Sign.hs revision 22eea35d0effc6582b2951a28b5240fa7a82f3df
{- |
Module : $Header$
Description : CASL signatures and local environments for basic analysis
Copyright : (c) Christian Maeder and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
CASL signatures also serve as local environments for the basic static analysis
-}
module CASL.Sign where
import CASL.AS_Basic_CASL
import CASL.ToDoc ()
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.State as State
import Common.Keywords
import Common.Id
import Common.Result
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Doc
import Common.DocUtils
import Data.List (isPrefixOf)
-- constants have empty argument lists
data OpType = OpType {opKind :: OpKind, opArgs :: [SORT], opRes :: SORT}
deriving (Show, Eq, Ord)
data PredType = PredType {predArgs :: [SORT]} deriving (Show, Eq, Ord)
data SymbType = SortAsItemType
| OpAsItemType OpType
-- since symbols do not speak about totality, the totality
-- information in OpType has to be ignored
| PredAsItemType PredType
deriving Show
-- Ordering and equality of symbol types has to ingore totality information
instance Ord SymbType where
compare st1 st2 = case (st1, st2) of
(SortAsItemType, SortAsItemType) -> EQ
(SortAsItemType, _) -> LT
(OpAsItemType ot1, OpAsItemType ot2) ->
compare (opArgs ot1, opRes ot1) (opArgs ot2, opRes ot2)
(OpAsItemType _, SortAsItemType) -> GT
(OpAsItemType _, PredAsItemType _) -> LT
(PredAsItemType pt1, PredAsItemType pt2) -> compare pt1 pt2
(PredAsItemType _, _) -> GT
instance Eq SymbType where
t1 == t2 = compare t1 t2 == EQ
data Symbol = Symbol {symName :: Id, symbType :: SymbType}
deriving (Show, Eq, Ord)
instance GetRange Symbol where
getRange = getRange . symName
idToSortSymbol :: Id -> Symbol
idToSortSymbol idt = Symbol idt SortAsItemType
idToOpSymbol :: Id -> OpType -> Symbol
idToOpSymbol idt typ = Symbol idt (OpAsItemType typ)
idToPredSymbol :: Id -> PredType -> Symbol
idToPredSymbol idt typ = Symbol idt (PredAsItemType typ)
dummy :: Sign f s -> a -> ()
dummy _ _ = ()
dummyMin :: b -> c -> Result ()
dummyMin _ _ = return ()
type CASLSign = Sign () ()
data Sign f e = Sign
{ sortSet :: Set.Set SORT
, emptySortSet :: Set.Set SORT
-- a subset of the sort set of possibly empty sorts
, sortRel :: Rel.Rel SORT
, opMap :: OpMap
, assocOps :: OpMap
, varMap :: Map.Map SIMPLE_ID SORT
, sentences :: [Named (FORMULA f)]
, declaredSymbols :: Set.Set Symbol
, envDiags :: [Diagnosis]
, globAnnos :: GlobalAnnos
, extendedInfo :: e
} deriving Show
-- better ignore assoc flags for equality
instance (Eq f, Eq e) => Eq (Sign f e) where
e1 == e2 =
sortSet e1 == sortSet e2 &&
emptySortSet e1 == emptySortSet e2 &&
sortRel e1 == sortRel e2 &&
opMap e1 == opMap e2 &&
predMap e1 == predMap e2 &&
extendedInfo e1 == extendedInfo e2
emptySign :: e -> Sign f e
emptySign e = Sign
{ sortSet = Set.empty
, emptySortSet = Set.empty
, sortRel = Rel.empty
, opMap = Map.empty
, assocOps = Map.empty
, predMap = Map.empty
, varMap = Map.empty
, sentences = []
, declaredSymbols = Set.empty
, envDiags = []
, annoMap = Map.empty
, globAnnos = emptyGlobalAnnos
, extendedInfo = e }
-- | proper subsorts (possibly excluding input sort)
subsortsOf :: SORT -> Sign f e -> Set.Set SORT
subsortsOf s e = Rel.predecessors (sortRel e) s
-- | proper supersorts (possibly excluding input sort)
supersortsOf :: SORT -> Sign f e -> Set.Set SORT
supersortsOf s e = Rel.succs (sortRel e) s
toOP_TYPE :: OpType -> OP_TYPE
toOP_TYPE OpType { opArgs = args, opRes = res, opKind = k } =
Op_type k args res nullRange
toPRED_TYPE :: PredType -> PRED_TYPE
toPRED_TYPE PredType { predArgs = args } = Pred_type args nullRange
toOpType :: OP_TYPE -> OpType
toOpType (Op_type k args r _) = OpType k args r
toPredType :: PRED_TYPE -> PredType
toPredType (Pred_type args _) = PredType args
instance Pretty OpType where
pretty = pretty . toOP_TYPE
instance Pretty PredType where
pretty = pretty . toPRED_TYPE
instance (Pretty f, Pretty e) => Pretty (Sign f e) where
pretty = printSign pretty pretty
instance Pretty Symbol where
pretty sy = let n = pretty (symName sy) in
case symbType sy of
SortAsItemType -> n
PredAsItemType pt -> let p = n <+> colon <+> pretty pt in
case predArgs pt of
[_] -> text predS <+> p
_ -> p
OpAsItemType ot -> let o = n <+> colon <> pretty ot in
case opArgs ot of
[] | opKind ot == Total -> text opS <+> o
_ -> o
instance Pretty SymbType where
pretty st = case st of
OpAsItemType ot -> pretty ot
PredAsItemType pt -> space <> pretty pt
SortAsItemType -> empty
printSign :: (f -> Doc) -> (e -> Doc) -> Sign f e -> Doc
printSign _ fE s = let
printRel (supersort, subsorts) =
ppWithCommas (Set.toList subsorts) <+> text lessS <+>
idDoc supersort
esorts = emptySortSet s
nsorts = Set.difference (sortSet s) esorts in
(if Set.null nsorts then empty else text (sortS++sS) <+>
sepByCommas (map idDoc (Set.toList nsorts))) $+$
(if Set.null esorts then empty else text (esortS++sS) <+>
sepByCommas (map idDoc (Set.toList esorts))) $+$
(if Rel.null (sortRel s) then empty
else text (sortS++sS) <+>
(fsep $ punctuate semi $ map printRel $ Map.toList
$ Rel.toMap $ Rel.transpose $ sortRel s))
$+$ printSetMap (text opS) empty (opMap s)
$+$ printSetMap (text predS) space (predMap s)
$+$ fE (extendedInfo s)
-- working with Sign
diffSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
diffSig dif a b = let s = sortSet a `Set.difference` sortSet b in a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.difference` nonEmptySortSet b
, sortRel = diffRel (sortRel a) $ sortRel b
, opMap = opMap a `diffOpMapSet` opMap b
, assocOps = assocOps a `diffOpMapSet` assocOps b
, predMap = predMap a `diffMapSet` predMap b
, annoMap = annoMap a `diffMapSet` annoMap b
, extendedInfo = dif (extendedInfo a) $ extendedInfo b }
-- transClosure needed: {a < b < c} - {a < c; b}
-- is not transitive!
diffOpMapSet :: OpMap -> OpMap -> OpMap
diffOpMapSet m = diffMapSet m . Map.map (rmOrAddParts False)
diffMapSet = Map.differenceWith
(\ s t -> let d = Set.difference s t in
if Set.null d then Nothing else Just d)
addMapSet = Map.unionWith Set.union
makePartial = Set.mapMonotonic (\ o -> o { opKind = Partial })
-- | remove (True) or add (False) partial op if it is included as total
rmOrAddParts b s =
let t = makePartial $ Set.filter ((== Total) . opKind) s
in (if b then Set.difference else Set.union) s t
addOpMapSet :: OpMap -> OpMap -> OpMap
addOpMapSet m = Map.map (rmOrAddParts True). addMapSet m
interMapSet m =
interOpMapSet :: OpMap -> OpMap -> OpMap
interOpMapSet m = Map.filter (not . Set.null)
(\ s t -> rmOrAddParts True $ Set.intersection (rmOrAddParts False s)
$ rmOrAddParts False t) m
uniteCASLSign :: Sign () () -> Sign () () -> Sign () ()
uniteCASLSign a b = addSig (\_ _ -> ()) a b
nonEmptySortSet :: Sign f e -> Set.Set Id
nonEmptySortSet s = Set.difference (sortSet s) $ emptySortSet s
addSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
addSig ad a b = let s = sortSet a `Set.union` sortSet b in a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.union` nonEmptySortSet b
, sortRel = addRel (sortRel a) $ sortRel b
, opMap = addOpMapSet (opMap a) $ opMap b
, assocOps = addOpMapSet (assocOps a) $ assocOps b
, predMap = addMapSet (predMap a) $ predMap b
, annoMap = addMapSet (annoMap a) $ annoMap b
, extendedInfo = ad (extendedInfo a) $ extendedInfo b }
interSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
interSig ef a b = let s = sortSet a `Set.intersection` sortSet b in a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.intersection` nonEmptySortSet b
, sortRel = interRel (sortRel a) $ sortRel b
, opMap = interOpMapSet (opMap a) $ opMap b
, assocOps = interOpMapSet (assocOps a) $ assocOps b
, predMap = interMapSet (predMap a) $ predMap b
, annoMap = interMapSet (annoMap a) $ annoMap b
, extendedInfo = ef (extendedInfo a) $ extendedInfo b }
isEmptySig :: (e -> Bool) -> Sign f e -> Bool
isEmptySig ie s =
Set.null (sortSet s) &&
Rel.null (sortRel s) &&
Map.null (opMap s) &&
Map.null (predMap s) && ie (extendedInfo s)
-> Bool
isSubMapSet = Map.isSubmapOfBy Set.isSubsetOf
isSubOpMap :: OpMap -> OpMap -> Bool
isSubOpMap = Map.isSubmapOfBy $ \ s t ->
Set.fold ( \ e r -> r && (Set.member e t || case opKind e of
Partial -> Set.member e {opKind = Total} t
Total -> False)) True s
isSubSig :: (e -> e -> Bool) -> Sign f e -> Sign f e -> Bool
isSubSig isSubExt a b = Set.isSubsetOf (sortSet a) (sortSet b)
&& Rel.isSubrelOf (sortRel a) (sortRel b)
-- ignore empty sort sorts
&& isSubOpMap (opMap a) (opMap b)
-- ignore associativity properties!
&& isSubMapSet (predMap a) (predMap b)
&& isSubExt (extendedInfo a) (extendedInfo b)
addDiags :: [Diagnosis] -> State.State (Sign f e) ()
addDiags ds = do
e <- State.get
State.put e { envDiags = reverse ds ++ envDiags e }
addAnnoSet :: Annoted a -> Symbol -> State.State (Sign f e) ()
addAnnoSet a s = do
addSymbol s
if Set.null v then return () else do
e <- State.get
addSymbol :: Symbol -> State.State (Sign f e) ()
addSymbol s = do
e <- State.get
State.put e { declaredSymbols = Set.insert s $ declaredSymbols e }
addSort :: SortsKind -> Annoted a -> SORT -> State.State (Sign f e) ()
addSort sk a s = do
e <- State.get
let m = sortSet e
em = emptySortSet e
known = Set.member s m
if known then addDiags [mkDiag Hint "redeclared sort" s]
else do
State.put e { sortSet = Set.insert s m }
addDiags $ checkNamePrefix s
case sk of
NonEmptySorts -> if Set.member s em then do
e2 <- State.get
State.put e2 { emptySortSet = Set.delete s em }
addDiags [mkDiag Warning "redeclared sort as non-empty" s]
else return ()
PossiblyEmptySorts -> if known then
addDiags [mkDiag Warning "non-empty sort remains non-empty" s]
else do
e2 <- State.get
State.put e2 { emptySortSet = Set.insert s em }
addAnnoSet a $ Symbol s SortAsItemType
hasSort :: Sign f e -> SORT -> [Diagnosis]
hasSort e s =
if Set.member s $ sortSet e then [] else [mkDiag Error "unknown sort" s]
checkSorts :: [SORT] -> State.State (Sign f e) ()
checkSorts s = do
e <- State.get
addDiags $ concatMap (hasSort e) s
addSubsort :: SORT -> SORT -> State.State (Sign f e) ()
addSubsort = addSubsortOrIso True
addSubsortOrIso :: Bool -> SORT -> SORT -> State.State (Sign f e) ()
addSubsortOrIso b super sub = do
if b then checkSorts [super, sub] else return ()
e <- State.get
let r = sortRel e
State.put e { sortRel = (if b then id else Rel.insert super sub)
$ Rel.insert sub super r }
let p = posOfId sub
rel = " '" ++
showDoc sub (if b then " < " else " = ") ++ showDoc super "'"
if super == sub then addDiags [mkDiag Warning "void reflexive subsort" sub]
else if b then
if Rel.path super sub r then
if Rel.path sub super r
then addDiags [Diag Warning ("sorts are isomorphic" ++ rel) p]
else addDiags [Diag Warning ("added subsort cycle by" ++ rel) p]
else if Rel.path sub super r
then addDiags [Diag Hint ("redeclared subsort" ++ rel) p]
else return ()
else if Rel.path super sub r then
if Rel.path sub super r
then addDiags [Diag Hint ("redeclared isomoprhic sorts" ++ rel) p]
else addDiags [Diag Warning ("subsort '" ++
showDoc super "' made isomorphic by" ++ rel) $ posOfId super]
else if Rel.path sub super r
then addDiags [Diag Warning ("subsort '" ++
showDoc sub "' made isomorphic by" ++ rel) p]
else return()
closeSubsortRel :: State.State (Sign f e) ()
closeSubsortRel=
do e <- State.get
State.put e { sortRel = Rel.transClosure $ sortRel e }
checkNamePrefix :: Id -> [Diagnosis]
checkNamePrefix i = if isPrefixOf genNamePrefix $ showId i "" then
[mkDiag Warning "identifier may conflict with generated names" i]
else []
alsoWarning :: String -> String -> Id -> [Diagnosis]
alsoWarning new old i = let is = ' ' : showId i "'" in
[Diag Warning ("new '" ++ new ++ is ++ " is also known as '" ++ old ++ is)
$ posOfId i]
checkWithOtherMap :: String -> String -> Map.Map Id a -> Id -> [Diagnosis]
checkWithOtherMap s1 s2 m i =
case Map.lookup i m of
Nothing -> []
Just _ -> alsoWarning s1 s2 i
addVars :: VAR_DECL -> State.State (Sign f e) ()
addVars (Var_decl vs s _) = do
checkSorts [s]
mapM_ (addVar s) vs
addVar :: SORT -> SIMPLE_ID -> State.State (Sign f e) ()
addVar s v =
do e <- State.get
let m = varMap e
i = simpleIdToId v
ds = case Map.lookup v m of
Just _ -> [mkDiag Hint "known variable shadowed" v]
Nothing -> []
State.put e { varMap = Map.insert v s m }
addDiags $ ds ++ checkWithOtherMap varS opS (opMap e) i
++ checkWithOtherMap varS predS (predMap e) i
++ checkNamePrefix i
addOpTo :: Id -> OpType -> OpMap -> OpMap
addOpTo k v m =
let l = Map.findWithDefault Set.empty k m
in Map.insert k (Set.insert v l) m
-- | extract the sort from an analysed term
sortOfTerm :: TERM f -> SORT
sortOfTerm t = case t of
Qual_var _ ty _ -> ty
Application (Qual_op_name _ ot _) _ _ -> res_OP_TYPE ot
Sorted_term _ ty _ -> ty
Cast _ ty _ -> ty
Conditional t1 _ _ _ -> sortOfTerm t1
_ -> genName "unknown"
-- | create binding if variables are non-null
mkForall :: [VAR_DECL] -> FORMULA f -> Range -> FORMULA f
mkForall vl f ps = if null vl then f else Quantification Universal vl f ps
-- | convert a singleton variable declaration into a qualified variable
toQualVar :: VAR_DECL -> TERM f
toQualVar (Var_decl v s ps) =
if isSingle v then Qual_var (head v) s ps else error "toQualVar"