SZSOntology.hs revision a1f84b69876a0dd946e68c1f96b783a3c99b9729
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalModule : $Header$
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalDescription : The SZS ontology for TPTP prover results
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalCopyright : (c) Christian Maeder DFKI GmbH 2010
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalLicense : GPLv2 or higher, see LICENSE.txt
f52d2fdccd375423dd9b3397990828f27c1b6e72ishmalMaintainer : Christian.Maeder@dfki.de
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalStability : provisional
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalPortability : portable
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalsee <http://www.cs.miami.edu/~tptp/> under Documents and SZSOntology
d589d7c9f60e62a48f0cc2178c5b972500a192deishmalsuccesses :: [(String, String)]
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal [ ("Success", "SUC")
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal -- The logical data has been processed successfully.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal , ("UnsatisfiabilityPreserving", "UNP")
cac9aa6475006090bd6d3a75e4964d1af6805266ishmal {- If there does not exist a model of Ax then there does not exist a model of
cac9aa6475006090bd6d3a75e4964d1af6805266ishmal C, i.e., if Ax is unsatisfiable then C is unsatisfiable. -}
f3d3720abcbae388db665983633890de94371df8ishmal , ("SatisfiabilityPreserving", "SAP")
cac9aa6475006090bd6d3a75e4964d1af6805266ishmal {- If there exists a model of Ax then there exists a model of C, i.e., if Ax
cac9aa6475006090bd6d3a75e4964d1af6805266ishmal is satisfiable then C is satisfiable.
f3d3720abcbae388db665983633890de94371df8ishmal - F is satisfiable. -}
f3d3720abcbae388db665983633890de94371df8ishmal , ("EquiSatisfiable", "ESA")
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal {- There exists a model of Ax iff there exists a model of C, i.e., Ax is
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal (un)satisfiable iff C is (un)satisfiable. -}
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal , ("Satisfiable", "SAT")
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal {- Some interpretations are models of Ax, and
cac9aa6475006090bd6d3a75e4964d1af6805266ishmal some models of Ax are models of C.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - F is satisfiable, and ~F is not valid.
781f943ec1c021ce4eebe4a549079a48cb8526deishmal - Possible dataforms are Models of Ax | C. -}
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal , ("FinitelySatisfiable", "FSA")
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal {- Some finite interpretations are finite models of Ax, and
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal some finite models of Ax are finite models of C.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - F is satisfiable, and ~F is not valid.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - Possible dataforms are FiniteModels of Ax | C. -}
7092ea0fb59c2fd1af2285468a955620e3889e81ishmal , ("Theorem", "THM")
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal {- All models of Ax are models of C.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - F is valid, and C is a theorem of Ax.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - Possible dataforms are Proofs of C from Ax. -}
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal , ("Equivalent", "EQV")
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal {- Some interpretations are models of Ax,
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal all models of Ax are models of C, and
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal all models of C are models of Ax.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - F is valid, C is a theorem of Ax, and Ax is a theorem of C.
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal - Possible dataforms are Proofs of C from Ax and of Ax from C. -}
d589d7c9f60e62a48f0cc2178c5b972500a192deishmal , ("TautologousConclusion", "TAC")
f3d3720abcbae388db665983633890de94371df8ishmal {- Some interpretations are models of Ax, and
f3d3720abcbae388db665983633890de94371df8ishmal all interpretations are models of C.
f3d3720abcbae388db665983633890de94371df8ishmal - F is valid, and C is a tautology.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - Possible dataforms are Proofs of C. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("WeakerConclusion", "WEC")
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal {- Some interpretations are models of Ax,
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all models of Ax are models of C, and
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal some models of C are not models of Ax.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - See Theorem and Satisfiable. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("EquivalentTheorem", "ETH")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- Some, but not all, interpretations are models of Ax,
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all models of Ax are models of C, and
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all models of C are models of Ax.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - See Equivalent. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Tautology", "TAU")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- All interpretations are models of Ax, and
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all interpretations are models of C.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is valid, ~F is unsatisfiable, and C is a tautology.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - Possible dataforms are Proofs of Ax and of C. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("WeakerTautologousConclusion", "WTC")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- Some, but not all, interpretations are models of Ax, and
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all interpretations are models of C.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is valid, and C is a tautology.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - See TautologousConclusion and WeakerConclusion. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("WeakerTheorem", "WTH")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- Some interpretations are models of Ax,
3c208ff1f520c7b749a005157391bea0d7e60b0fishmal all models of Ax are models of C,
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal some models of C are not models of Ax, and
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal some interpretations are not models of C.
55b7747a6490959dc0c16c7941109097ea125a36ishmal - See Theorem and Satisfiable. -}
55b7747a6490959dc0c16c7941109097ea125a36ishmal , ("ContradictoryAxioms", "CAX")
55b7747a6490959dc0c16c7941109097ea125a36ishmal {- No interpretations are models of Ax.
55b7747a6490959dc0c16c7941109097ea125a36ishmal - F is valid, and anything is a theorem of Ax.
55b7747a6490959dc0c16c7941109097ea125a36ishmal - Possible dataforms are Refutations of Ax. -}
55b7747a6490959dc0c16c7941109097ea125a36ishmal , ("SatisfiableConclusionContradictoryAxioms", "SCA")
55b7747a6490959dc0c16c7941109097ea125a36ishmal {- No interpretations are models of Ax, and
55b7747a6490959dc0c16c7941109097ea125a36ishmal some interpretations are models of C.
55b7747a6490959dc0c16c7941109097ea125a36ishmal - See ContradictoryAxioms. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("TautologousConclusionContradictoryAxioms", "TCA")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- No interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all interpretations are models of C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See TautologousConclusion and SatisfiableConclusionContradictoryAxioms. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("WeakerConclusionContradictoryAxioms", "WCA")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- No interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some, but not all, interpretations are models of C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See SatisfiableConclusionContradictoryAxioms and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal SatisfiableCounterConclusionContradictoryAxioms. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("CounterUnsatisfiabilityPreserving", "CUP")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- If there does not exist a model of Ax then there does not exist a model of
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal ~C, i.e., if Ax is unsatisfiable then ~C is unsatisfiable. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("CounterSatisfiabilityPreserving", "CSP")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- If there exists a model of Ax then there exists a model of ~C, i.e., if Ax
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal is satisfiable then ~C is satisfiable. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("EquiCounterSatisfiable", "ECS")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- There exists a model of Ax iff there exists a model of ~C, i.e., Ax is
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal (un)satisfiable iff ~C is (un)satisfiable. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("CounterSatisfiable", "CSA")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- Some interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some models of Ax are models of ~C.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is not valid, ~F is satisfiable, and C is not a theorem of Ax.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - Possible dataforms are Models of Ax | ~C. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("CounterTheorem", "CTH")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- All models of Ax are models of ~C.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is not valid, and ~C is a theorem of Ax.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - Possible dataforms are Proofs of ~C from Ax. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("CounterEquivalent", "CEQ")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some interpretations are models of Ax,
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all models of Ax are models of ~C, and
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal all models of ~C are models of Ax
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal (i.e., all interpretations are models of Ax xor of C).
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is not valid, and ~C is a theorem of Ax.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - Possible dataforms are Proofs of ~C from Ax and of Ax from ~C. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("UnsatisfiableConclusion", "UNC")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all interpretations are models of ~C
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal (i.e., no interpretations are models of C).
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - F is not valid, and ~C is a tautology.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - Possible dataforms are Proofs of ~C. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("WeakerCounterConclusion", "WCC")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all models of Ax are models of ~C, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some models of ~C are not models of Ax.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See CounterTheorem and CounterSatisfiable. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("EquivalentCounterTheorem", "ECT")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some, but not all, interpretations are models of Ax,
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all models of Ax are models of ~C, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all models of ~C are models of Ax.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See CounterEquivalent. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("FinitelyUnsatisfiable", "FUN")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- All finite interpretations are finite models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all finite interpretations are finite models of ~C
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal (i.e., no finite interpretations are finite models of C). -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("Unsatisfiable", "UNS")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- All interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all interpretations are models of ~C.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal (i.e., no interpretations are models of C).
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal - F is unsatisfiable, ~F is valid, and ~C is a tautology.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - Possible dataforms are Proofs of Ax and of C, and Refutations of F. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("WeakerUnsatisfiableConclusion", "WUC")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some, but not all, interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all interpretations are models of ~C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See Unsatisfiable and WeakerCounterConclusion. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("WeakerCounterTheorem", "WCT")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some interpretations are models of Ax,
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all models of Ax are models of ~C,
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some models of ~C are not models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some interpretations are not models of ~C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See CounterSatisfiable. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("SatisfiableCounterConclusionContradictoryAxioms", "SCC")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- No interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some interpretations are models of ~C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See ContradictoryAxioms. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("UnsatisfiableConclusionContradictoryAxioms", "UCA")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- No interpretations are models of Ax, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal all interpretations are models of ~C
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal (i.e., no interpretations are models of C).
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - See UnsatisfiableConclusion and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - SatisfiableCounterConclusionContradictoryAxioms. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("NoConsequence", "NOC") ]
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal {- Some interpretations are models of Ax,
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some models of Ax are models of C, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal some models of Ax are models of ~C.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - F is not valid, F is satisfiable, ~F is not valid, ~F is satisfiable, and
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal C is not a theorem of Ax.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal - Possible dataforms are pairs of models, one Model of Ax | C and one Model
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal of Ax | ~C. -}
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmalnosuccess :: [(String, String)]
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal [ ("NoSuccess", "NOS")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- The logical data has not been processed successfully (yet).
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("Open", "OPN")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- A success value has never been established.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("Unknown", "UNK")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Success value unknown, and no assumption has been made.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Assumed", "ASS(U,S)")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- The success ontology value S has been assumed because the actual value is
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal unknown for the no-success ontology reason U. U is taken from the
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal subontology starting at Unknown in the no-success ontology. -}
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Stopped", "STP")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal {- Software attempted to process the data, and stopped without a success
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Error", "ERR")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software stopped due to an error.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("OSError", "OSE")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software stopped due to an operating system error.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("InputError", "INE")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software stopped due to an input error.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("SyntaxError", "SYE")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software stopped due to an input syntax error.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("SemanticError", "SEE")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software stopped due to an input semantic error.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("TypeError", "TYE")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software stopped due to an input type error (for typed logical data).
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("Forced", "FOR")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software was forced to stop by an external force.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("User", "USR")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software was forced to stop by the user.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("ResourceOut", "RSO")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software stopped because some resource ran out.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("Timeout", "TMO")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software stopped because the CPU time limit ran out.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("MemoryOut", "MMO")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software stopped because the memory limit ran out.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("GaveUp", "GUP")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software gave up of its own accord.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Incomplete", "INC")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software gave up because it's incomplete.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("Inappropriate", "IAP")
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software gave up because it cannot process this type of data.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal , ("InProgress", "INP")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software is still running.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("NotTried", "NTT")
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal -- Software has not tried to process the data.
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmal , ("NotTriedYet", "NTY") ]
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal -- Software has not tried to process the data yet, but might in the future.
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsCheck :: [(String, String)] -> [String] -> String -> Bool
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsCheck pl l = maybe False (`elem` l)
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmal . (`lookup` map (\ (t, r) -> (map toLower t, r)) pl) . map toLower
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsProved :: String -> Bool
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsProved = szsCheck successes ["SAT", "THM"]
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsDisproved :: String -> Bool
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsDisproved = szsCheck successes ["CSA", "UNS"]
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsTimeout :: String -> Bool
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsTimeout = szsCheck nosuccess ["TMO", "RSO"]
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmalszsMemoryOut :: String -> Bool
1df3a36f6d4cb38963d36fc74aa47990fd055859ishmalszsMemoryOut = szsCheck nosuccess ["MMO"]
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsStopped :: String -> Bool
dc939c1ce8e07f33f7d5a461fce1529206d37ba5ishmalszsStopped = szsCheck nosuccess ["STP"]