(pred y : bb)
(pred y : bb * bb)
(pred y : bb * bb)(a, b)
(pred y : bb * bb) a b
a =e= < b
a #= e = b
exists1(predy :: bb)
exists predy : bb . a
exists! a : v . x
exists! a : v . x
exists! a : v . x
forall a : v . x
a if b
def x
def #
{} when [] else {}
a /\ b /\ c
a \/ b \/ c
a => b
a <=> b
true
false
b in s
a =e= b
a = b
a => b => c => d
a if b if c if d
a <=> b
a /\ b if b \/ c if not c if def d
m div n = r <=> exists s : Nat . m = n * r + s /\ s < n
a => (b if c)
a if (b => c)
(a => b) if c
(a if b) => c