(pred y : bb)
(pred y : bb*bb)
(pred y : bb*bb)(a,b)
(pred y : bb*bb) a b
a =e= < b
a #=e= b
exists1 (predy :: bb)
exists predy : bb . a
exists! a: v . x
exists!a:v.x
exists! a :v.x
forall a: v . x
a if b
def x
def#
{}when[]else{}
a/\b/\c
a\/b\/c
a=>b
a<=>b
true
false
b in s
a =e= b
(a = b)
a=>b=>c=>d
a if b if c if d
a<=>b
a/\b if b\/c if not c if def d
m div n = r <=>(exists s: Nat . m = n*r + s /\ s < n)
a => (b if c)
a if (b => c)
(a => b) if c
(a if b) => c