToks sign = Map.foldWithKey ( \ i ops s ->
Set.union s $ Set.unions
$ zipWith ( \ o _ -> getConstIsaToks i o baseSign) [1..]
$ Set.toList ops)
(Map.foldWithKey ( \ i prds s ->
Set.union s $ Set.unions
$ zipWith ( \ o _ -> getConstIsaToks i o baseSign) [1..]
$ Set.toList prds) Set.empty $ predMap sign) $ opMap sign
var :: String -> Term
var v = IsaSign.Free (mkVName v)
transVar :: Set.Set String -> VAR -> String
transVar toks v = let
s = showIsaConstT (simpleIdToId v) baseSign
renVar t = if Set.member t toks then renVar $ "X_" ++ t else t
in renVar s
quantifyIsa :: String -> (String, Typ) -> Term -> Term
quantifyIsa q (v, _) phi =
App (conDouble q) (Abs (var v) phi NotCont) NotCont
quantify :: Set.Set String -> QUANTIFIER -> (VAR, SORT) -> Term -> Term
quantify toks q (v,t) phi =
quantifyIsa (qname q) (transVar toks v, transSort t) phi
where
qname Universal = allS
qname Existential = exS
qname Unique_existential = ex1S
transOP_SYMB :: CASL.Sign.Sign f e -> OP_SYMB -> VName
transOP_SYMB sign (Qual_op_name op ot _) = let
ga = globAnnos sign
l = length $ args_OP_TYPE ot in
case (do ots <- Map.lookup op (opMap sign)
if isSingleton ots
then return $ mkIsaConstT False ga l op baseSign
else do
i <- List.elemIndex (toOpType ot) (Set.toList ots)
return $ mkIsaConstIT False ga l op (i+1) baseSign) of
Just vn -> vn
Nothing -> error ("CASL2Isabelle unknown op: " ++ show op)
transOP_SYMB _ (Op_name _) = error "CASL2Isabelle: unqualified operation"
transPRED_SYMB :: CASL.Sign.Sign f e -> PRED_SYMB -> VName
transPRED_SYMB sign (Qual_pred_name p pt@(Pred_type args _) _) = let
ga = globAnnos sign
l = length args in
case (do pts <- Map.lookup p (predMap sign)
if isSingleton pts
then return $ mkIsaConstT True ga l p baseSign
else do
i <- List.elemIndex (toPredType pt) (Set.toList pts)
return $ mkIsaConstIT True ga l p (i+1) baseSign) of
Just vn -> vn
Nothing -> error ("CASL2Isabelle unknown pred: " ++ show p)
transPRED_SYMB _ (Pred_name _) = error "CASL2Isabelle: unqualified predicate"
mapSen :: FormulaTranslator f e -> CASL.Sign.Sign f e -> FORMULA f -> Sentence
mapSen trForm sign phi =
mkSen $ transTopFORMULA sign trForm (getAssumpsToks sign) phi
transTopFORMULA :: CASL.Sign.Sign f e -> FormulaTranslator f e
-> Set.Set String -> FORMULA f -> Term
transTopFORMULA sign tr toks f = case f of
Quantification Universal _ phi _ -> transTopFORMULA sign tr toks phi
_ -> transFORMULA sign tr toks f
transRecord :: CASL.Sign.Sign f e -> FormulaTranslator f e -> Set.Set String
-> Record f Term Term
transRecord sign tr toks = Record
{ foldQuantification = \ _ qu vdecl phi _ ->
foldr (quantify toks qu) phi (flatVAR_DECLs vdecl)
, foldConjunction = \ _ phis _ ->
if null phis then true else foldr1 binConj phis
, foldDisjunction = \ _ phis _ ->
if null phis then false else foldr1 binDisj phis
, foldImplication = \ _ phi1 phi2 _ _ -> binImpl phi1 phi2
, foldEquivalence = \ _ phi1 phi2 _ -> binEqv phi1 phi2
, foldNegation = \ _ phi _ -> termAppl notOp phi
, foldTrue_atom = \ _ _ -> true
, foldFalse_atom = \ _ _ -> false
, foldPredication = \ _ psymb args _ ->
foldl termAppl (con $ transPRED_SYMB sign psymb) args
, foldDefinedness = \ _ _ _ -> true -- totality assumed
, foldExistl_equation = \ _ t1 t2 _ -> binEq t1 t2 -- equal types assumed
, foldStrong_equation = \ _ t1 t2 _ -> binEq t1 t2 -- equal types assumed
, foldMembership = \ _ _ _ _ -> true -- no subsorting assumed
, foldMixfix_formula = error "transRecord: Mixfix_formula"
, foldSort_gen_ax = error "transRecord: Sort_gen_ax"
, foldExtFORMULA = \ _ phi -> tr sign phi
, foldSimpleId = error "transRecord: Simple_id"
, foldQual_var = \ _ v _ _ -> var $ transVar toks v
, foldApplication = \ _ opsymb args _ ->
foldl termAppl (con $ transOP_SYMB sign opsymb) args
, foldSorted_term = \ _ t _ _ -> t -- no subsorting assumed
, foldCast = \ _ t _ _ -> t -- no subsorting assumed
, foldConditional = \ _ t1 phi t2 _ -> -- equal types assumed
foldl termAppl (conDouble "If") [phi, t1, t2]
, foldMixfix_qual_pred = error "transRecord: Mixfix_qual_pred"
, foldMixfix_term = error "transRecord: Mixfix_term"
, foldMixfix_token = error "transRecord: Mixfix_token"
, foldMixfix_sorted_term = error "transRecord: Mixfix_sorted_term"
, foldMixfix_cast = error "transRecord: Mixfix_cast"
, foldMixfix_parenthesized = error "transRecord: Mixfix_parenthesized"
, foldMixfix_bracketed = error "transRecord: Mixfix_bracketed"
, foldMixfix_braced = error "transRecord: Mixfix_braced"
}
transFORMULA :: CASL.Sign.Sign f e -> FormulaTranslator f e -> Set.Set String
-> FORMULA f -> Term
transFORMULA sign tr = foldFormula . transRecord sign tr