{- |
Module : ./CASL/SymbolMapAnalysis.hs
Description : symbol map analysis for the CASL logic.
Copyright : (c) Till Mossakowski, C. Maeder and Uni Bremen 2002-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Symbol map analysis for the CASL logic.
Follows Sect. III:4.1 of the CASL Reference Manual.
-}
module CASL.SymbolMapAnalysis
( inducedFromMorphism
, inducedFromToMorphism
, inducedFromMorphismExt
, inducedFromToMorphismExt
, cogeneratedSign
, generatedSign
, finalUnion
, constMorphExt
, revealSym
, profileContainsSort
) where
import CASL.Sign
import CASL.AS_Basic_CASL
import CASL.Morphism
import CASL.Overload (leqF, leqP)
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Lib.Rel as Rel
import Common.Doc
import Common.DocUtils
import Common.ExtSign
import Common.Id
import Common.Result
import Data.List (partition, find)
import Data.Maybe
import qualified Data.Map as Map
import qualified Data.Set as Set
{-
inducedFromMorphism :: RawSymbolMap -> sign -> Result morphism
Here is Bartek Klin's algorithm that has benn used for CATS.
Our algorithm deviates from it. The exact details need to be checked.
Inducing morphism from raw symbol map and signature
Input: raw symbol map "Rsm"
signature "Sigma1"
Output: morphims "Mrph": Sigma1 -> "Sigma2".
//preparation
1. let "Ssm" be an empty list of pairs (symbol, raw symbol).
2. for each pair "Rsym1,Rsym2" in Rsm do:
2.1. if there is no symbol in Sigma1 matching Rsym1, return error.
2.2. for each symbol "Sym" from Sigma1 matching Rsym1
2.2.1. add a pair "Sym,Rsym2" to Ssm.
//computing the "sort part" of the morphism
3. let Sigma2 be an empty signature.
4. let Mrph be an empty "morphism" from Sigma1 to Sigma2.
5. for each pair "Sym,Rsym2" in Ssm such that Sym is a sort symbol
5.1. if Rsym2 is not a sort raw symbol, return error.
5.2. if in Mrph there is a mapping of sort in Sym to sort with
name other than that in Rsym2, return error.
5.3. if in Mrph there is no mappinh of sort in Sym
5.3.1. add sort from Rsym2 to Sigma2
5.3.2. add mapping from sort(Sym) to sort(Rsym2) to Mrph.
6. for each sort symbol "S" in Sigma1
6.1. if S is not mapped by Mrph,
6.1.1. add sort S to Sigma2
6.1.2. add mapping from S to S to Mrph.
//computing the "function/predicate part" of the morphism
7. for each pair "Sym,Rsym2" in Ssm such that Sym is a function/predicate
symbol
7.1. let "F" be name contained in Sym, let "Fprof" be the profile.
7.2. let "Fprof1" be the value of Fprof via Mrph
(it can be computed, as we already have the "sort" part of
morphism)
7.3. if Rsym2 is not of appriopriate type, return error, otherwise
let "F2" be the name of the symbol.
7.4. if Rsym2 enforces the profile of the symbol (i.e., it is not
an implicit symbol), compare the profile to Fprof1. If it is
not equal, return error.
7.5. if in Mrph there is a mapping of F1 with profile Fprof to
some name different than F2, return error.
7.6. add an operation/predicate with name F2 and profile Fprof1 to
Sigma2. If it is a partial function and if in Sigma2 there
exists a total function with the same name and profile, do not
add it. Otherwise if it is a total function and if in Sigma2
there exists a partial function with the same name and profile,
add the total function removing the partial one.
7.7. add to Mrph a mapping from operation/predicate of name F1 and
profile Fprof to name F2.
8. for each operation/predicate symbol "F" with profile "Fprof" in Sigma1
that is not mapped by Mrph,
8.1. as in 7.2
8.2. as in 7.6, replacing F2 with F1.
8.3. as in 7.7, replacing F2 with F1.
9. for each sort relation "S1,S2" in Sigma1,
9.1. compute S3=(S1 via Mrph) and S4=(S2 via Mrph)
9.2. add sort relation "S3,S4" in Sigma2.
10. Compute transitive closure of subsorting relation in Sigma2.
-}
type InducedMorphism e m = RawSymbolMap -> e -> Result m
constMorphExt :: m -> InducedMorphism e m
constMorphExt m _ _ = return m
{- | function and preds in the overloading relation are mapped in the same way
thus preserving the overload-relation -}
inducedFromMorphism :: (Pretty e, Show f) => m -> RawSymbolMap -> Sign f e
-> Result (Morphism f e m)
inducedFromMorphism =
inducedFromMorphismExt (\ _ _ _ _ -> extendedInfo) . constMorphExt
inducedFromMorphismExt :: (Pretty e, Show f) => InducedSign f e m e
-> InducedMorphism e m
-> RawSymbolMap -> Sign f e -> Result (Morphism f e m)
inducedFromMorphismExt extInd extEm rmap sigma = do
-- compute the sort map (as a Map)
sort_Map <- Set.fold (\ s m -> do
s' <- sortFun rmap s
m1 <- m
return $ if s' == s then m1 else Map.insert s s' m1)
(return Map.empty) (sortSet sigma)
-- compute the op map (as a Map)
op_Map <- Map.foldWithKey (opFun sigma rmap sort_Map)
(return Map.empty) (MapSet.toMap $ opMap sigma)
-- compute the pred map (as a Map)
pred_Map <- Map.foldWithKey (predFun sigma rmap sort_Map)
(return Map.empty) (MapSet.toMap $ predMap sigma)
em <- extEm rmap $ extendedInfo sigma
-- return assembled morphism
return (embedMorphism em sigma
$ inducedSignAux extInd sort_Map op_Map pred_Map em sigma)
{ sort_map = sort_Map
, op_map = op_Map
, pred_map = pred_Map }
{- the sorts of the source signature
sortFun is the sort map as a Haskell function -}
sortFun :: RawSymbolMap -> Id -> Result Id
sortFun rmap s
-- rsys contains the raw symbols to which s is mapped to
| Set.null rsys = return s -- use default = identity mapping
| Set.null $ Set.deleteMin rsys =
return $ rawSymName $ Set.findMin rsys -- take the unique rsy
| otherwise = plain_error s -- ambiguity! generate an error
("sort " ++ showId s
" is mapped ambiguously: " ++ showDoc rsys "")
$ getRange rsys
where
-- get all raw symbols to which s is mapped to
rsys = Set.fromList $ mapMaybe (`Map.lookup` rmap)
[ ASymbol $ idToSortSymbol s
, AKindedSymb Implicit s ]
{- to a Op_map, add everything resulting from mapping (id, ots)
according to rmap -}
opFun :: Sign f e -> RawSymbolMap -> Sort_map -> Id -> Set.Set OpType
-> Result Op_map -> Result Op_map
opFun src rmap sort_Map ide ots m =
-- first consider all directly mapped profiles
let otls = Rel.partSet (leqF src) ots
m1 = foldr (directOpMap rmap sort_Map ide) m otls
-- now try the remaining ones with (un)kinded raw symbol
in case (Map.lookup (AKindedSymb Ops_kind ide) rmap,
Map.lookup (AKindedSymb Implicit ide) rmap) of
(Just rsy1, Just rsy2) -> let
m2 = Set.fold (insertmapOpSym sort_Map ide rsy1) m1 ots
in Set.fold (insertmapOpSym sort_Map ide rsy2) m2 ots
(Just rsy, Nothing) ->
Set.fold (insertmapOpSym sort_Map ide rsy) m1 ots
(Nothing, Just rsy) ->
Set.fold (insertmapOpSym sort_Map ide rsy) m1 ots
-- Anything not mapped explicitly is left unchanged
(Nothing, Nothing) -> m1
{- try to map an operation symbol directly
collect all opTypes that cannot be mapped directly -}
directOpMap :: RawSymbolMap -> Sort_map -> Id -> Set.Set OpType
-> Result Op_map -> Result Op_map
directOpMap rmap sort_Map ide ots m =
let ol = Set.toList ots
rl = map (lookupOpSymbol rmap ide) ol
(ms, os) = partition (isJust . fst) $ zip rl ol
in case ms of
l@((Just rsy, _) : rs) ->
foldr (\ (_, ot) ->
insertmapOpSym sort_Map ide
(ASymbol $ idToOpSymbol (rawSymName rsy)
$ mapOpType sort_Map ot) ot)
(foldr (\ (rsy2, ot) ->
insertmapOpSym sort_Map ide (fromJust rsy2) ot) m l)
$ rs ++ os
_ -> m
lookupOpSymbol :: RawSymbolMap -> Id -> OpType -> Maybe RawSymbol
lookupOpSymbol rmap ide' ot = let mkS = idToOpSymbol ide' in
case Map.lookup (ASymbol (mkS $ mkPartial ot)) rmap of
Nothing -> Map.lookup
(ASymbol (mkS $ mkTotal ot)) rmap
res -> res
-- map op symbol (ide, ot) to raw symbol rsy
mappedOpSym :: Sort_map -> Id -> OpType -> RawSymbol -> Result (Id, OpKind)
mappedOpSym sort_Map ide ot rsy =
let opSym = "operation symbol " ++ showDoc (idToOpSymbol ide ot)
" is mapped to "
kind = opKind ot
ot2 = mapOpType sort_Map ot
in case rsy of
ASymbol (Symbol ide' (OpAsItemType ot')) ->
if compatibleOpTypes ot2 ot'
then return (ide', opKind ot')
else plain_error (ide, kind)
(opSym ++ "type " ++ showDoc ot'
" but should be mapped to type " ++
showDoc ot2 "") $ getRange rsy
AKindedSymb k ide' | elem k [Implicit, Ops_kind] -> return (ide', kind)
_ -> plain_error (ide, kind)
(opSym ++ "symbol of wrong kind: " ++ showDoc rsy "")
$ getRange rsy
-- insert mapping of op symbol (ide, ot) to raw symbol rsy into m
insertmapOpSym :: Sort_map -> Id -> RawSymbol -> OpType
-> Result Op_map -> Result Op_map
insertmapOpSym sort_Map ide rsy ot m = do
m1 <- m
(ide', kind') <- mappedOpSym sort_Map ide ot rsy
let otsy = Symbol ide $ OpAsItemType ot
pos = getRange rsy
m2 = Map.insert (ide, mkPartial ot) (ide', kind') m1
case Map.lookup (ide, mkPartial ot) m1 of
Nothing -> if ide == ide' && kind' == opKind ot then
case rsy of
ASymbol _ -> return m1
_ -> hint m1 ("identity mapping of "
++ showDoc otsy "") pos
else return m2
Just (ide'', kind'') -> if ide' == ide'' then
warning (if kind' < kind'' then m2 else m1)
("ignoring duplicate mapping of " ++ showDoc otsy "")
pos
else plain_error m1
("conflicting mapping of " ++ showDoc otsy " to " ++
show ide' ++ " and " ++ show ide'') pos
{- to a Pred_map, add evering resulting from mapping (ide, pts)
according to rmap -}
predFun :: Sign f e -> RawSymbolMap -> Sort_map -> Id -> Set.Set PredType
-> Result Pred_map -> Result Pred_map
predFun src rmap sort_Map ide pts m =
-- first consider all directly mapped profiles
let ptls = Rel.partSet (leqP src) pts
m1 = foldr (directPredMap rmap sort_Map ide) m ptls
-- now try the remaining ones with (un)kinded raw symbol
in case (Map.lookup (AKindedSymb Preds_kind ide) rmap,
Map.lookup (AKindedSymb Implicit ide) rmap) of
(Just rsy1, Just rsy2) -> let
m2 = Set.fold (insertmapPredSym sort_Map ide rsy1) m1 pts
in Set.fold (insertmapPredSym sort_Map ide rsy2) m2 pts
(Just rsy, Nothing) ->
Set.fold (insertmapPredSym sort_Map ide rsy) m1 pts
(Nothing, Just rsy) ->
Set.fold (insertmapPredSym sort_Map ide rsy) m1 pts
-- Anything not mapped explicitly is left unchanged
(Nothing, Nothing) -> m1
{- try to map a predicate symbol directly
collect all predTypes that cannot be mapped directly -}
directPredMap :: RawSymbolMap -> Sort_map -> Id -> Set.Set PredType
-> Result Pred_map -> Result Pred_map
directPredMap rmap sort_Map ide pts m =
let pl = Set.toList pts
rl = map (\ pt -> Map.lookup (ASymbol $ idToPredSymbol ide pt) rmap) pl
(ms, ps) = partition (isJust . fst) $ zip rl pl
in case ms of
l@((Just rsy, _) : rs) ->
foldr (\ (_, pt) ->
insertmapPredSym sort_Map ide
(ASymbol $ idToPredSymbol (rawSymName rsy)
$ mapPredType sort_Map pt) pt)
(foldr (\ (rsy2, pt) ->
insertmapPredSym sort_Map ide (fromJust rsy2) pt) m l)
$ rs ++ ps
_ -> m
-- map pred symbol (ide, pt) to raw symbol rsy
mappedPredSym :: Sort_map -> Id -> PredType -> RawSymbol -> Result Id
mappedPredSym sort_Map ide pt rsy =
let predSym = "predicate symbol " ++ showDoc (idToPredSymbol ide pt)
" is mapped to "
pt2 = mapPredType sort_Map pt
in case rsy of
ASymbol (Symbol ide' (PredAsItemType pt')) ->
if pt2 == pt'
then return ide'
else plain_error ide
(predSym ++ "type " ++ showDoc pt'
" but should be mapped to type " ++
showDoc pt2 "") $ getRange rsy
AKindedSymb k ide' | elem k [Implicit, Preds_kind] -> return ide'
_ -> plain_error ide
(predSym ++ "symbol of wrong kind: " ++ showDoc rsy "")
$ getRange rsy
-- insert mapping of pred symbol (ide, pt) to raw symbol rsy into m
insertmapPredSym :: Sort_map -> Id -> RawSymbol -> PredType
-> Result Pred_map -> Result Pred_map
insertmapPredSym sort_Map ide rsy pt m = do
m1 <- m
ide' <- mappedPredSym sort_Map ide pt rsy
let ptsy = Symbol ide $ PredAsItemType pt
pos = getRange rsy
m2 = Map.insert (ide, pt) ide' m1
case Map.lookup (ide, pt) m1 of
Nothing -> if ide == ide' then
case rsy of
ASymbol _ -> return m1
_ -> hint m1 ("identity mapping of "
++ showDoc ptsy "") pos
else return m2
Just ide'' -> if ide' == ide'' then
warning m1
("ignoring duplicate mapping of " ++ showDoc ptsy "") pos
else plain_error m1
("conflicting mapping of " ++ showDoc ptsy " to " ++
show ide' ++ " and " ++ show ide'') pos
{-
inducedFromToMorphism :: RawSymbolMap -> sign -> sign -> Result morphism
Algorithm adapted from Bartek Klin's algorithm for CATS.
Inducing morphisms from raw symbol map and source and target signature.
This problem is NP-hard (The problem of 3-colouring can be reduced to it).
This means that we have exponential runtime in the worst case.
However, in many cases the runtime can be kept rather short by
using some basic principles of constraint programming.
We use a depth-first search with some weak form of constraint
propagation and MRV (minimum remaining values), see
Stuart Russell and Peter Norvig:
Artificial Intelligence - A Modern Approach.
Prentice Hall International
The algorithm has additionally to take care of default values (i.e.
symbol names are mapped identically be default, and the number of
identitically mapped names should be maximized). Moreover, it does
not suffice to find just one solution, but also its uniqueness
(among those maximizing he number of identitically mapped names)
must be checked (still, MRV is useful here).
The algorithm
Input: raw symbol map "rmap"
signatures "sigma1,sigma2"
Output: morphism "mor": sigma1 -> sigma2
1. compute the morphism mor1 induced by rmap and sigma1 (i.e. the renaming)
1.1. if target mor1 is a subsignature of sigma2, return the composition
of this inclusion with mor1
(cf. Theorem 6 of Bartek Klin's Master's Thesis)
otherwise some heuristics is needed, because merely forgetting one renaming
may lead to unacceptable run-time for signatures with just about 10 symbols
-}
-- the main function
inducedFromToMorphism :: (Eq e, Show f, Pretty e, Pretty m)
=> m -- ^ extended morphism
-> (e -> e -> Bool) -- ^ subsignature test of extensions
-> (e -> e -> e) -- ^ difference of extensions
-> RawSymbolMap
-> ExtSign (Sign f e) Symbol
-> ExtSign (Sign f e) Symbol -> Result (Morphism f e m)
inducedFromToMorphism m =
inducedFromToMorphismExt (\ _ _ _ _ -> extendedInfo) (constMorphExt m)
(\ _ _ -> return m)
inducedFromToMorphismExt
:: (Eq e, Show f, Pretty e, Pretty m)
=> InducedSign f e m e
-> InducedMorphism e m -- ^ compute extended morphism
-> (Morphism f e m -> Morphism f e m -> Result m)
-- ^ composition of extensions
-> (e -> e -> Bool) -- ^ subsignature test of extensions
-> (e -> e -> e) -- ^ difference of extensions
-> RawSymbolMap
-> ExtSign (Sign f e) Symbol
-> ExtSign (Sign f e) Symbol
-> Result (Morphism f e m)
inducedFromToMorphismExt extInd extEm compM isSubExt diffExt rmap
sig1@(ExtSign _ sy1) sig2@(ExtSign _ sy2) =
let iftm rm = (inducedFromToMorphismAuxExt extInd extEm compM isSubExt
diffExt rm sig1 sig2, rm)
isOk = isJust . resultToMaybe
res = fst $ iftm rmap
pos = concatMapRange getRange $ Map.keys rmap
in if isOk res then res else
let ss1 = Set.filter (\ s -> Set.null $ Set.filter
(compatibleSymbols True s) sy2)
$ Set.filter (\ s -> not $ any (matches s) $ Map.keys rmap)
sy1
fcombs = filteredPairs compatibleRawSymbs
(map ASymbol $ Set.toList ss1)
$ map ASymbol $ Set.toList sy2
in if null (drop 20 fcombs) then
case filter (isOk . fst) $ map (iftm . Map.union rmap . Map.fromList)
fcombs of
[] -> res
[(r, m)] -> (if length fcombs > 1 then warning else hint)
() ("derived symbol map:\n" ++ showDoc m "") pos >> r
l -> fatal_error
("ambiguous symbol maps:\n" ++ show
(vcat $ map (pretty . snd) l)) pos
else warning () "too many possibilities for symbol maps" pos >> res
compatibleSymbTypes :: SymbType -> SymbType -> Bool
compatibleSymbTypes s1 s2 = case (s1, s2) of
(SortAsItemType, SortAsItemType) -> True
(OpAsItemType t1, OpAsItemType t2) ->
length (opArgs t1) == length (opArgs t2)
(PredAsItemType p1, PredAsItemType p2) ->
length (predArgs p1) == length (predArgs p2)
_ -> False
compatibleSymbols :: Bool -> Symbol -> Symbol -> Bool
compatibleSymbols alsoId (Symbol i1 k1) (Symbol i2 k2) =
compatibleSymbTypes k1 k2 && (not alsoId || i1 == i2)
compatibleRawSymbs :: RawSymbol -> RawSymbol -> Bool
compatibleRawSymbs r1 r2 = case (r1, r2) of
(ASymbol s1, ASymbol s2) -> compatibleSymbols False s1 s2
_ -> False -- irrelevant
filteredPairs :: (a -> b -> Bool) -> [a] -> [b] -> [[(a, b)]]
filteredPairs p s l = sequence [[(a, b) | b <- filter (p a) l] | a <- s]
-- http://www.haskell.org/pipermail/haskell-cafe/2009-December/069957.html
inducedFromToMorphismAuxExt
:: (Eq e, Show f, Pretty e, Pretty m)
=> InducedSign f e m e
-> InducedMorphism e m -- ^ compute extended morphism
-> (Morphism f e m -> Morphism f e m -> Result m)
-- ^ composition of extensions
-> (e -> e -> Bool) -- ^ subsignature test of extensions
-> (e -> e -> e) -- ^ difference of extensions
-> RawSymbolMap
-> ExtSign (Sign f e) Symbol
-> ExtSign (Sign f e) Symbol
-> Result (Morphism f e m)
inducedFromToMorphismAuxExt extInd extEm compM isSubExt diffExt rmap
(ExtSign sigma1 _) (ExtSign sigma2 _) = do
-- 1. use rmap to get a renaming...
mor1 <- inducedFromMorphismExt extInd extEm rmap sigma1
-- 1.1 ... is the renamed source signature contained in the target signature?
let inducedSign = mtarget mor1
em = extended_map mor1
if isSubSig isSubExt inducedSign sigma2
-- yes => we are done
then composeM compM mor1 $ idOrInclMorphism
$ embedMorphism em inducedSign sigma2
{- here the empty mapping should be used, but it will be overwritten
by the first argument of composeM -}
else fatal_error
("No signature morphism for symbol map found.\n" ++
"The following mapped symbols are missing in the target signature:\n"
++ showDoc (diffSig diffExt inducedSign sigma2) "")
$ concatMapRange getRange $ Map.keys rmap
{-
Computing signature generated by a symbol set.
Algorithm adapted from Bartek Klin's algorithm for CATS.
Input: symbol set "Syms"
signature "Sigma"
Output: signature "Sigma1"<=Sigma.
1. get a set "Sigma_symbols" of symbols in Sigma.
2. if Syms is not a subset of Sigma_symbols, return error.
3. let Sigma1 be an empty signature.
4. for each symbol "Sym" in Syms do:
4.1. if Sym is a:
4.1.1. sort "S": add sort S to Sigma1.
4.1.2. total function "F" with profile "Fargs,Fres":
4.1.2.1. add all sorts from Fargs to Sigma1.
4.1.2.2. add sort Fres to Sigma1.
4.1.2.3. add F with the needed profile to Sigma1.
4.1.3. partial function: as in 4.1.2.
4.1.4. predicate: as in 4.1.2., except that Fres is omitted.
5. get a list "Sig_sub" of subsort relations in Sigma.
6. for each pair "S1,S2" in Sig_sub do:
6.1. if S1,S2 are sorts in Sigma1, add "S1,S2" to sort relations in
Sigma1.
7. return the inclusion of sigma1 into sigma.
-}
generatedSign :: m -> SymbolSet -> Sign f e -> Result (Morphism f e m)
generatedSign extEm sys sigma = let
symset = symsetOf sigma -- 1.
sigma1 = Set.fold revealSym sigma
{ sortRel = Rel.empty
, opMap = MapSet.empty
, predMap = MapSet.empty } sys -- 4.
sigma2 = sigma1
{ sortRel = sortRel sigma `Rel.restrict` sortSet sigma1
, emptySortSet = Set.intersection (sortSet sigma1) $ emptySortSet sigma }
in if not $ Set.isSubsetOf sys symset -- 2.
then let diffsyms = sys Set.\\ symset in
fatal_error ("Revealing: The following symbols "
++ showDoc diffsyms " are not in the signature")
$ getRange diffsyms
else sigInclusion extEm sigma2 sigma -- 7.
revealSym :: Symbol -> Sign f e -> Sign f e
revealSym sy sigma1 = let
n = symName sy
insSort = Rel.insertKey
in case symbType sy of
SortAsItemType -> -- 4.1.1.
sigma1 {sortRel = insSort n $ sortRel sigma1}
SubsortAsItemType _ -> sigma1 -- ignore
OpAsItemType ot -> -- 4.1.2./4.1.3.
sigma1 { sortRel = foldr insSort (sortRel sigma1)
$ opSorts ot
, opMap = MapSet.insert n ot $ opMap sigma1 }
PredAsItemType pt -> -- 4.1.4.
sigma1 { sortRel = foldr insSort (sortRel sigma1) $ predArgs pt
, predMap = MapSet.insert n pt $ predMap sigma1 }
{-
Computing signature co-generated by a raw symbol set.
Algorithm adapted from Bartek Klin's algorithm for CATS.
Input: symbol set "Syms"
signature "Sigma"
Output: signature "Sigma1"<=Sigma.
1. get a set "Sigma_symbols" of symbols in Sigma.
2. if Syms is not a subset of Sigma_symbols, return error.
3. for each symbol "Sym" in Syms do:
3.1. if Sym is a:
3.1.1. sort "S":
3.1.1.1. Remove S from Sigma_symbols
3.1.1.2. For each function/predicate symbol in
Sigma_symbols, if its profile contains S
remove it from Sigma_symbols.
3.1.2. any other symbol: remove if from Sigma_symbols.
4. let Sigma1 be a signature generated by Sigma_symbols in Sigma.
5. return the inclusion of sigma1 into sigma.
-}
cogeneratedSign :: m -> SymbolSet -> Sign f e -> Result (Morphism f e m)
cogeneratedSign extEm symset sigma = let
symset0 = symsetOf sigma -- 1.
symset1 = Set.fold hideSym symset0 symset -- 3.
in if Set.isSubsetOf symset symset0 -- 2.
then generatedSign extEm symset1 sigma -- 4./5.
else let diffsyms = symset Set.\\ symset0 in
fatal_error ("Hiding: The following symbols "
++ showDoc diffsyms " are not in the signature")
$ getRange diffsyms
hideSym :: Symbol -> Set.Set Symbol -> Set.Set Symbol
hideSym sy set1 = let set2 = Set.delete sy set1 in case symbType sy of
SortAsItemType -> -- 3.1.1.
Set.filter (not . profileContainsSort (symName sy) . symbType) set2
_ -> set2 -- 3.1.2
profileContainsSort :: SORT -> SymbType -> Bool
profileContainsSort s symbT = elem s $ case symbT of
OpAsItemType ot -> opSorts ot
PredAsItemType pt -> predArgs pt
SubsortAsItemType t -> [t]
SortAsItemType -> []
leCl :: Ord a => (a -> a -> Bool) -> MapSet.MapSet Id a
-> Map.Map Id [Set.Set a]
leCl f = Map.map (Rel.partSet f) . MapSet.toMap
mkp :: OpMap -> OpMap
mkp = MapSet.mapSet makePartial
finalUnion :: (e -> e -> e) -- ^ join signature extensions
-> Sign f e -> Sign f e -> Result (Sign f e)
finalUnion addSigExt s1 s2 =
let extP = Map.map (map $ \ s -> (s, [], False))
o1 = extP $ leCl (leqF s1) $ mkp $ opMap s1
o2 = extP $ leCl (leqF s2) $ mkp $ opMap s2
p1 = extP $ leCl (leqP s1) $ predMap s1
p2 = extP $ leCl (leqP s2) $ predMap s2
s3 = addSig addSigExt s1 s2
o3 = leCl (leqF s3) $ mkp $ opMap s3
p3 = leCl (leqP s3) $ predMap s3
d1 = Map.differenceWith (listOfSetDiff True) o1 o3
d2 = Map.union d1 $ Map.differenceWith (listOfSetDiff False) o2 o3
e1 = Map.differenceWith (listOfSetDiff True) p1 p3
e2 = Map.union e1 $ Map.differenceWith (listOfSetDiff False) p2 p3
prL (s, l, b) = fsep
$ text ("(" ++ (if b then "left" else "right")
++ " side of union)")
: map pretty l ++ [mapsto <+> pretty s]
prM str = ppMap ((text str <+>) . pretty)
(vcat . map prL) (const id) vcat (\ v1 v2 -> sep [v1, v2])
in if Map.null d2 && Map.null e2 then return s3
else fail $ "illegal overload relation identifications for profiles of:\n"
++ show (prM "op" d2 $+$ prM "pred" e2)
listOfSetDiff :: Ord a => Bool -> [(Set.Set a, [Set.Set a], Bool)]
-> [Set.Set a] -> Maybe [(Set.Set a, [Set.Set a], Bool)]
listOfSetDiff b rl1 l2 = let
fst3 (s, _, _) = s
l1 = map fst3 rl1 in
(\ l3 -> if null l3 then Nothing else Just l3)
$ fst $ foldr
(\ s (l, r) ->
let sIn = Set.isSubsetOf s
(r1, r2) = partition sIn r in
case r1 of
[] -> case find sIn l2 of
Nothing -> error "CASL.finalUnion.listOfSetDiff1"
Just s2 -> (if elem s2 $ map fst3 l then l else
(s2, filter (`Set.isSubsetOf` s2) l1, b) : l, r)
[_] -> (l, r2)
_ -> error "CASL.finalUnion.listOfSetDiff2")
([], l2) l1