{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : ./Comorphisms/CFOL2IsabelleHOL.hs
Description : embedding from CASL (CFOL) to Isabelle-HOL
Copyright : (c) Till Mossakowski and Uni Bremen 2003-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from CASL to Isabelle-HOL.
-}
module Comorphisms.CFOL2IsabelleHOL
( CFOL2IsabelleHOL (..)
, transTheory
, transVar
, typeToks
, mapSen
, IsaTheory
, SignTranslator
, FormulaTranslator
, getAssumpsToks
, formTrCASL
, quantifyIsa
, quantify
, transFORMULA
, transSort
, transRecord
, transOpSymb
) where
import Logic.Logic
import Logic.Comorphism
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.Morphism
import CASL.Quantification
import CASL.Fold
import CASL.Induction
import CASL.ToDoc
import Isabelle.IsaSign as IsaSign hiding (qname)
import Isabelle.IsaConsts
import Isabelle.Logic_Isabelle
import Isabelle.Translate
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
import Common.Utils
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
-- | The identity of the comorphism
data CFOL2IsabelleHOL = CFOL2IsabelleHOL deriving Show
-- Isabelle theories
type IsaTheory = (IsaSign.Sign, [Named IsaSign.Sentence])
-- extended signature translation
type SignTranslator f e = CASL.Sign.Sign f e -> e -> IsaTheory -> IsaTheory
-- extended signature translation for CASL
sigTrCASL :: SignTranslator () ()
sigTrCASL _ _ = id
-- extended formula translation
type FormulaTranslator f e = CASL.Sign.Sign f e -> Set.Set String -> f -> Term
-- extended formula translation for CASL
formTrCASL :: FormulaTranslator () ()
formTrCASL _ _ = error "CFOL2IsabelleHOL: No extended formulas allowed in CASL"
instance Language CFOL2IsabelleHOL where
language_name CFOL2IsabelleHOL = "CASL2Isabelle"
instance Comorphism CFOL2IsabelleHOL
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
Isabelle () () IsaSign.Sentence () ()
IsaSign.Sign
IsabelleMorphism () () () where
sourceLogic CFOL2IsabelleHOL = CASL
sourceSublogic CFOL2IsabelleHOL = SL.cFol
targetLogic CFOL2IsabelleHOL = Isabelle
mapSublogic cid sl = if sl `isSubElem` sourceSublogic cid
then Just () else Nothing
map_theory CFOL2IsabelleHOL = return . transTheory sigTrCASL formTrCASL
map_sentence CFOL2IsabelleHOL sign =
return . mapSen formTrCASL sign (typeToks sign)
has_model_expansion CFOL2IsabelleHOL = True
is_weakly_amalgamable CFOL2IsabelleHOL = True
isInclusionComorphism CFOL2IsabelleHOL = True
-- -------------------------- Signature -----------------------------
baseSign :: BaseSig
baseSign = Main_thy
typeToks :: CASL.Sign.Sign f e -> Set.Set String
typeToks = Set.map (`showIsaTypeT` baseSign) . sortSet
transTheory :: FormExtension f => SignTranslator f e ->
FormulaTranslator f e ->
(CASL.Sign.Sign f e, [Named (FORMULA f)])
-> IsaTheory
transTheory trSig trForm (sign, sens) =
trSig sign (extendedInfo sign) (IsaSign.emptySign {
baseSig = baseSign,
tsig = emptyTypeSig {arities =
Set.fold (\ s -> let s1 = showIsaTypeT s baseSign in
Map.insert s1 [(isaTerm, [])])
Map.empty (sortSet sign)},
constTab = Map.foldWithKey insertPreds
(Map.foldWithKey insertOps Map.empty
. MapSet.toMap $ opMap sign) . MapSet.toMap $ predMap sign,
domainTab = dtDefs},
map (\ (s, n) -> makeNamed ("ga_induction_" ++ show n) $ myMapSen s)
(number gens) ++
map (mapNamed myMapSen) real_sens)
-- for now, no new sentences
where
gens =
map (inductionScheme . fst) genTypes
tyToks = typeToks sign
myMapSen = mkSen . transFORMULA sign tyToks trForm (getAssumpsToks sign)
(real_sens, sort_gen_axs) = foldr ( \ s (rs, cs) -> case sentence s of
Sort_gen_ax c b -> (rs, (c, b) : cs)
_ -> (s : rs, cs)) ([], []) sens
unique_sort_gen_axs = nubOrdOn (Set.fromList . map newSort . fst)
sort_gen_axs
(freeTypes, genTypes) = partition snd unique_sort_gen_axs
dtDefs = makeDtDefs sign tyToks $ map fst freeTypes
ga = globAnnos sign
insertOps op ts m = if isSingleton ts then
let t = Set.findMin ts in Map.insert
(mkIsaConstT False ga (length $ opArgs t) op baseSign tyToks)
(transOpType t) m
else foldl (\ m1 (t, i) -> Map.insert
(mkIsaConstIT False ga (length $ opArgs t) op i baseSign tyToks)
(transOpType t) m1) m $ number $ Set.toList ts
insertPreds pre ts m = if isSingleton ts then
let t = Set.findMin ts in Map.insert
(mkIsaConstT True ga (length $ predArgs t) pre baseSign tyToks)
(transPredType t) m
else foldl (\ m1 (t, i) -> Map.insert
(mkIsaConstIT True ga (length $ predArgs t) pre i baseSign tyToks)
(transPredType t) m1) m $ number $ Set.toList ts
makeDtDefs :: CASL.Sign.Sign f e -> Set.Set String -> [[Constraint]]
-> [[(Typ, [(VName, [Typ])])]]
makeDtDefs sign = map . makeDtDef sign
makeDtDef :: CASL.Sign.Sign f e -> Set.Set String -> [Constraint]
-> [(Typ, [(VName, [Typ])])]
makeDtDef sign tyToks constrs = map makeDt srts where
(srts, ops, _maps) = recover_Sort_gen_ax constrs
makeDt s = (transSort s, map makeOp (filter (hasTheSort s) ops))
makeOp opSym = (transOpSymb sign tyToks opSym, transArgs opSym)
hasTheSort s (Qual_op_name _ ot _) = s == res_OP_TYPE ot
hasTheSort _ _ = error "CFOL2IsabelleHOL.hasTheSort"
transArgs (Qual_op_name _ ot _) = map transSort $ args_OP_TYPE ot
transArgs _ = error "CFOL2IsabelleHOL.transArgs"
transSort :: SORT -> Typ
transSort s = Type (showIsaTypeT s baseSign) [] []
transOpType :: OpType -> Typ
transOpType ot = mkCurryFunType (map transSort $ opArgs ot)
$ transSort (opRes ot)
transPredType :: PredType -> Typ
transPredType pt = mkCurryFunType (map transSort $ predArgs pt) boolType
-- ---------------------------- Formulas ------------------------------
getAssumpsToks :: CASL.Sign.Sign f e -> Set.Set String
getAssumpsToks sign = Map.foldWithKey ( \ i ops s ->
Set.union s $ Set.unions
$ map ( \ (_, o) -> getConstIsaToks i o baseSign)
$ number $ Set.toList ops)
(Map.foldWithKey ( \ i prds s ->
Set.union s $ Set.unions
$ map ( \ (_, o) -> getConstIsaToks i o baseSign)
$ number $ Set.toList prds) Set.empty . MapSet.toMap
$ predMap sign)
. MapSet.toMap $ opMap sign
transVar :: Set.Set String -> VAR -> String
transVar toks v = let
s = showIsaConstT (simpleIdToId v) baseSign
renVar t = if Set.member t toks then renVar $ "X_" ++ t else t
in renVar s
quantifyIsa :: String -> (String, Typ) -> Term -> Term
quantifyIsa q (v, _) phi =
termAppl (conDouble q) (Abs (mkFree v) phi NotCont)
quantify :: Set.Set String -> QUANTIFIER -> (VAR, SORT) -> Term -> Term
quantify toks q (v, t) =
quantifyIsa (qname q) (transVar toks v, transSort t)
where
qname Universal = allS
qname Existential = exS
qname Unique_existential = ex1S
transOpSymb :: CASL.Sign.Sign f e -> Set.Set String -> OP_SYMB -> VName
transOpSymb sign tyToks qo = case qo of
Qual_op_name op ot _ -> let
ga = globAnnos sign
l = length $ args_OP_TYPE ot
in case Set.toList . MapSet.lookup op $ opMap sign of
[] -> error $ "CASL2Isabelle unknown op: " ++ show op
[_] -> mkIsaConstT False ga l op baseSign tyToks
ots -> case elemIndex (toOpType ot) ots of
Just i -> mkIsaConstIT False ga l op (i + 1) baseSign tyToks
Nothing -> error $ "CASL2Isabelle unknown type for op: " ++ show op
Op_name op -> error $ "CASL2Isabelle: unqualified op: " ++ show op
transPredSymb :: CASL.Sign.Sign f e -> Set.Set String -> PRED_SYMB -> VName
transPredSymb sign tyToks qp =
let ga = globAnnos sign
d = mkIsaConstT True ga (-1) (predSymbName qp) baseSign tyToks
-- for predicate names in induction schemes
in case qp of
Qual_pred_name p pt@(Pred_type args _) _ -> let
l = length args
in case Set.toList . MapSet.lookup p $ predMap sign of
[] -> d
[_] -> mkIsaConstT True ga l p baseSign tyToks
pts -> case elemIndex (toPredType pt) pts of
Just i -> mkIsaConstIT True ga l p (i + 1) baseSign tyToks
Nothing -> d
Pred_name _ -> d
mapSen :: FormulaTranslator f e -> CASL.Sign.Sign f e -> Set.Set String
-> FORMULA f -> Sentence
mapSen trForm sign tyToks =
mkSen . transFORMULA sign tyToks trForm (getAssumpsToks sign)
transRecord :: CASL.Sign.Sign f e -> Set.Set String -> FormulaTranslator f e
-> Set.Set String -> Record f Term Term
transRecord sign tyToks tr toks = Record
{ foldQuantification = \ _ qu vdecl phi _ ->
foldr (quantify toks qu) phi (flatVAR_DECLs vdecl)
, foldJunction = \ _ j phis _ -> let
(n, op) = case j of
Con -> (true, binConj)
Dis -> (false, binDisj)
in if null phis then n else foldr1 op phis
, foldRelation = \ _ phi1 c phi2 _ -> (if c == Equivalence
then binEqv else binImpl) phi1 phi2
, foldNegation = \ _ phi _ -> termAppl notOp phi
, foldAtom = \ _ b _ -> if b then true else false
, foldPredication = \ _ psymb args _ ->
foldl termAppl (con $ transPredSymb sign tyToks psymb) args
, foldDefinedness = \ _ _ _ -> true -- totality assumed
, foldEquation = \ _ t1 _ t2 _ -> binEq t1 t2 -- equal types assumed
, foldMembership = \ _ _ _ _ -> true -- no subsorting assumed
, foldMixfix_formula = error "transRecord: Mixfix_formula"
, foldSort_gen_ax = error "transRecord: Sort_gen_ax"
, foldQuantOp = error "transRecord: QuantOp"
, foldQuantPred = error "transRecord: QuantPred"
, foldExtFORMULA = \ _ -> tr sign tyToks
, foldQual_var = \ _ v _ _ -> mkFree $ transVar toks v
, foldApplication = \ _ opsymb args _ ->
foldl termAppl (con $ transOpSymb sign tyToks opsymb) args
, foldSorted_term = \ _ t _ _ -> t -- no subsorting assumed
, foldCast = \ _ t _ _ -> t -- no subsorting assumed
, foldConditional = \ _ t1 phi t2 _ -> -- equal types assumed
If phi t1 t2 NotCont
, foldMixfix_qual_pred = error "transRecord: Mixfix_qual_pred"
, foldMixfix_term = error "transRecord: Mixfix_term"
, foldMixfix_token = error "transRecord: Mixfix_token"
, foldMixfix_sorted_term = error "transRecord: Mixfix_sorted_term"
, foldMixfix_cast = error "transRecord: Mixfix_cast"
, foldMixfix_parenthesized = error "transRecord: Mixfix_parenthesized"
, foldMixfix_bracketed = error "transRecord: Mixfix_bracketed"
, foldMixfix_braced = error "transRecord: Mixfix_braced"
, foldExtTERM = error "transRecord: ExtTERM"
}
transFORMULA :: CASL.Sign.Sign f e -> Set.Set String -> FormulaTranslator f e
-> Set.Set String -> FORMULA f -> Term
transFORMULA sign tyToks tr = foldFormula . transRecord sign tyToks tr